Newspace parameters
Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 325.n (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.59513806569\) |
Analytic rank: | \(0\) |
Dimension: | \(10\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) |
Defining polynomial: |
\( x^{10} + 16x^{8} + 84x^{6} + 163x^{4} + 118x^{2} + 27 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{10} + 16x^{8} + 84x^{6} + 163x^{4} + 118x^{2} + 27 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{9} + 13\nu^{7} + 45\nu^{5} + 13\nu^{3} - 41\nu - 15 ) / 30 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{8} + 13\nu^{6} + 50\nu^{4} + 53\nu^{2} - 5\nu + 9 ) / 10 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{9} + 6\nu^{8} + 13\nu^{7} + 93\nu^{6} + 45\nu^{5} + 450\nu^{4} + 28\nu^{3} + 678\nu^{2} + 34\nu + 219 ) / 30 \)
|
\(\beta_{5}\) | \(=\) |
\( ( \nu^{9} - 6\nu^{8} + 13\nu^{7} - 93\nu^{6} + 45\nu^{5} - 450\nu^{4} + 28\nu^{3} - 678\nu^{2} + 34\nu - 219 ) / 30 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 2\nu^{9} + 31\nu^{7} + 150\nu^{5} + 5\nu^{4} + 226\nu^{3} + 35\nu^{2} + 68\nu + 20 ) / 10 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -2\nu^{9} - 31\nu^{7} - 150\nu^{5} + 5\nu^{4} - 226\nu^{3} + 35\nu^{2} - 68\nu + 20 ) / 10 \)
|
\(\beta_{8}\) | \(=\) |
\( ( -2\nu^{8} - 31\nu^{6} - 150\nu^{4} - 231\nu^{2} - 93 ) / 5 \)
|
\(\beta_{9}\) | \(=\) |
\( ( -4\nu^{9} - 2\nu^{8} - 62\nu^{7} - 31\nu^{6} - 305\nu^{5} - 150\nu^{4} - 497\nu^{3} - 231\nu^{2} - 211\nu - 93 ) / 10 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -\beta_{8} + \beta_{5} - \beta_{4} - 4 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{5} + \beta_{4} - 2\beta_{2} - 5\beta _1 - 1 \)
|
\(\nu^{4}\) | \(=\) |
\( 7\beta_{8} + \beta_{7} + \beta_{6} - 7\beta_{5} + 7\beta_{4} + 24 \)
|
\(\nu^{5}\) | \(=\) |
\( -2\beta_{9} + \beta_{8} + 2\beta_{7} - 2\beta_{6} - 9\beta_{5} - 9\beta_{4} + 18\beta_{2} + 30\beta _1 + 9 \)
|
\(\nu^{6}\) | \(=\) |
\( -46\beta_{8} - 10\beta_{7} - 10\beta_{6} + 45\beta_{5} - 45\beta_{4} - 4\beta_{3} - 2\beta _1 - 155 \)
|
\(\nu^{7}\) | \(=\) |
\( 24\beta_{9} - 12\beta_{8} - 25\beta_{7} + 25\beta_{6} + 68\beta_{5} + 68\beta_{4} - 148\beta_{2} - 190\beta _1 - 74 \)
|
\(\nu^{8}\) | \(=\) |
\( 301\beta_{8} + 80\beta_{7} + 80\beta_{6} - 288\beta_{5} + 288\beta_{4} + 62\beta_{3} + 31\beta _1 + 1018 \)
|
\(\nu^{9}\) | \(=\) |
\( - 222 \beta_{9} + 111 \beta_{8} + 235 \beta_{7} - 235 \beta_{6} - 492 \beta_{5} - 492 \beta_{4} + 1170 \beta_{2} + 1226 \beta _1 + 585 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).
\(n\) | \(27\) | \(301\) |
\(\chi(n)\) | \(1\) | \(-\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 |
|
−2.27983 | + | 1.31626i | −1.34953 | − | 2.33745i | 2.46508 | − | 4.26964i | 0 | 6.15337 | + | 3.55265i | 2.37354 | + | 1.37037i | 7.71370i | −2.14244 | + | 3.71081i | 0 | ||||||||||||||||||||||||||||||||||||
101.2 | −1.18257 | + | 0.682755i | 0.199959 | + | 0.346339i | −0.0676905 | + | 0.117243i | 0 | −0.472929 | − | 0.273046i | −3.15550 | − | 1.82183i | − | 2.91589i | 1.42003 | − | 2.45957i | 0 | ||||||||||||||||||||||||||||||||||||
101.3 | 0.576815 | − | 0.333024i | 1.24146 | + | 2.15028i | −0.778190 | + | 1.34786i | 0 | 1.43219 | + | 0.826874i | 0.509002 | + | 0.293872i | 2.36872i | −1.58246 | + | 2.74090i | 0 | |||||||||||||||||||||||||||||||||||||
101.4 | 0.769027 | − | 0.443998i | −1.53097 | − | 2.65171i | −0.605732 | + | 1.04916i | 0 | −2.35471 | − | 1.35949i | −3.08568 | − | 1.78152i | 2.85177i | −3.18771 | + | 5.52128i | 0 | |||||||||||||||||||||||||||||||||||||
101.5 | 2.11655 | − | 1.22199i | −0.0609297 | − | 0.105533i | 1.98653 | − | 3.44078i | 0 | −0.257922 | − | 0.148911i | 0.358632 | + | 0.207056i | − | 4.82215i | 1.49258 | − | 2.58522i | 0 | ||||||||||||||||||||||||||||||||||||
