Properties

Label 325.2.o.b.224.3
Level $325$
Weight $2$
Character 325.224
Analytic conductor $2.595$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(74,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.74");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 224.3
Root \(1.12824 - 0.651388i\) of defining polynomial
Character \(\chi\) \(=\) 325.224
Dual form 325.2.o.b.74.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12824 - 0.651388i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.151388 + 0.262211i) q^{4} +(-0.651388 + 1.12824i) q^{6} +(0.866025 + 0.500000i) q^{7} +3.00000i q^{8} +(-1.00000 + 1.73205i) q^{9} +(2.80278 + 4.85455i) q^{11} -0.302776i q^{12} -3.60555i q^{13} +1.30278 q^{14} +(1.65139 + 2.86029i) q^{16} +(-0.341603 - 0.197224i) q^{17} +2.60555i q^{18} +(0.802776 - 1.39045i) q^{19} -1.00000 q^{21} +(6.32439 + 3.65139i) q^{22} +(2.59808 - 1.50000i) q^{23} +(-1.50000 - 2.59808i) q^{24} +(-2.34861 - 4.06792i) q^{26} -5.00000i q^{27} +(-0.262211 + 0.151388i) q^{28} +(4.10555 + 7.11102i) q^{29} -4.00000 q^{31} +(-1.46984 - 0.848612i) q^{32} +(-4.85455 - 2.80278i) q^{33} -0.513878 q^{34} +(-0.302776 - 0.524423i) q^{36} +(-3.12250 + 1.80278i) q^{37} -2.09167i q^{38} +(1.80278 + 3.12250i) q^{39} +(-1.50000 - 2.59808i) q^{41} +(-1.12824 + 0.651388i) q^{42} +(3.64692 + 2.10555i) q^{43} -1.69722 q^{44} +(1.95416 - 3.38471i) q^{46} -5.21110i q^{47} +(-2.86029 - 1.65139i) q^{48} +(-3.00000 - 5.19615i) q^{49} +0.394449 q^{51} +(0.945417 + 0.545837i) q^{52} -11.2111i q^{53} +(-3.25694 - 5.64118i) q^{54} +(-1.50000 + 2.59808i) q^{56} +1.60555i q^{57} +(9.26407 + 5.34861i) q^{58} +(5.40833 - 9.36750i) q^{59} +(0.500000 - 0.866025i) q^{61} +(-4.51295 + 2.60555i) q^{62} +(-1.73205 + 1.00000i) q^{63} -8.81665 q^{64} -7.30278 q^{66} +(-6.06218 + 3.50000i) q^{67} +(0.103429 - 0.0597147i) q^{68} +(-1.50000 + 2.59808i) q^{69} +(8.40833 - 14.5636i) q^{71} +(-5.19615 - 3.00000i) q^{72} +15.2111i q^{73} +(-2.34861 + 4.06792i) q^{74} +(0.243061 + 0.420994i) q^{76} +5.60555i q^{77} +(4.06792 + 2.34861i) q^{78} +9.21110 q^{79} +(-0.500000 - 0.866025i) q^{81} +(-3.38471 - 1.95416i) q^{82} -5.21110i q^{83} +(0.151388 - 0.262211i) q^{84} +5.48612 q^{86} +(-7.11102 - 4.10555i) q^{87} +(-14.5636 + 8.40833i) q^{88} +(4.10555 + 7.11102i) q^{89} +(1.80278 - 3.12250i) q^{91} +0.908327i q^{92} +(3.46410 - 2.00000i) q^{93} +(-3.39445 - 5.87936i) q^{94} +1.69722 q^{96} +(13.5148 + 7.80278i) q^{97} +(-6.76942 - 3.90833i) q^{98} -11.2111 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4} + 2 q^{6} - 8 q^{9} + 8 q^{11} - 4 q^{14} + 6 q^{16} - 8 q^{19} - 8 q^{21} - 12 q^{24} - 26 q^{26} + 4 q^{29} - 32 q^{31} + 68 q^{34} + 12 q^{36} - 12 q^{41} - 28 q^{44} - 6 q^{46} - 24 q^{49}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12824 0.651388i 0.797784 0.460601i −0.0449118 0.998991i \(-0.514301\pi\)
0.842696 + 0.538390i \(0.180967\pi\)
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i −0.728714 0.684819i \(-0.759881\pi\)
0.228714 + 0.973494i \(0.426548\pi\)
\(4\) −0.151388 + 0.262211i −0.0756939 + 0.131106i
\(5\) 0 0
\(6\) −0.651388 + 1.12824i −0.265928 + 0.460601i
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i 0.654654 0.755929i \(-0.272814\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 3.00000i 1.06066i
\(9\) −1.00000 + 1.73205i −0.333333 + 0.577350i
\(10\) 0 0
\(11\) 2.80278 + 4.85455i 0.845069 + 1.46370i 0.885562 + 0.464522i \(0.153774\pi\)
−0.0404929 + 0.999180i \(0.512893\pi\)
\(12\) 0.302776i 0.0874038i
\(13\) 3.60555i 1.00000i
\(14\) 1.30278 0.348181
\(15\) 0 0
\(16\) 1.65139 + 2.86029i 0.412847 + 0.715072i
\(17\) −0.341603 0.197224i −0.0828508 0.0478339i 0.458002 0.888951i \(-0.348565\pi\)
−0.540853 + 0.841117i \(0.681898\pi\)
\(18\) 2.60555i 0.614134i
\(19\) 0.802776 1.39045i 0.184169 0.318991i −0.759127 0.650943i \(-0.774374\pi\)
0.943296 + 0.331952i \(0.107707\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 6.32439 + 3.65139i 1.34836 + 0.778478i
\(23\) 2.59808 1.50000i 0.541736 0.312772i −0.204046 0.978961i \(-0.565409\pi\)
0.745782 + 0.666190i \(0.232076\pi\)
\(24\) −1.50000 2.59808i −0.306186 0.530330i
\(25\) 0 0
\(26\) −2.34861 4.06792i −0.460601 0.797784i
\(27\) 5.00000i 0.962250i
\(28\) −0.262211 + 0.151388i −0.0495533 + 0.0286096i
\(29\) 4.10555 + 7.11102i 0.762382 + 1.32048i 0.941620 + 0.336678i \(0.109303\pi\)
−0.179238 + 0.983806i \(0.557363\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.46984 0.848612i −0.259833 0.150015i
\(33\) −4.85455 2.80278i −0.845069 0.487901i
\(34\) −0.513878 −0.0881294
\(35\) 0 0
\(36\) −0.302776 0.524423i −0.0504626 0.0874038i
\(37\) −3.12250 + 1.80278i −0.513336 + 0.296374i −0.734204 0.678929i \(-0.762444\pi\)
0.220868 + 0.975304i \(0.429111\pi\)
\(38\) 2.09167i 0.339314i
\(39\) 1.80278 + 3.12250i 0.288675 + 0.500000i
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) −1.12824 + 0.651388i −0.174091 + 0.100511i
\(43\) 3.64692 + 2.10555i 0.556150 + 0.321094i 0.751599 0.659620i \(-0.229283\pi\)
−0.195449 + 0.980714i \(0.562616\pi\)
\(44\) −1.69722 −0.255866
\(45\) 0 0
\(46\) 1.95416 3.38471i 0.288126 0.499048i
\(47\) 5.21110i 0.760117i −0.924962 0.380059i \(-0.875904\pi\)
0.924962 0.380059i \(-0.124096\pi\)
\(48\) −2.86029 1.65139i −0.412847 0.238357i
\(49\) −3.00000 5.19615i −0.428571 0.742307i
\(50\) 0 0
\(51\) 0.394449 0.0552339
\(52\) 0.945417 + 0.545837i 0.131106 + 0.0756939i
\(53\) 11.2111i 1.53996i −0.638066 0.769982i \(-0.720265\pi\)
0.638066 0.769982i \(-0.279735\pi\)
\(54\) −3.25694 5.64118i −0.443213 0.767668i
\(55\) 0 0
\(56\) −1.50000 + 2.59808i −0.200446 + 0.347183i
\(57\) 1.60555i 0.212660i
\(58\) 9.26407 + 5.34861i 1.21643 + 0.702307i
\(59\) 5.40833 9.36750i 0.704104 1.21954i −0.262910 0.964820i \(-0.584682\pi\)
0.967014 0.254724i \(-0.0819845\pi\)
\(60\) 0 0
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) −4.51295 + 2.60555i −0.573145 + 0.330905i
\(63\) −1.73205 + 1.00000i −0.218218 + 0.125988i
\(64\) −8.81665 −1.10208
\(65\) 0 0
\(66\) −7.30278 −0.898910
\(67\) −6.06218 + 3.50000i −0.740613 + 0.427593i −0.822292 0.569066i \(-0.807305\pi\)
0.0816792 + 0.996659i \(0.473972\pi\)
\(68\) 0.103429 0.0597147i 0.0125426 0.00724147i
\(69\) −1.50000 + 2.59808i −0.180579 + 0.312772i
\(70\) 0 0
\(71\) 8.40833 14.5636i 0.997885 1.72839i 0.442645 0.896697i \(-0.354040\pi\)
0.555240 0.831690i \(-0.312626\pi\)
\(72\) −5.19615 3.00000i −0.612372 0.353553i
\(73\) 15.2111i 1.78032i 0.455643 + 0.890162i \(0.349409\pi\)
−0.455643 + 0.890162i \(0.650591\pi\)
\(74\) −2.34861 + 4.06792i −0.273021 + 0.472886i
\(75\) 0 0
\(76\) 0.243061 + 0.420994i 0.0278810 + 0.0482913i
\(77\) 5.60555i 0.638812i
\(78\) 4.06792 + 2.34861i 0.460601 + 0.265928i
\(79\) 9.21110 1.03633 0.518165 0.855281i \(-0.326615\pi\)
0.518165 + 0.855281i \(0.326615\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.38471 1.95416i −0.373779 0.215801i
\(83\) 5.21110i 0.571993i −0.958231 0.285996i \(-0.907675\pi\)
0.958231 0.285996i \(-0.0923245\pi\)
\(84\) 0.151388 0.262211i 0.0165178 0.0286096i
\(85\) 0 0
\(86\) 5.48612 0.591584
\(87\) −7.11102 4.10555i −0.762382 0.440161i
\(88\) −14.5636 + 8.40833i −1.55249 + 0.896331i
\(89\) 4.10555 + 7.11102i 0.435188 + 0.753767i 0.997311 0.0732864i \(-0.0233487\pi\)
−0.562123 + 0.827053i \(0.690015\pi\)
\(90\) 0 0
\(91\) 1.80278 3.12250i 0.188982 0.327327i
\(92\) 0.908327i 0.0946996i
\(93\) 3.46410 2.00000i 0.359211 0.207390i
\(94\) −3.39445 5.87936i −0.350111 0.606409i
\(95\) 0 0
\(96\) 1.69722 0.173222
\(97\) 13.5148 + 7.80278i 1.37222 + 0.792252i 0.991207 0.132318i \(-0.0422419\pi\)
0.381013 + 0.924570i \(0.375575\pi\)
\(98\) −6.76942 3.90833i −0.683815 0.394801i
\(99\) −11.2111 −1.12676
\(100\) 0 0
\(101\) 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i \(-0.0188862\pi\)
−0.550474 + 0.834853i \(0.685553\pi\)
\(102\) 0.445032 0.256939i 0.0440647 0.0254408i
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) 10.8167 1.06066
\(105\) 0 0
\(106\) −7.30278 12.6488i −0.709308 1.22856i
\(107\) −7.11102 + 4.10555i −0.687449 + 0.396899i −0.802656 0.596443i \(-0.796580\pi\)
0.115207 + 0.993342i \(0.463247\pi\)
\(108\) 1.31106 + 0.756939i 0.126157 + 0.0728365i
\(109\) 4.78890 0.458693 0.229347 0.973345i \(-0.426341\pi\)
0.229347 + 0.973345i \(0.426341\pi\)
\(110\) 0 0
\(111\) 1.80278 3.12250i 0.171112 0.296374i
\(112\) 3.30278i 0.312083i
\(113\) 4.85455 + 2.80278i 0.456678 + 0.263663i 0.710646 0.703550i \(-0.248403\pi\)
−0.253969 + 0.967212i \(0.581736\pi\)
\(114\) 1.04584 + 1.81144i 0.0979516 + 0.169657i
\(115\) 0 0
\(116\) −2.48612 −0.230831
\(117\) 6.24500 + 3.60555i 0.577350 + 0.333333i
\(118\) 14.0917i 1.29724i
\(119\) −0.197224 0.341603i −0.0180795 0.0313147i
\(120\) 0 0
\(121\) −10.2111 + 17.6861i −0.928282 + 1.60783i
\(122\) 1.30278i 0.117948i
\(123\) 2.59808 + 1.50000i 0.234261 + 0.135250i
\(124\) 0.605551 1.04885i 0.0543801 0.0941891i
\(125\) 0 0
\(126\) −1.30278 + 2.25647i −0.116060 + 0.201023i
\(127\) 8.84307 5.10555i 0.784696 0.453044i −0.0533960 0.998573i \(-0.517005\pi\)
0.838092 + 0.545529i \(0.183671\pi\)
\(128\) −7.00759 + 4.04584i −0.619390 + 0.357605i
\(129\) −4.21110 −0.370767
\(130\) 0 0
\(131\) −6.78890 −0.593149 −0.296574 0.955010i \(-0.595844\pi\)
−0.296574 + 0.955010i \(0.595844\pi\)
\(132\) 1.46984 0.848612i 0.127933 0.0738622i
\(133\) 1.39045 0.802776i 0.120567 0.0696095i
\(134\) −4.55971 + 7.89766i −0.393899 + 0.682254i
\(135\) 0 0
\(136\) 0.591673 1.02481i 0.0507355 0.0878765i
\(137\) −4.85455 2.80278i −0.414752 0.239457i 0.278077 0.960559i \(-0.410303\pi\)
−0.692830 + 0.721101i \(0.743636\pi\)
\(138\) 3.90833i 0.332699i
\(139\) 6.80278 11.7828i 0.577004 0.999400i −0.418817 0.908071i \(-0.637555\pi\)
0.995821 0.0913293i \(-0.0291116\pi\)
\(140\) 0 0
\(141\) 2.60555 + 4.51295i 0.219427 + 0.380059i
\(142\) 21.9083i 1.83851i
\(143\) 17.5033 10.1056i 1.46370 0.845069i
\(144\) −6.60555 −0.550463
\(145\) 0 0
\(146\) 9.90833 + 17.1617i 0.820019 + 1.42031i
\(147\) 5.19615 + 3.00000i 0.428571 + 0.247436i
\(148\) 1.09167i 0.0897350i
\(149\) 1.50000 2.59808i 0.122885 0.212843i −0.798019 0.602632i \(-0.794119\pi\)
0.920904 + 0.389789i \(0.127452\pi\)
\(150\) 0 0
\(151\) 13.2111 1.07510 0.537552 0.843231i \(-0.319349\pi\)
0.537552 + 0.843231i \(0.319349\pi\)
\(152\) 4.17134 + 2.40833i 0.338341 + 0.195341i
\(153\) 0.683205 0.394449i 0.0552339 0.0318893i
\(154\) 3.65139 + 6.32439i 0.294237 + 0.509634i
\(155\) 0 0
\(156\) −1.09167 −0.0874038
\(157\) 3.21110i 0.256274i −0.991756 0.128137i \(-0.959100\pi\)
0.991756 0.128137i \(-0.0408997\pi\)
\(158\) 10.3923 6.00000i 0.826767 0.477334i
\(159\) 5.60555 + 9.70910i 0.444549 + 0.769982i
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) −1.12824 0.651388i −0.0886427 0.0511779i
\(163\) −15.7713 9.10555i −1.23530 0.713202i −0.267172 0.963649i \(-0.586089\pi\)
−0.968130 + 0.250447i \(0.919422\pi\)
\(164\) 0.908327 0.0709284
\(165\) 0 0
\(166\) −3.39445 5.87936i −0.263460 0.456327i
\(167\) 7.79423 4.50000i 0.603136 0.348220i −0.167139 0.985933i \(-0.553453\pi\)
0.770274 + 0.637713i \(0.220119\pi\)
\(168\) 3.00000i 0.231455i
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 1.60555 + 2.78090i 0.122780 + 0.212660i
\(172\) −1.10420 + 0.637510i −0.0841944 + 0.0486097i
\(173\) −14.5636 8.40833i −1.10725 0.639273i −0.169137 0.985593i \(-0.554098\pi\)
−0.938117 + 0.346319i \(0.887431\pi\)
\(174\) −10.6972 −0.810954
\(175\) 0 0
\(176\) −9.25694 + 16.0335i −0.697768 + 1.20857i
\(177\) 10.8167i 0.813029i
\(178\) 9.26407 + 5.34861i 0.694371 + 0.400895i
\(179\) 0.591673 + 1.02481i 0.0442237 + 0.0765977i 0.887290 0.461212i \(-0.152585\pi\)
−0.843066 + 0.537810i \(0.819252\pi\)
\(180\) 0 0
\(181\) −25.6333 −1.90531 −0.952654 0.304055i \(-0.901659\pi\)
−0.952654 + 0.304055i \(0.901659\pi\)
\(182\) 4.69722i 0.348181i
\(183\) 1.00000i 0.0739221i
\(184\) 4.50000 + 7.79423i 0.331744 + 0.574598i
\(185\) 0 0
\(186\) 2.60555 4.51295i 0.191048 0.330905i
\(187\) 2.21110i 0.161692i
\(188\) 1.36641 + 0.788897i 0.0996557 + 0.0575363i
\(189\) 2.50000 4.33013i 0.181848 0.314970i
\(190\) 0 0
\(191\) 2.40833 4.17134i 0.174260 0.301828i −0.765645 0.643264i \(-0.777580\pi\)
0.939905 + 0.341436i \(0.110913\pi\)
\(192\) 7.63545 4.40833i 0.551041 0.318144i
\(193\) −7.26981 + 4.19722i −0.523292 + 0.302123i −0.738281 0.674494i \(-0.764362\pi\)
0.214988 + 0.976617i \(0.431029\pi\)
\(194\) 20.3305 1.45965
\(195\) 0 0
\(196\) 1.81665 0.129761
\(197\) 19.7598 11.4083i 1.40783 0.812810i 0.412649 0.910890i \(-0.364604\pi\)
0.995178 + 0.0980804i \(0.0312702\pi\)
\(198\) −12.6488 + 7.30278i −0.898910 + 0.518986i
\(199\) −4.40833 + 7.63545i −0.312498 + 0.541262i −0.978902 0.204328i \(-0.934499\pi\)
0.666404 + 0.745590i \(0.267832\pi\)
\(200\) 0 0
\(201\) 3.50000 6.06218i 0.246871 0.427593i
\(202\) 10.1541 + 5.86249i 0.714442 + 0.412483i