251.1 | −2.27983 | − | 1.31626i | −1.34953 | + | 2.33745i | 2.46508 | + | 4.26964i | 0 | 6.15337 | − | 3.55265i | 2.37354 | − | 1.37037i | − | 7.71370i | −2.14244 | − | 3.71081i | 0 | ||||||||||||||||||||||||||||||||||||
251.2 | −1.18257 | − | 0.682755i | 0.199959 | − | 0.346339i | −0.0676905 | − | 0.117243i | 0 | −0.472929 | + | 0.273046i | −3.15550 | + | 1.82183i | 2.91589i | 1.42003 | + | 2.45957i | 0 | |||||||||||||||||||||||||||||||||||||
251.3 | 0.576815 | + | 0.333024i | 1.24146 | − | 2.15028i | −0.778190 | − | 1.34786i | 0 | 1.43219 | − | 0.826874i | 0.509002 | − | 0.293872i | − | 2.36872i | −1.58246 | − | 2.74090i | 0 | ||||||||||||||||||||||||||||||||||||
251.4 | 0.769027 | + | 0.443998i | −1.53097 | + | 2.65171i | −0.605732 | − | 1.04916i | 0 | −2.35471 | + | 1.35949i | −3.08568 | + | 1.78152i | − | 2.85177i | −3.18771 | − | 5.52128i | 0 | ||||||||||||||||||||||||||||||||||||
251.5 | 2.11655 | + | 1.22199i | −0.0609297 | + | 0.105533i | 1.98653 | + | 3.44078i | 0 | −0.257922 | + | 0.148911i | 0.358632 | − | 0.207056i | 4.82215i | 1.49258 | + | 2.58522i | 0 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 325.2.n.e | ✓ | 10 |
5.b | even | 2 | 1 | 325.2.n.f | yes | 10 | |
5.c | odd | 4 | 2 | 325.2.m.d | 20 | ||
13.e | even | 6 | 1 | inner | 325.2.n.e | ✓ | 10 |
13.f | odd | 12 | 2 | 4225.2.a.bv | 10 | ||
65.l | even | 6 | 1 | 325.2.n.f | yes | 10 | |
65.r | odd | 12 | 2 | 325.2.m.d | 20 | ||
65.s | odd | 12 | 2 | 4225.2.a.bu | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
325.2.m.d | 20 | 5.c | odd | 4 | 2 | ||
325.2.m.d | 20 | 65.r | odd | 12 | 2 | ||
325.2.n.e | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
325.2.n.e | ✓ | 10 | 13.e | even | 6 | 1 | inner |
325.2.n.f | yes | 10 | 5.b | even | 2 | 1 | |
325.2.n.f | yes | 10 | 65.l | even | 6 | 1 | |
4225.2.a.bu | 10 | 65.s | odd | 12 | 2 | ||
4225.2.a.bv | 10 | 13.f | odd | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{10} - 8T_{2}^{8} + 54T_{2}^{6} - 15T_{2}^{5} - 77T_{2}^{4} + 30T_{2}^{3} + 91T_{2}^{2} - 90T_{2} + 27 \)
acting on \(S_{2}^{\mathrm{new}}(325, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{10} - 8 T^{8} + 54 T^{6} - 15 T^{5} + \cdots + 27 \)
$3$
\( T^{10} + 3 T^{9} + 16 T^{8} + 17 T^{7} + \cdots + 1 \)
$5$
\( T^{10} \)
$7$
\( T^{10} + 6 T^{9} + T^{8} - 66 T^{7} + \cdots + 75 \)
$11$
\( T^{10} + 9 T^{9} + 18 T^{8} + \cdots + 6075 \)
$13$
\( T^{10} - 8 T^{9} + 2 T^{8} + \cdots + 371293 \)
$17$
\( T^{10} - 8 T^{9} + 64 T^{8} + \cdots + 1521 \)
$19$
\( T^{10} - 68 T^{8} + 3708 T^{6} + \cdots + 531723 \)
$23$
\( T^{10} - 13 T^{9} + 127 T^{8} - 556 T^{7} + \cdots + 9 \)
$29$
\( T^{10} - 7 T^{9} + 112 T^{8} + \cdots + 1766241 \)
$31$
\( T^{10} + 154 T^{8} + \cdots + 10546875 \)
$37$
\( T^{10} - 3 T^{9} - 140 T^{8} + \cdots + 112914675 \)
$41$
\( T^{10} - 12 T^{9} - 14 T^{8} + \cdots + 45387 \)
$43$
\( T^{10} - 4 T^{9} + 108 T^{8} + \cdots + 525625 \)
$47$
\( T^{10} + 160 T^{8} + 6108 T^{6} + \cdots + 771147 \)
$53$
\( (T^{5} - 12 T^{4} - 51 T^{3} + 819 T^{2} + \cdots - 8469)^{2} \)
$59$
\( T^{10} + 48 T^{9} + 951 T^{8} + \cdots + 3102867 \)
$61$
\( T^{10} - 13 T^{9} + \cdots + 2238709225 \)
$67$
\( T^{10} - 6 T^{9} - 33 T^{8} + \cdots + 16875 \)
$71$
\( T^{10} + 27 T^{9} + \cdots + 116251875 \)
$73$
\( T^{10} + 490 T^{8} + \cdots + 408916875 \)
$79$
\( (T^{5} - 2 T^{4} - 227 T^{3} - 94 T^{2} + \cdots - 9475)^{2} \)
$83$
\( T^{10} + 393 T^{8} + 36615 T^{6} + \cdots + 243 \)
$89$
\( T^{10} - 24 T^{9} + 165 T^{8} + \cdots + 45139923 \)
$97$
\( T^{10} + 15 T^{9} - 143 T^{8} + \cdots + 5738067 \)
show more
show less