\(203\) 8.21110i 0.576306i
\(204\) −0.0597147 + 0.103429i −0.00418087 + 0.00724147i
\(205\) 0 0
\(206\) 2.60555 + 4.51295i 0.181537 + 0.314432i
\(207\) 6.00000i 0.417029i
\(208\) 10.3129 5.95416i 0.715072 0.412847i
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) 8.19722 + 14.1980i 0.564320 + 0.977431i 0.997113 + 0.0759376i \(0.0241950\pi\)
−0.432792 + 0.901494i \(0.642472\pi\)
\(212\) 2.93968 + 1.69722i 0.201898 + 0.116566i
\(213\) 16.8167i 1.15226i
\(214\) −5.34861 + 9.26407i −0.365624 + 0.633279i
\(215\) 0 0
\(216\) 15.0000 1.02062
\(217\) −3.46410 2.00000i −0.235159 0.135769i
\(218\) 5.40301 3.11943i 0.365938 0.211274i
\(219\) −7.60555 13.1732i −0.513936 0.890162i
\(220\) 0 0
\(221\) −0.711103 + 1.23167i −0.0478339 + 0.0828508i
\(222\) 4.69722i 0.315257i
\(223\) −8.84307 + 5.10555i −0.592176 + 0.341893i −0.765957 0.642891i \(-0.777735\pi\)
0.173781 + 0.984784i \(0.444401\pi\)
\(224\) −0.848612 1.46984i −0.0567003 0.0982078i
\(225\) 0 0
\(226\) 7.30278 0.485773
\(227\) −1.23167 0.711103i −0.0817485 0.0471975i 0.458569 0.888659i \(-0.348362\pi\)
−0.540317 + 0.841462i \(0.681696\pi\)
\(228\) −0.420994 0.243061i −0.0278810 0.0160971i
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) −2.80278 4.85455i −0.184409 0.319406i
\(232\) −21.3331 + 12.3167i −1.40058 + 0.808628i
\(233\) 0.788897i 0.0516824i −0.999666 0.0258412i \(-0.991774\pi\)
0.999666 0.0258412i \(-0.00822642\pi\)
\(234\) 9.39445 0.614134
\(235\) 0 0
\(236\) 1.63751 + 2.83625i 0.106593 + 0.184624i
\(237\) −7.97705 + 4.60555i −0.518165 + 0.299163i
\(238\) −0.445032 0.256939i −0.0288471 0.0166549i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −8.10555 + 14.0392i −0.522124 + 0.904346i 0.477544 + 0.878608i \(0.341527\pi\)
−0.999669 + 0.0257384i \(0.991806\pi\)
\(242\) 26.6056i 1.71027i
\(243\) 13.8564 + 8.00000i 0.888889 + 0.513200i
\(244\) 0.151388 + 0.262211i 0.00969161 + 0.0167864i
\(245\) 0 0
\(246\) 3.90833 0.249186
\(247\) −5.01333 2.89445i −0.318991 0.184169i
\(248\) 12.0000i 0.762001i
\(249\) 2.60555 + 4.51295i 0.165120 + 0.285996i
\(250\) 0 0
\(251\) 14.4083 24.9560i 0.909446 1.57521i 0.0946094 0.995514i \(-0.469840\pi\)
0.814836 0.579691i \(-0.196827\pi\)
\(252\) 0.605551i 0.0381461i
\(253\) 14.5636 + 8.40833i 0.915609 + 0.528627i
\(254\) 6.65139 11.5205i 0.417345 0.722863i
\(255\) 0 0
\(256\) 3.54584 6.14157i 0.221615 0.383848i
\(257\) −20.4430 + 11.8028i −1.27520 + 0.736237i −0.975962 0.217942i \(-0.930066\pi\)
−0.299238 + 0.954179i \(0.596732\pi\)
\(258\) −4.75112 + 2.74306i −0.295792 + 0.170776i
\(259\) −3.60555 −0.224038
\(260\) 0 0
\(261\) −16.4222 −1.01651
\(262\) −7.65948 + 4.42221i −0.473204 + 0.273205i
\(263\) −22.6995 + 13.1056i −1.39971 + 0.808123i −0.994362 0.106040i \(-0.966183\pi\)
−0.405348 + 0.914162i \(0.632850\pi\)
\(264\) 8.40833 14.5636i 0.517497 0.896331i
\(265\) 0 0
\(266\) 1.04584 1.81144i 0.0641244 0.111067i
\(267\) −7.11102 4.10555i −0.435188 0.251256i
\(268\) 2.11943i 0.129465i
\(269\) −4.50000 + 7.79423i −0.274370 + 0.475223i −0.969976 0.243201i \(-0.921803\pi\)
0.695606 + 0.718423i \(0.255136\pi\)
\(270\) 0 0
\(271\) −0.408327 0.707243i −0.0248041 0.0429620i 0.853357 0.521327i \(-0.174563\pi\)
−0.878161 + 0.478365i \(0.841230\pi\)
\(272\) 1.30278i 0.0789924i
\(273\) 3.60555i 0.218218i
\(274\) −7.30278 −0.441177
\(275\) 0 0
\(276\) −0.454163 0.786634i −0.0273374 0.0473498i
\(277\) −17.6621 10.1972i −1.06121 0.612692i −0.135446 0.990785i \(-0.543247\pi\)
−0.925768 + 0.378093i \(0.876580\pi\)
\(278\) 17.7250i 1.06307i
\(279\) 4.00000 6.92820i 0.239474 0.414781i
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 5.87936 + 3.39445i 0.350111 + 0.202136i
\(283\) −4.33013 + 2.50000i −0.257399 + 0.148610i −0.623148 0.782104i \(-0.714146\pi\)
0.365748 + 0.930714i \(0.380813\pi\)
\(284\) 2.54584 + 4.40952i 0.151068 + 0.261657i
\(285\) 0 0
\(286\) 13.1653 22.8029i 0.778478 1.34836i
\(287\) 3.00000i 0.177084i
\(288\) 2.93968 1.69722i 0.173222 0.100010i
\(289\) −8.42221 14.5877i −0.495424 0.858099i
\(290\) 0 0
\(291\) −15.6056 −0.914814
\(292\) −3.98852 2.30278i −0.233411 0.134760i
\(293\) 15.2469 + 8.80278i 0.890731 + 0.514264i 0.874181 0.485599i \(-0.161399\pi\)
0.0165493 + 0.999863i \(0.494732\pi\)
\(294\) 7.81665 0.455877
\(295\) 0 0
\(296\) −5.40833 9.36750i −0.314353 0.544475i
\(297\) 24.2727 14.0139i 1.40845 0.813168i
\(298\) 3.90833i 0.226403i
\(299\) −5.40833 9.36750i −0.312772 0.541736i
\(300\) 0 0
\(301\) 2.10555 + 3.64692i 0.121362 + 0.210205i
\(302\) 14.9053 8.60555i 0.857701 0.495194i
\(303\) −7.79423 4.50000i −0.447767 0.258518i
\(304\) 5.30278 0.304135
\(305\) 0 0
\(306\) 0.513878 0.890063i 0.0293765 0.0508815i
\(307\) 16.0000i 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) −1.46984 0.848612i −0.0837519 0.0483542i
\(309\) −2.00000 3.46410i −0.113776 0.197066i
\(310\) 0 0
\(311\) 5.21110 0.295495 0.147747 0.989025i \(-0.452798\pi\)
0.147747 + 0.989025i \(0.452798\pi\)
\(312\) −9.36750 + 5.40833i −0.530330 + 0.306186i
\(313\) 14.0000i 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) −2.09167 3.62288i −0.118040 0.204451i
\(315\) 0 0
\(316\) −1.39445 + 2.41526i −0.0784439 + 0.135869i
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 12.6488 + 7.30278i 0.709308 + 0.409519i
\(319\) −23.0139 + 39.8612i −1.28853 + 2.23180i
\(320\) 0 0
\(321\) 4.10555 7.11102i 0.229150 0.396899i
\(322\) 3.38471 1.95416i 0.188623 0.108901i
\(323\) −0.548461 + 0.316654i −0.0305172 + 0.0176191i
\(324\) 0.302776 0.0168209
\(325\) 0 0
\(326\) −23.7250 −1.31401
\(327\) −4.14731 + 2.39445i −0.229347 + 0.132413i
\(328\) 7.79423 4.50000i 0.430364 0.248471i
\(329\) 2.60555 4.51295i 0.143649 0.248807i
\(330\) 0 0
\(331\) 13.0139 22.5407i 0.715307 1.23895i −0.247533 0.968879i \(-0.579620\pi\)
0.962841 0.270069i \(-0.0870467\pi\)
\(332\) 1.36641 + 0.788897i 0.0749915 + 0.0432964i
\(333\) 7.21110i 0.395166i
\(334\) 5.86249 10.1541i 0.320781 0.555609i
\(335\) 0 0
\(336\) −1.65139 2.86029i −0.0900906 0.156041i
\(337\) 17.6333i 0.960547i 0.877119 + 0.480274i \(0.159463\pi\)
−0.877119 + 0.480274i \(0.840537\pi\)
\(338\) −14.6671 + 8.46804i −0.797784 + 0.460601i
\(339\) −5.60555 −0.304452
\(340\) 0 0
\(341\) −11.2111 19.4182i −0.607115 1.05155i
\(342\) 3.62288 + 2.09167i 0.195903 + 0.113105i
\(343\) 13.0000i 0.701934i
\(344\) −6.31665 + 10.9408i −0.340571 + 0.589887i
\(345\) 0 0
\(346\) −21.9083 −1.17780
\(347\) −17.5033 10.1056i −0.939628 0.542494i −0.0497842 0.998760i \(-0.515853\pi\)
−0.889844 + 0.456266i \(0.849187\pi\)
\(348\) 2.15304 1.24306i 0.115415 0.0666351i
\(349\) −9.10555 15.7713i −0.487409 0.844217i 0.512486 0.858695i \(-0.328725\pi\)
−0.999895 + 0.0144783i \(0.995391\pi\)
\(350\) 0 0
\(351\) −18.0278 −0.962250
\(352\) 9.51388i 0.507091i
\(353\) 4.17134 2.40833i 0.222018 0.128182i −0.384866 0.922972i \(-0.625752\pi\)
0.606884 + 0.794790i \(0.292419\pi\)
\(354\) 7.04584 + 12.2037i 0.374482 + 0.648622i
\(355\) 0 0
\(356\) −2.48612 −0.131764
\(357\) 0.341603 + 0.197224i 0.0180795 + 0.0104382i
\(358\) 1.33509 + 0.770817i 0.0705619 + 0.0407390i
\(359\) 10.4222 0.550063 0.275031 0.961435i \(-0.411312\pi\)
0.275031 + 0.961435i \(0.411312\pi\)
\(360\) 0 0
\(361\) 8.21110 + 14.2220i 0.432163 + 0.748529i
\(362\) −28.9204 + 16.6972i −1.52002 + 0.877587i
\(363\) 20.4222i 1.07189i
\(364\) 0.545837 + 0.945417i 0.0286096 + 0.0495533i
\(365\) 0 0
\(366\) 0.651388 + 1.12824i 0.0340486 + 0.0589739i
\(367\) −15.0881 + 8.71110i −0.787591 + 0.454716i −0.839114 0.543956i \(-0.816926\pi\)
0.0515228 + 0.998672i \(0.483593\pi\)
\(368\) 8.58086 + 4.95416i 0.447308 + 0.258254i
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 5.60555 9.70910i 0.291026 0.504071i
\(372\) 1.21110i 0.0627927i
\(373\) −23.9071 13.8028i −1.23786 0.714681i −0.269206 0.963083i \(-0.586761\pi\)
−0.968657 + 0.248402i \(0.920095\pi\)
\(374\) −1.44029 2.49465i −0.0744754 0.128995i
\(375\) 0 0
\(376\) 15.6333 0.806226
\(377\) 25.6392 14.8028i 1.32048 0.762382i
\(378\) 6.51388i 0.335038i
\(379\) 1.19722 + 2.07365i 0.0614973 + 0.106516i 0.895135 0.445795i \(-0.147079\pi\)
−0.833638 + 0.552312i \(0.813746\pi\)
\(380\) 0 0
\(381\) −5.10555 + 8.84307i −0.261565 + 0.453044i
\(382\) 6.27502i 0.321058i
\(383\) 16.1369 + 9.31665i 0.824558 + 0.476059i 0.851986 0.523565i \(-0.175398\pi\)
−0.0274277 + 0.999624i \(0.508732\pi\)
\(384\) 4.04584 7.00759i 0.206463 0.357605i
\(385\) 0 0
\(386\) −5.46804 + 9.47093i −0.278316 + 0.482057i
\(387\) −7.29384 + 4.21110i −0.370767 + 0.214062i
\(388\) −4.09195 + 2.36249i −0.207737 + 0.119937i
\(389\) 0.788897 0.0399987 0.0199993 0.999800i \(-0.493634\pi\)
0.0199993 + 0.999800i \(0.493634\pi\)
\(390\) 0 0
\(391\) −1.18335 −0.0598444
\(392\) 15.5885 9.00000i 0.787336 0.454569i
\(393\) 5.87936 3.39445i 0.296574 0.171227i
\(394\) 14.8625 25.7426i 0.748761 1.29689i
\(395\) 0 0
\(396\) 1.69722 2.93968i 0.0852887 0.147724i
\(397\) 12.1484 + 7.01388i 0.609710 + 0.352016i 0.772852 0.634586i \(-0.218829\pi\)
−0.163142 + 0.986603i \(0.552163\pi\)
\(398\) 11.4861i 0.575747i
\(399\) −0.802776 + 1.39045i −0.0401890 + 0.0696095i
\(400\) 0 0
\(401\) 1.10555 + 1.91487i 0.0552086 + 0.0956241i 0.892309 0.451425i \(-0.149084\pi\)
−0.837100 + 0.547049i \(0.815751\pi\)
\(402\) 9.11943i 0.454836i
\(403\) 14.4222i 0.718421i
\(404\) −2.72498 −0.135573
\(405\) 0 0
\(406\) 5.34861 + 9.26407i 0.265447 + 0.459768i
\(407\) −17.5033 10.1056i −0.867608 0.500914i
\(408\) 1.18335i 0.0585844i
\(409\) −3.10555 + 5.37897i −0.153560 + 0.265973i −0.932534 0.361083i \(-0.882407\pi\)
0.778974 + 0.627056i \(0.215740\pi\)
\(410\) 0 0
\(411\) 5.60555 0.276501
\(412\) −1.04885 0.605551i −0.0516729 0.0298334i
\(413\) 9.36750 5.40833i 0.460944 0.266126i
\(414\) 3.90833 + 6.76942i 0.192084 + 0.332699i
\(415\) 0 0
\(416\) −3.05971 + 5.29958i −0.150015 + 0.259833i
\(417\) 13.6056i 0.666267i
\(418\) 10.1541 5.86249i 0.496655 0.286744i
\(419\) −16.6194 28.7857i −0.811912 1.40627i −0.911524 0.411247i \(-0.865093\pi\)
0.0996117 0.995026i \(-0.468240\pi\)
\(420\) 0 0
\(421\) 3.57779 0.174371 0.0871855 0.996192i \(-0.472213\pi\)
0.0871855 + 0.996192i \(0.472213\pi\)
\(422\) 18.4968 + 10.6791i 0.900411 + 0.519853i
\(423\) 9.02589 + 5.21110i 0.438854 + 0.253372i
\(424\) 33.6333 1.63338
\(425\) 0 0
\(426\) 10.9542 + 18.9732i 0.530731 + 0.919253i
\(427\) 0.866025 0.500000i 0.0419099 0.0241967i
\(428\) 2.48612i 0.120171i
\(429\) −10.1056 + 17.5033i −0.487901 + 0.845069i
\(430\) 0 0
\(431\) 10.6194 + 18.3934i 0.511520 + 0.885978i 0.999911 + 0.0133535i \(0.00425069\pi\)
−0.488391 + 0.872625i \(0.662416\pi\)
\(432\) 14.3014 8.25694i 0.688078 0.397262i
\(433\) −3.12250 1.80278i −0.150058 0.0866359i 0.423091 0.906087i \(-0.360945\pi\)
−0.573149 + 0.819451i \(0.694278\pi\)
\(434\) −5.21110 −0.250141
\(435\) 0 0
\(436\) −0.724981 + 1.25570i −0.0347203 + 0.0601373i
\(437\) 4.81665i 0.230412i
\(438\) −17.1617 9.90833i −0.820019 0.473438i
\(439\) 11.6194 + 20.1254i 0.554565 + 0.960535i 0.997937 + 0.0641973i \(0.0204487\pi\)
−0.443372 + 0.896338i \(0.646218\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 1.85281i 0.0881294i
\(443\) 22.4222i 1.06531i 0.846332 + 0.532656i \(0.178806\pi\)
−0.846332 + 0.532656i \(0.821194\pi\)
\(444\) 0.545837 + 0.945417i 0.0259043 + 0.0448675i
\(445\) 0 0
\(446\) −6.65139 + 11.5205i −0.314952 + 0.545513i
\(447\) 3.00000i 0.141895i
\(448\) −7.63545 4.40833i −0.360741 0.208274i
\(449\) −6.31665 + 10.9408i −0.298101 + 0.516327i −0.975702 0.219104i \(-0.929687\pi\)
0.677600 + 0.735430i \(0.263020\pi\)
\(450\) 0 0
\(451\) 8.40833 14.5636i 0.395933 0.685775i
\(452\) −1.46984 + 0.848612i −0.0691354 + 0.0399154i
\(453\) −11.4412 + 6.60555i −0.537552 + 0.310356i
\(454\) −1.85281 −0.0869569
\(455\) 0 0
\(456\) −4.81665 −0.225560
\(457\) −4.48891 + 2.59167i −0.209982 + 0.121233i −0.601303 0.799021i \(-0.705352\pi\)
0.391321 + 0.920254i \(0.372018\pi\)
\(458\) −15.7953 + 9.11943i −0.738067 + 0.426123i
\(459\) −0.986122 + 1.70801i −0.0460282 + 0.0797232i
\(460\) 0 0
\(461\) −10.8944 + 18.8697i −0.507405 + 0.878851i 0.492558 + 0.870280i \(0.336062\pi\)
−0.999963 + 0.00857184i \(0.997271\pi\)
\(462\) −6.32439 3.65139i −0.294237 0.169878i
\(463\) 5.57779i 0.259222i 0.991565 + 0.129611i \(0.0413729\pi\)
−0.991565 + 0.129611i \(0.958627\pi\)
\(464\) −13.5597 + 23.4861i −0.629494 + 1.09032i
\(465\) 0 0
\(466\) −0.513878 0.890063i −0.0238049 0.0412314i
\(467\) 17.2111i 0.796435i 0.917291 + 0.398217i \(0.130371\pi\)
−0.917291 + 0.398217i \(0.869629\pi\)
\(468\) −1.89083 + 1.09167i −0.0874038 + 0.0504626i
\(469\) −7.00000 −0.323230
\(470\) 0 0
\(471\) 1.60555 + 2.78090i 0.0739799 + 0.128137i
\(472\) 28.1025 + 16.2250i 1.29352 + 0.746815i
\(473\) 23.6056i 1.08538i
\(474\) −6.00000 + 10.3923i −0.275589 + 0.477334i
\(475\) 0 0
\(476\) 0.119429 0.00547404
\(477\) 19.4182 + 11.2111i 0.889098 + 0.513321i
\(478\) 0 0
\(479\) −3.59167 6.22096i −0.164108 0.284243i 0.772230 0.635343i \(-0.219141\pi\)
−0.936338 + 0.351100i \(0.885808\pi\)
\(480\) 0 0
\(481\) 6.50000 + 11.2583i 0.296374 + 0.513336i
\(482\) 21.1194i 0.961964i
\(483\) −2.59808 + 1.50000i −0.118217 + 0.0682524i
\(484\) −3.09167 5.35493i −0.140531 0.243406i
\(485\) 0 0
\(486\) 20.8444 0.945522
\(487\) 0.866025 + 0.500000i 0.0392434 + 0.0226572i 0.519493 0.854475i \(-0.326121\pi\)
−0.480250 + 0.877132i \(0.659454\pi\)
\(488\) 2.59808 + 1.50000i 0.117609 + 0.0679018i
\(489\) 18.2111 0.823535
\(490\) 0 0
\(491\) −2.40833 4.17134i −0.108686 0.188250i 0.806552 0.591163i \(-0.201331\pi\)
−0.915238 + 0.402913i \(0.867998\pi\)
\(492\) −0.786634 + 0.454163i −0.0354642 + 0.0204753i
\(493\) 3.23886i 0.145871i
\(494\) −7.54163 −0.339314
\(495\) 0 0
\(496\) −6.60555 11.4412i −0.296598 0.513723i
\(497\) 14.5636 8.40833i 0.653269 0.377165i
\(498\) 5.87936 + 3.39445i 0.263460 + 0.152109i
\(499\) 26.4222 1.18282 0.591410 0.806371i \(-0.298571\pi\)
0.591410 + 0.806371i \(0.298571\pi\)
\(500\) 0 0
\(501\) −4.50000 + 7.79423i −0.201045 + 0.348220i
\(502\) 37.5416i 1.67557i
\(503\) 2.59808 + 1.50000i 0.115842 + 0.0668817i 0.556802 0.830645i \(-0.312028\pi\)
−0.440959 + 0.897527i \(0.645362\pi\)
\(504\) −3.00000 5.19615i −0.133631 0.231455i
\(505\) 0 0
\(506\) 21.9083 0.973944
\(507\) 11.2583 6.50000i 0.500000 0.288675i
\(508\) 3.09167i 0.137171i
\(509\) 1.50000 + 2.59808i 0.0664863 + 0.115158i 0.897352 0.441315i \(-0.145488\pi\)
−0.830866 + 0.556473i \(0.812154\pi\)
\(510\) 0 0
\(511\) −7.60555 + 13.1732i −0.336450 + 0.582748i
\(512\) 25.4222i 1.12351i
\(513\) −6.95224 4.01388i −0.306949 0.177217i
\(514\) −15.3764 + 26.6327i −0.678223 + 1.17472i
\(515\) 0 0
\(516\) 0.637510 1.10420i 0.0280648 0.0486097i
\(517\) 25.2976 14.6056i 1.11259 0.642351i
\(518\) −4.06792 + 2.34861i −0.178734 + 0.103192i
\(519\) 16.8167 0.738169
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) −18.5281 + 10.6972i −0.810954 + 0.468205i
\(523\) −23.7483 + 13.7111i −1.03844 + 0.599545i −0.919392 0.393344i \(-0.871318\pi\)
−0.119050 + 0.992888i \(0.537985\pi\)
\(524\) 1.02776 1.78013i 0.0448977 0.0777652i
\(525\) 0 0
\(526\) −17.0736 + 29.5723i −0.744444 + 1.28941i
\(527\) 1.36641 + 0.788897i 0.0595218 + 0.0343649i
\(528\) 18.5139i 0.805713i
\(529\) −7.00000 + 12.1244i −0.304348 + 0.527146i
\(530\) 0 0
\(531\) 10.8167 + 18.7350i 0.469403 + 0.813029i
\(532\) 0.486122i 0.0210761i
\(533\) −9.36750 + 5.40833i −0.405751 + 0.234261i
\(534\) −10.6972 −0.462914
\(535\) 0 0
\(536\) −10.5000 18.1865i −0.453531 0.785539i
\(537\) −1.02481 0.591673i −0.0442237 0.0255326i
\(538\) 11.7250i 0.505500i
\(539\) 16.8167 29.1273i 0.724345 1.25460i
\(540\) 0 0
\(541\) 17.6333 0.758115 0.379058 0.925373i \(-0.376248\pi\)
0.379058 + 0.925373i \(0.376248\pi\)
\(542\) −0.921379 0.531958i −0.0395766 0.0228496i
\(543\) 22.1991 12.8167i 0.952654 0.550015i
\(544\) 0.334734 + 0.579776i 0.0143516 + 0.0248577i
\(545\) 0 0
\(546\) 2.34861 + 4.06792i 0.100511 + 0.174091i
\(547\) 24.8444i 1.06227i −0.847287 0.531135i \(-0.821766\pi\)
0.847287 0.531135i \(-0.178234\pi\)
\(548\) 1.46984 0.848612i 0.0627884 0.0362509i
\(549\) 1.00000 + 1.73205i 0.0426790 + 0.0739221i
\(550\) 0 0
\(551\) 13.1833 0.561629
\(552\) −7.79423 4.50000i −0.331744 0.191533i
\(553\) 7.97705 + 4.60555i 0.339219 + 0.195848i
\(554\) −26.5694 −1.12883
\(555\) 0 0
\(556\) 2.05971 + 3.56753i 0.0873514 + 0.151297i
\(557\) 4.85455 2.80278i 0.205694 0.118757i −0.393615 0.919276i \(-0.628776\pi\)
0.599309 + 0.800518i \(0.295442\pi\)
\(558\) 10.4222i 0.441207i
\(559\) 7.59167 13.1492i 0.321094 0.556150i
\(560\) 0 0
\(561\) 1.10555 + 1.91487i 0.0466764 + 0.0808459i
\(562\) −6.76942 + 3.90833i −0.285551 + 0.164863i
\(563\) −16.8201 9.71110i −0.708884 0.409274i 0.101764 0.994809i \(-0.467551\pi\)
−0.810648 + 0.585534i \(0.800885\pi\)
\(564\) −1.57779 −0.0664372
\(565\) 0 0
\(566\) −3.25694 + 5.64118i −0.136899 + 0.237117i
\(567\) 1.00000i 0.0419961i
\(568\) 43.6909 + 25.2250i 1.83323 + 1.05842i
\(569\) 0.711103 + 1.23167i 0.0298110 + 0.0516341i 0.880546 0.473961i \(-0.157176\pi\)
−0.850735 + 0.525595i \(0.823843\pi\)
\(570\) 0 0
\(571\) −36.8444 −1.54189 −0.770945 0.636901i \(-0.780216\pi\)
−0.770945 + 0.636901i \(0.780216\pi\)
\(572\) 6.11943i 0.255866i
\(573\) 4.81665i 0.201219i
\(574\) −1.95416 3.38471i −0.0815652 0.141275i
\(575\) 0 0
\(576\) 8.81665 15.2709i 0.367361 0.636287i
\(577\) 29.6333i 1.23365i 0.787100 + 0.616825i \(0.211582\pi\)
−0.787100 + 0.616825i \(0.788418\pi\)
\(578\) −19.0045 10.9722i −0.790482 0.456385i
\(579\) 4.19722 7.26981i 0.174431 0.302123i
\(580\) 0 0
\(581\) 2.60555 4.51295i 0.108096 0.187229i
\(582\) −17.6068 + 10.1653i −0.729824 + 0.421364i
\(583\) 54.4249 31.4222i 2.25405 1.30137i
\(584\) −45.6333 −1.88832
\(585\) 0 0
\(586\) 22.9361 0.947481
\(587\) −3.96449 + 2.28890i −0.163632 + 0.0944729i −0.579580 0.814916i \(-0.696783\pi\)
0.415948 + 0.909389i \(0.363450\pi\)
\(588\) −1.57327 + 0.908327i −0.0648805 + 0.0374588i
\(589\) −3.21110 + 5.56179i −0.132311 + 0.229170i
\(590\) 0 0
\(591\) −11.4083 + 19.7598i −0.469276 + 0.812810i
\(592\) −10.3129 5.95416i −0.423858 0.244715i
\(593\) 35.2111i 1.44595i −0.690876 0.722973i \(-0.742775\pi\)
0.690876 0.722973i \(-0.257225\pi\)
\(594\) 18.2569 31.6219i 0.749091 1.29746i
\(595\) 0 0
\(596\) 0.454163 + 0.786634i 0.0186033 + 0.0322218i
\(597\) 8.81665i 0.360842i
\(598\) −12.2037 7.04584i −0.499048 0.288126i
\(599\) 6.78890 0.277387 0.138693 0.990335i \(-0.455710\pi\)
0.138693 + 0.990335i \(0.455710\pi\)
\(600\) 0 0
\(601\) −14.1056 24.4315i −0.575377 0.996583i −0.996001 0.0893475i \(-0.971522\pi\)
0.420623 0.907235i \(-0.361811\pi\)
\(602\) 4.75112 + 2.74306i 0.193641 + 0.111799i
\(603\) 14.0000i 0.570124i
\(604\) −2.00000 + 3.46410i −0.0813788 + 0.140952i
\(605\) 0 0
\(606\) −11.7250 −0.476295
\(607\) 17.1377 + 9.89445i 0.695597 + 0.401603i 0.805706 0.592316i \(-0.201786\pi\)
−0.110108 + 0.993920i \(0.535120\pi\)
\(608\) −2.35990 + 1.36249i −0.0957067 + 0.0552563i
\(609\) −4.10555 7.11102i −0.166365 0.288153i
\(610\) 0 0
\(611\) −18.7889 −0.760117
\(612\) 0.238859i 0.00965530i
\(613\) −1.39045 + 0.802776i −0.0561597 + 0.0324238i −0.527817 0.849358i \(-0.676989\pi\)
0.471657 + 0.881782i \(0.343656\pi\)
\(614\) −10.4222 18.0518i −0.420606 0.728511i
\(615\) 0 0
\(616\) −16.8167 −0.677562
\(617\) −22.9063 13.2250i −0.922174 0.532418i −0.0378463 0.999284i \(-0.512050\pi\)
−0.884328 + 0.466866i \(0.845383\pi\)
\(618\) −4.51295 2.60555i −0.181537 0.104811i
\(619\) 14.4222 0.579677 0.289839 0.957076i \(-0.406398\pi\)
0.289839 + 0.957076i \(0.406398\pi\)
\(620\) 0 0
\(621\) −7.50000 12.9904i −0.300965 0.521286i
\(622\) 5.87936 3.39445i 0.235741 0.136105i
\(623\) 8.21110i 0.328971i
\(624\) −5.95416 + 10.3129i −0.238357 + 0.412847i
\(625\) 0 0
\(626\) −9.11943 15.7953i −0.364486 0.631308i
\(627\) −7.79423 + 4.50000i −0.311272 + 0.179713i
\(628\) 0.841988 + 0.486122i 0.0335990 + 0.0193984i
\(629\) 1.42221 0.0567070
\(630\) 0 0
\(631\) −0.0138782 + 0.0240377i −0.000552482 + 0.000956927i −0.866302 0.499521i \(-0.833509\pi\)
0.865749 + 0.500478i \(0.166843\pi\)
\(632\) 27.6333i 1.09919i
\(633\) −14.1980 8.19722i −0.564320 0.325810i
\(634\) 3.90833 + 6.76942i 0.155219 + 0.268848i
\(635\) 0 0
\(636\) −3.39445 −0.134599
\(637\) −18.7350 + 10.8167i −0.742307 + 0.428571i
\(638\) 59.9638i 2.37399i
\(639\) 16.8167 + 29.1273i 0.665257 + 1.15226i
\(640\) 0 0
\(641\) 9.71110 16.8201i 0.383565 0.664355i −0.608004 0.793934i \(-0.708029\pi\)
0.991569 + 0.129579i \(0.0413627\pi\)
\(642\) 10.6972i 0.422186i
\(643\) −35.1895 20.3167i −1.38774 0.801211i −0.394678 0.918820i \(-0.629144\pi\)
−0.993060 + 0.117609i \(0.962477\pi\)
\(644\) −0.454163 + 0.786634i −0.0178965 + 0.0309977i
\(645\) 0 0
\(646\) −0.412529 + 0.714521i −0.0162307 + 0.0281125i
\(647\) 9.16064 5.28890i 0.360142 0.207928i −0.309001 0.951062i \(-0.599995\pi\)
0.669143 + 0.743134i \(0.266661\pi\)
\(648\) 2.59808 1.50000i 0.102062 0.0589256i
\(649\) 60.6333 2.38007
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 4.77516 2.75694i 0.187010 0.107970i
\(653\) 24.9560 14.4083i 0.976602 0.563841i 0.0753594 0.997156i \(-0.475990\pi\)
0.901243 + 0.433315i \(0.142656\pi\)
\(654\) −3.11943 + 5.40301i −0.121979 + 0.211274i
\(655\) 0 0
\(656\) 4.95416 8.58086i 0.193428 0.335026i
\(657\) −26.3464 15.2111i −1.02787 0.593442i
\(658\) 6.78890i 0.264659i
\(659\) −6.59167 + 11.4171i −0.256775 + 0.444748i −0.965376 0.260862i \(-0.915993\pi\)
0.708601 + 0.705609i \(0.249327\pi\)
\(660\) 0 0
\(661\) −19.3167 33.4574i −0.751331 1.30134i −0.947178 0.320709i \(-0.896079\pi\)
0.195847 0.980634i \(-0.437254\pi\)
\(662\) 33.9083i 1.31788i
\(663\) 1.42221i 0.0552339i
\(664\) 15.6333 0.606690
\(665\) 0 0
\(666\) −4.69722 8.13583i −0.182014 0.315257i
\(667\) 21.3331 + 12.3167i 0.826020 + 0.476903i
\(668\) 2.72498i 0.105433i
\(669\) 5.10555 8.84307i 0.197392 0.341893i
\(670\) 0 0
\(671\) 5.60555 0.216400
\(672\) 1.46984 + 0.848612i 0.0567003 + 0.0327359i
\(673\) 9.00186 5.19722i 0.346996 0.200338i −0.316365 0.948637i \(-0.602463\pi\)
0.663361 + 0.748299i \(0.269129\pi\)
\(674\) 11.4861 + 19.8945i 0.442429 + 0.766309i
\(675\) 0 0
\(676\) 1.96804 3.40875i 0.0756939 0.131106i
\(677\) 33.6333i 1.29263i 0.763069 + 0.646317i \(0.223691\pi\)
−0.763069 + 0.646317i \(0.776309\pi\)
\(678\) −6.32439 + 3.65139i −0.242887 + 0.140231i
\(679\) 7.80278 + 13.5148i 0.299443 + 0.518651i
\(680\) 0 0
\(681\) 1.42221 0.0544990
\(682\) −25.2976 14.6056i −0.968694 0.559275i
\(683\) 18.8697 + 10.8944i 0.722030 + 0.416864i 0.815500 0.578758i \(-0.196462\pi\)
−0.0934691 + 0.995622i \(0.529796\pi\)
\(684\) −0.972244 −0.0371747
\(685\) 0 0
\(686\) −8.46804 14.6671i −0.323311 0.559992i
\(687\) 12.1244 7.00000i 0.462573 0.267067i
\(688\) 13.9083i 0.530250i
\(689\) −40.4222 −1.53996
\(690\) 0 0
\(691\) −3.01388 5.22019i −0.114653 0.198585i 0.802988 0.595995i \(-0.203242\pi\)
−0.917641 + 0.397410i \(0.869909\pi\)
\(692\) 4.40952 2.54584i 0.167625 0.0967782i
\(693\) −9.70910 5.60555i −0.368818 0.212937i
\(694\) −26.3305 −0.999493
\(695\) 0 0
\(696\) 12.3167 21.3331i 0.466862 0.808628i
\(697\) 1.18335i 0.0448224i
\(698\) −20.5464 11.8625i −0.777694 0.449002i
\(699\) 0.394449 + 0.683205i 0.0149194 + 0.0258412i
\(700\) 0 0
\(701\) −7.57779 −0.286209 −0.143105 0.989708i \(-0.545709\pi\)
−0.143105 + 0.989708i \(0.545709\pi\)
\(702\) −20.3396 + 11.7431i −0.767668 + 0.443213i
\(703\) 5.78890i 0.218332i
\(704\) −24.7111 42.8009i −0.931335 1.61312i
\(705\) 0 0
\(706\) 3.13751 5.43433i 0.118082 0.204524i
\(707\) 9.00000i 0.338480i
\(708\) −2.83625 1.63751i −0.106593 0.0615414i
\(709\) 21.9222 37.9704i 0.823306 1.42601i −0.0799016 0.996803i \(-0.525461\pi\)
0.903207 0.429205i \(-0.141206\pi\)
\(710\) 0 0
\(711\) −9.21110 + 15.9541i −0.345443 + 0.598325i
\(712\) −21.3331 + 12.3167i −0.799491 + 0.461586i
\(713\) −10.3923 + 6.00000i −0.389195 + 0.224702i
\(714\) 0.513878 0.0192314
\(715\) 0 0
\(716\) −0.358288 −0.0133899
\(717\) 0 0
\(718\) 11.7587 6.78890i 0.438831 0.253359i
\(719\) −9.19722 + 15.9301i −0.342999 + 0.594091i −0.984988 0.172622i \(-0.944776\pi\)
0.641989 + 0.766713i \(0.278109\pi\)
\(720\) 0 0
\(721\) −2.00000 + 3.46410i −0.0744839 + 0.129010i
\(722\) 18.5281 + 10.6972i 0.689546 + 0.398109i
\(723\) 16.2111i 0.602897i
\(724\) 3.88057 6.72135i 0.144220 0.249797i
\(725\) 0 0
\(726\) −13.3028 23.0411i −0.493712 0.855135i
\(727\) 42.4222i 1.57335i 0.617366 + 0.786676i \(0.288200\pi\)
−0.617366 + 0.786676i \(0.711800\pi\)
\(728\) 9.36750 + 5.40833i 0.347183 + 0.200446i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −0.830532 1.43852i −0.0307183 0.0532057i
\(732\) −0.262211 0.151388i −0.00969161 0.00559545i
\(733\) 10.8444i 0.400547i −0.979740 0.200274i \(-0.935817\pi\)
0.979740 0.200274i \(-0.0641831\pi\)
\(734\) −11.3486 + 19.6564i −0.418885 + 0.725530i
\(735\) 0 0
\(736\) −5.09167 −0.187682
\(737\) −33.9818 19.6194i −1.25174 0.722691i
\(738\) 6.76942 3.90833i 0.249186 0.143868i
\(739\) −14.1972 24.5903i −0.522253 0.904569i −0.999665 0.0258895i \(-0.991758\pi\)
0.477411 0.878680i \(-0.341575\pi\)
\(740\) 0 0
\(741\) 5.78890 0.212660
\(742\) 14.6056i 0.536187i
\(743\) 5.74461 3.31665i 0.210749 0.121676i −0.390910 0.920429i \(-0.627840\pi\)
0.601660 + 0.798753i \(0.294506\pi\)
\(744\) 6.00000 + 10.3923i 0.219971 + 0.381000i
\(745\) 0 0
\(746\) −35.9638 −1.31673
\(747\) 9.02589 + 5.21110i 0.330240 + 0.190664i
\(748\) 0.579776 + 0.334734i 0.0211987 + 0.0122391i
\(749\) −8.21110 −0.300027
\(750\) 0 0
\(751\) 9.22498 + 15.9781i 0.336624 + 0.583050i 0.983795 0.179294i \(-0.0573814\pi\)
−0.647171 + 0.762345i \(0.724048\pi\)
\(752\) 14.9053 8.60555i 0.543539 0.313812i
\(753\) 28.8167i 1.05014i
\(754\) 19.2847 33.4021i 0.702307 1.21643i
\(755\) 0 0
\(756\) 0.756939 + 1.31106i 0.0275296 + 0.0476827i
\(757\) −18.0278 + 10.4083i −0.655230 + 0.378297i −0.790457 0.612518i \(-0.790157\pi\)
0.135227 + 0.990815i \(0.456824\pi\)
\(758\) 2.70151 + 1.55971i 0.0981231 + 0.0566514i
\(759\) −16.8167 −0.610406
\(760\) 0 0
\(761\) 12.3167 21.3331i 0.446478 0.773323i −0.551676 0.834059i \(-0.686011\pi\)
0.998154 + 0.0607356i \(0.0193447\pi\)
\(762\) 13.3028i 0.481909i
\(763\) 4.14731 + 2.39445i 0.150143 + 0.0866849i
\(764\) 0.729183 + 1.26298i 0.0263809 + 0.0456931i
\(765\) 0 0
\(766\) 24.2750 0.877092
\(767\) −33.7750 19.5000i −1.21954 0.704104i
\(768\) 7.09167i 0.255899i
\(769\) 5.50000 + 9.52628i 0.198335 + 0.343526i 0.947989 0.318304i \(-0.103113\pi\)
−0.749654 + 0.661830i \(0.769780\pi\)
\(770\) 0 0
\(771\) 11.8028 20.4430i 0.425067 0.736237i
\(772\) 2.54163i 0.0914754i
\(773\) 25.6392 + 14.8028i 0.922176 + 0.532419i 0.884329 0.466865i \(-0.154616\pi\)
0.0378477 + 0.999284i \(0.487950\pi\)
\(774\) −5.48612 + 9.50224i −0.197195 + 0.341551i
\(775\) 0 0
\(776\) −23.4083 + 40.5444i −0.840310 + 1.45546i
\(777\) 3.12250 1.80278i 0.112019 0.0646742i
\(778\) 0.890063 0.513878i 0.0319103 0.0184234i
\(779\) −4.81665 −0.172575
\(780\) 0 0
\(781\) 94.2666 3.37312
\(782\) −1.33509 + 0.770817i −0.0477429 + 0.0275644i
\(783\) 35.5551 20.5278i 1.27064 0.733602i
\(784\) 9.90833 17.1617i 0.353869 0.612919i
\(785\) 0 0
\(786\) 4.42221 7.65948i 0.157735 0.273205i
\(787\) 24.7972 + 14.3167i 0.883924 + 0.510334i 0.871950 0.489595i \(-0.162855\pi\)
0.0119736 + 0.999928i \(0.496189\pi\)
\(788\) 6.90833i 0.246099i
\(789\) 13.1056 22.6995i 0.466570 0.808123i
\(790\) 0 0
\(791\) 2.80278 + 4.85455i 0.0996552 + 0.172608i
\(792\) 33.6333i 1.19511i
\(793\) −3.12250 1.80278i −0.110883 0.0640184i
\(794\) 18.2750 0.648556
\(795\) 0 0
\(796\) −1.33473 2.31183i −0.0473084 0.0819405i
\(797\) −43.6909 25.2250i −1.54761 0.893515i −0.998323 0.0578825i \(-0.981565\pi\)
−0.549289 0.835632i \(-0.685102\pi\)
\(798\) 2.09167i 0.0740444i
\(799\) −1.02776 + 1.78013i −0.0363594 + 0.0629763i
\(800\) 0 0
\(801\) −16.4222 −0.580250
\(802\) 2.49465 + 1.44029i 0.0880891 + 0.0508582i
\(803\) −73.8431 + 42.6333i −2.60586 + 1.50450i
\(804\) 1.05971 + 1.83548i 0.0373733 + 0.0647324i
\(805\) 0 0
\(806\) 9.39445 + 16.2717i 0.330905 + 0.573145i
\(807\) 9.00000i 0.316815i
\(808\) −23.3827 + 13.5000i −0.822600 + 0.474928i
\(809\) 8.52776 + 14.7705i 0.299820 + 0.519303i 0.976095 0.217346i \(-0.0697401\pi\)
−0.676275 + 0.736650i \(0.736407\pi\)
\(810\) 0 0
\(811\) −17.5778 −0.617240 −0.308620 0.951185i \(-0.599867\pi\)
−0.308620 + 0.951185i \(0.599867\pi\)
\(812\) −2.15304 1.24306i −0.0755571 0.0436229i
\(813\) 0.707243 + 0.408327i 0.0248041 + 0.0143207i
\(814\) −26.3305 −0.922885
\(815\) 0 0
\(816\) 0.651388 + 1.12824i 0.0228031 + 0.0394962i
\(817\) 5.85532 3.38057i 0.204852 0.118271i
\(818\) 8.09167i 0.282919i
\(819\) 3.60555 + 6.24500i 0.125988 + 0.218218i
\(820\) 0 0
\(821\) 3.71110 + 6.42782i 0.129518 + 0.224332i 0.923490 0.383622i \(-0.125324\pi\)
−0.793972 + 0.607955i \(0.791990\pi\)
\(822\) 6.32439 3.65139i 0.220588 0.127357i
\(823\) 23.0651 + 13.3167i 0.804000 + 0.464189i 0.844868 0.534975i \(-0.179679\pi\)
−0.0408682 + 0.999165i \(0.513012\pi\)
\(824\) −12.0000 −0.418040
\(825\) 0 0
\(826\) 7.04584 12.2037i 0.245156 0.424623i
\(827\) 13.5778i 0.472146i −0.971735 0.236073i \(-0.924140\pi\)
0.971735 0.236073i \(-0.0758605\pi\)
\(828\) −1.57327 0.908327i −0.0546749 0.0315665i
\(829\) 0.288897 + 0.500385i 0.0100338 + 0.0173791i 0.870999 0.491285i \(-0.163473\pi\)
−0.860965 + 0.508664i \(0.830139\pi\)
\(830\) 0 0
\(831\) 20.3944 0.707476
\(832\) 31.7889i 1.10208i
\(833\) 2.36669i 0.0820010i
\(834\) 8.86249 + 15.3503i 0.306883 + 0.531537i
\(835\) 0 0
\(836\) −1.36249 + 2.35990i −0.0471227 + 0.0816189i
\(837\) 20.0000i 0.691301i
\(838\) −37.5013 21.6514i −1.29546 0.747935i
\(839\) 8.01388 13.8804i 0.276670 0.479206i −0.693885 0.720086i \(-0.744103\pi\)
0.970555 + 0.240879i \(0.0774358\pi\)
\(840\) 0 0
\(841\) −19.2111 + 33.2746i −0.662452 + 1.14740i
\(842\) 4.03660 2.33053i 0.139110 0.0803154i
\(843\) 5.19615 3.00000i 0.178965 0.103325i
\(844\) −4.96384 −0.170862
\(845\) 0 0
\(846\) 13.5778 0.466814
\(847\) −17.6861 + 10.2111i −0.607703 + 0.350858i
\(848\) 32.0670 18.5139i 1.10118 0.635769i
\(849\) 2.50000 4.33013i 0.0857998 0.148610i
\(850\) 0 0
\(851\) −5.40833 + 9.36750i −0.185395 + 0.321114i
\(852\) −4.40952 2.54584i −0.151068 0.0872189i
\(853\) 32.7889i 1.12267i −0.827589 0.561335i \(-0.810288\pi\)
0.827589 0.561335i \(-0.189712\pi\)
\(854\) 0.651388 1.12824i 0.0222900 0.0386075i
\(855\) 0 0
\(856\) −12.3167 21.3331i −0.420975 0.729149i
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 26.3305i 0.898910i
\(859\) −25.2111 −0.860192 −0.430096 0.902783i \(-0.641520\pi\)
−0.430096 + 0.902783i \(0.641520\pi\)
\(860\) 0 0
\(861\) 1.50000 + 2.59808i 0.0511199 + 0.0885422i
\(862\) 23.9625 + 13.8347i 0.816165 + 0.471213i
\(863\) 36.0000i 1.22545i −0.790295 0.612727i \(-0.790072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) −4.24306 + 7.34920i −0.144352 + 0.250025i
\(865\) 0 0
\(866\) −4.69722 −0.159618
\(867\) 14.5877 + 8.42221i 0.495424 + 0.286033i
\(868\) 1.04885 0.605551i 0.0356001 0.0205537i
\(869\) 25.8167 + 44.7158i 0.875770 + 1.51688i
\(870\) 0 0
\(871\) 12.6194 + 21.8575i 0.427593 + 0.740613i
\(872\) 14.3667i 0.486518i
\(873\) −27.0296 + 15.6056i −0.914814 + 0.528168i
\(874\) −3.13751 5.43433i −0.106128 0.183819i
\(875\) 0 0
\(876\) 4.60555 0.155607
\(877\) 32.9330 + 19.0139i 1.11207 + 0.642053i 0.939364 0.342921i \(-0.111416\pi\)
0.172704 + 0.984974i \(0.444750\pi\)
\(878\) 26.2189 + 15.1375i 0.884846 + 0.510866i
\(879\) −17.6056 −0.593821
\(880\) 0 0
\(881\) −17.9222 31.0422i −0.603814 1.04584i −0.992238 0.124356i \(-0.960313\pi\)
0.388423 0.921481i \(-0.373020\pi\)
\(882\) 13.5388 7.81665i 0.455877 0.263200i
\(883\) 31.6333i 1.06455i 0.846573 + 0.532273i \(0.178662\pi\)
−0.846573 + 0.532273i \(0.821338\pi\)
\(884\) −0.215305 0.372918i −0.00724147 0.0125426i
\(885\) 0 0
\(886\) 14.6056 + 25.2976i 0.490683 + 0.849888i
\(887\) 30.3590 17.5278i 1.01935 0.588524i 0.105437 0.994426i \(-0.466376\pi\)
0.913917 + 0.405901i \(0.133042\pi\)
\(888\) 9.36750 + 5.40833i 0.314353 + 0.181492i
\(889\) 10.2111 0.342469
\(890\) 0 0
\(891\) 2.80278 4.85455i 0.0938965 0.162634i
\(892\) 3.09167i 0.103517i
\(893\) −7.24577 4.18335i −0.242470 0.139990i
\(894\) 1.95416 + 3.38471i 0.0653570 + 0.113202i
\(895\) 0 0
\(896\) −8.09167 −0.270324
\(897\) 9.36750 + 5.40833i 0.312772 + 0.180579i
\(898\) 16.4584i 0.549223i
\(899\) −16.4222 28.4441i −0.547711 0.948664i
\(900\) 0 0
\(901\) −2.21110 + 3.82974i −0.0736625 + 0.127587i
\(902\) 21.9083i 0.729467i
\(903\) −3.64692 2.10555i −0.121362 0.0700684i
\(904\) −8.40833 + 14.5636i −0.279657 + 0.484380i
\(905\) 0 0
\(906\) −8.60555 + 14.9053i −0.285900 + 0.495194i
\(907\) 41.8001 24.1333i 1.38795 0.801333i 0.394866 0.918739i \(-0.370791\pi\)
0.993084 + 0.117405i \(0.0374577\pi\)
\(908\) 0.372918 0.215305i 0.0123757 0.00714513i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) −4.59234 + 2.65139i −0.152068 + 0.0877962i
\(913\) 25.2976 14.6056i 0.837227 0.483373i
\(914\) −3.37637 + 5.84804i −0.111680 + 0.193436i
\(915\) 0 0
\(916\) 2.11943 3.67096i 0.0700279 0.121292i
\(917\) −5.87936 3.39445i −0.194153 0.112095i
\(918\) 2.56939i 0.0848025i
\(919\) −8.59167 + 14.8812i −0.283413 + 0.490886i −0.972223 0.234056i \(-0.924800\pi\)
0.688810 + 0.724942i \(0.258133\pi\)
\(920\) 0 0
\(921\) 8.00000 + 13.8564i 0.263609 + 0.456584i
\(922\) 28.3860i 0.934845i
\(923\) −52.5100 30.3167i −1.72839 0.997885i
\(924\) 1.69722 0.0558346
\(925\) 0 0
\(926\) 3.63331 + 6.29307i 0.119398 + 0.206803i
\(927\) −6.92820 4.00000i −0.227552 0.131377i
\(928\) 13.9361i 0.457474i
\(929\) 6.71110 11.6240i 0.220184 0.381370i −0.734680 0.678414i \(-0.762668\pi\)
0.954864 + 0.297044i \(0.0960008\pi\)
\(930\) 0 0
\(931\) −9.63331 −0.315719
\(932\) 0.206858 + 0.119429i 0.00677586 + 0.00391204i
\(933\) −4.51295 + 2.60555i −0.147747 + 0.0853019i
\(934\) 11.2111 + 19.4182i 0.366838 + 0.635383i
\(935\) 0 0
\(936\) −10.8167 + 18.7350i −0.353553 + 0.612372i
\(937\) 46.4777i 1.51836i −0.650880 0.759180i \(-0.725600\pi\)
0.650880 0.759180i \(-0.274400\pi\)
\(938\) −7.89766 + 4.55971i −0.257868 + 0.148880i
\(939\) 7.00000 + 12.1244i 0.228436 + 0.395663i
\(940\) 0 0
\(941\) 33.6333 1.09641 0.548207 0.836343i \(-0.315311\pi\)
0.548207 + 0.836343i \(0.315311\pi\)
\(942\) 3.62288 + 2.09167i 0.118040 + 0.0681504i
\(943\) −7.79423 4.50000i −0.253815 0.146540i
\(944\) 35.7250 1.16275
\(945\) 0 0
\(946\) 15.3764 + 26.6327i 0.499929 + 0.865902i
\(947\) 21.3331 12.3167i 0.693232 0.400237i −0.111590 0.993754i \(-0.535594\pi\)
0.804822 + 0.593517i \(0.202261\pi\)
\(948\) 2.78890i 0.0905792i
\(949\) 54.8444 1.78032
\(950\) 0 0
\(951\) −3.00000 5.19615i −0.0972817 0.168497i
\(952\) 1.02481 0.591673i 0.0332142 0.0191762i
\(953\) 43.6909 + 25.2250i 1.41529 + 0.817117i 0.995880 0.0906803i \(-0.0289041\pi\)
0.419409 + 0.907798i \(0.362237\pi\)
\(954\) 29.2111 0.945744
\(955\) 0 0
\(956\) 0 0
\(957\) 46.0278i 1.48787i
\(958\) −8.10452 4.67914i −0.261845 0.151176i
\(959\) −2.80278 4.85455i −0.0905063 0.156762i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 14.6671 + 8.46804i 0.472886 + 0.273021i
\(963\) 16.4222i 0.529198i
\(964\) −2.45416 4.25074i −0.0790433 0.136907i
\(965\) 0 0
\(966\) −1.95416 + 3.38471i −0.0628742 + 0.108901i
\(967\) 56.4777i 1.81620i 0.418752 + 0.908100i \(0.362468\pi\)
−0.418752 + 0.908100i \(0.637532\pi\)
\(968\) −53.0584 30.6333i −1.70536 0.984592i
\(969\) 0.316654 0.548461i 0.0101724 0.0176191i
\(970\) 0 0
\(971\) 3.98612 6.90417i 0.127921 0.221565i −0.794950 0.606675i \(-0.792503\pi\)
0.922871 + 0.385110i \(0.125836\pi\)
\(972\) −4.19538 + 2.42221i −0.134567 + 0.0776923i
\(973\) 11.7828 6.80278i 0.377738 0.218087i
\(974\) 1.30278 0.0417436
\(975\) 0 0
\(976\) 3.30278 0.105719
\(977\) 6.22096 3.59167i 0.199026 0.114908i −0.397175 0.917743i \(-0.630009\pi\)
0.596201 + 0.802835i \(0.296676\pi\)
\(978\) 20.5464 11.8625i 0.657003 0.379321i
\(979\) −23.0139 + 39.8612i −0.735527 + 1.27397i
\(980\) 0 0
\(981\) −4.78890 + 8.29461i −0.152898 + 0.264827i
\(982\) −5.43433 3.13751i −0.173416 0.100122i
\(983\) 10.4222i 0.332417i 0.986091 + 0.166208i \(0.0531524\pi\)
−0.986091 + 0.166208i \(0.946848\pi\)
\(984\) −4.50000 + 7.79423i −0.143455 + 0.248471i
\(985\) 0 0
\(986\) −2.10975 3.65420i −0.0671882 0.116373i
\(987\) 5.21110i 0.165871i
\(988\) 1.51791 0.876369i 0.0482913 0.0278810i
\(989\) 12.6333 0.401716
\(990\) 0 0
\(991\) −1.98612 3.44006i −0.0630912 0.109277i 0.832754 0.553642i \(-0.186763\pi\)
−0.895846 + 0.444365i \(0.853429\pi\)
\(992\) 5.87936 + 3.39445i 0.186670 + 0.107774i
\(993\) 26.0278i 0.825966i
\(994\) 10.9542 18.9732i 0.347445 0.601792i
\(995\) 0 0
\(996\) −1.57779 −0.0499943
\(997\) −40.2268 23.2250i −1.27400 0.735543i −0.298259 0.954485i \(-0.596406\pi\)
−0.975738 + 0.218942i \(0.929739\pi\)
\(998\) 29.8105 17.2111i 0.943635 0.544808i
\(999\) 9.01388 + 15.6125i 0.285186 + 0.493957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.o.b.224.3 8
5.2 odd 4 325.2.e.a.276.2 4
5.3 odd 4 65.2.e.b.16.1 4
5.4 even 2 inner 325.2.o.b.224.2 8
13.9 even 3 inner 325.2.o.b.74.2 8
15.8 even 4 585.2.j.d.406.2 4
20.3 even 4 1040.2.q.o.81.1 4
65.3 odd 12 845.2.a.c.1.2 2
65.8 even 4 845.2.m.d.361.3 8
65.9 even 6 inner 325.2.o.b.74.3 8
65.18 even 4 845.2.m.d.361.2 8
65.22 odd 12 325.2.e.a.126.2 4
65.23 odd 12 845.2.a.f.1.1 2
65.28 even 12 845.2.c.d.506.2 4
65.33 even 12 845.2.m.d.316.2 8
65.38 odd 4 845.2.e.d.146.2 4
65.42 odd 12 4225.2.a.x.1.1 2
65.43 odd 12 845.2.e.d.191.2 4
65.48 odd 12 65.2.e.b.61.1 yes 4
65.58 even 12 845.2.m.d.316.3 8
65.62 odd 12 4225.2.a.t.1.2 2
65.63 even 12 845.2.c.d.506.3 4
195.23 even 12 7605.2.a.bb.1.2 2
195.68 even 12 7605.2.a.bg.1.1 2
195.113 even 12 585.2.j.d.451.2 4
260.243 even 12 1040.2.q.o.321.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.1 4 5.3 odd 4
65.2.e.b.61.1 yes 4 65.48 odd 12
325.2.e.a.126.2 4 65.22 odd 12
325.2.e.a.276.2 4 5.2 odd 4
325.2.o.b.74.2 8 13.9 even 3 inner
325.2.o.b.74.3 8 65.9 even 6 inner
325.2.o.b.224.2 8 5.4 even 2 inner
325.2.o.b.224.3 8 1.1 even 1 trivial
585.2.j.d.406.2 4 15.8 even 4
585.2.j.d.451.2 4 195.113 even 12
845.2.a.c.1.2 2 65.3 odd 12
845.2.a.f.1.1 2 65.23 odd 12
845.2.c.d.506.2 4 65.28 even 12
845.2.c.d.506.3 4 65.63 even 12
845.2.e.d.146.2 4 65.38 odd 4
845.2.e.d.191.2 4 65.43 odd 12
845.2.m.d.316.2 8 65.33 even 12
845.2.m.d.316.3 8 65.58 even 12
845.2.m.d.361.2 8 65.18 even 4
845.2.m.d.361.3 8 65.8 even 4
1040.2.q.o.81.1 4 20.3 even 4
1040.2.q.o.321.1 4 260.243 even 12
4225.2.a.t.1.2 2 65.62 odd 12
4225.2.a.x.1.1 2 65.42 odd 12
7605.2.a.bb.1.2 2 195.23 even 12
7605.2.a.bg.1.1 2 195.68 even 12