Properties

Label 325.2.n.d.101.2
Level $325$
Weight $2$
Character 325.101
Analytic conductor $2.595$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Defining polynomial: \(x^{8} - 4 x^{7} + 5 x^{6} + 2 x^{5} - 11 x^{4} + 4 x^{3} + 20 x^{2} - 32 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.2
Root \(1.40994 + 0.109843i\) of defining polynomial
Character \(\chi\) \(=\) 325.101
Dual form 325.2.n.d.251.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.05628 + 0.609843i) q^{2} +(1.16612 + 2.01978i) q^{3} +(-0.256182 + 0.443720i) q^{4} +(-2.46350 - 1.42231i) q^{6} +(-3.11786 - 1.80010i) q^{7} -3.06430i q^{8} +(-1.21969 + 2.11256i) q^{9} +O(q^{10})\) \(q+(-1.05628 + 0.609843i) q^{2} +(1.16612 + 2.01978i) q^{3} +(-0.256182 + 0.443720i) q^{4} +(-2.46350 - 1.42231i) q^{6} +(-3.11786 - 1.80010i) q^{7} -3.06430i q^{8} +(-1.21969 + 2.11256i) q^{9} +(-4.65213 + 2.68591i) q^{11} -1.19496 q^{12} +(-1.81988 + 3.11256i) q^{13} +4.39111 q^{14} +(1.35638 + 2.34932i) q^{16} +(0.565928 - 0.980215i) q^{17} -2.97527i q^{18} +(-1.96410 - 1.13397i) q^{19} -8.39654i q^{21} +(3.27597 - 5.67414i) q^{22} +(1.94644 + 3.37133i) q^{23} +(6.18922 - 3.57335i) q^{24} +(0.0241312 - 4.39758i) q^{26} +1.30752 q^{27} +(1.59748 - 0.922305i) q^{28} +(0.0123639 + 0.0214150i) q^{29} +5.46410i q^{31} +(2.44209 + 1.40994i) q^{32} +(-10.8499 - 6.26420i) q^{33} +1.38051i q^{34} +(-0.624924 - 1.08240i) q^{36} +(-7.53794 + 4.35203i) q^{37} +2.76619 q^{38} +(-8.40891 - 0.0461428i) q^{39} +(3.23205 - 1.86603i) q^{41} +(5.12058 + 8.86910i) q^{42} +(0.565928 - 0.980215i) q^{43} -2.75232i q^{44} +(-4.11196 - 2.37404i) q^{46} +2.58535i q^{47} +(-3.16341 + 5.47918i) q^{48} +(2.98070 + 5.16273i) q^{49} +2.63977 q^{51} +(-0.914884 - 1.60490i) q^{52} +4.43937 q^{53} +(-1.38111 + 0.797382i) q^{54} +(-5.51603 + 9.55405i) q^{56} -5.28942i q^{57} +(-0.0261196 - 0.0150801i) q^{58} +(-0.148458 - 0.0857123i) q^{59} +(-1.68012 + 2.91005i) q^{61} +(-3.33225 - 5.77162i) q^{62} +(7.60563 - 4.39111i) q^{63} -8.86488 q^{64} +15.2807 q^{66} +(-5.54239 + 3.19990i) q^{67} +(0.289961 + 0.502227i) q^{68} +(-4.53957 + 7.86276i) q^{69} +(9.35076 + 5.39866i) q^{71} +(6.47351 + 3.73748i) q^{72} -4.70308i q^{73} +(5.30812 - 9.19393i) q^{74} +(1.00633 - 0.581008i) q^{76} +19.3396 q^{77} +(8.91030 - 5.07938i) q^{78} -11.9826 q^{79} +(5.18379 + 8.97859i) q^{81} +(-2.27597 + 3.94209i) q^{82} +12.1286i q^{83} +(3.72572 + 2.15104i) q^{84} +1.38051i q^{86} +(-0.0288357 + 0.0499450i) q^{87} +(8.23042 + 14.2555i) q^{88} +(13.9898 - 8.07702i) q^{89} +(11.2771 - 6.42856i) q^{91} -1.99457 q^{92} +(-11.0363 + 6.37182i) q^{93} +(-1.57666 - 2.73086i) q^{94} +6.57666i q^{96} +(10.5379 + 6.08408i) q^{97} +(-6.29692 - 3.63553i) q^{98} -13.1039i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 2q^{3} + 2q^{4} - 18q^{6} + 6q^{7} - 4q^{9} + O(q^{10}) \) \( 8q - 2q^{3} + 2q^{4} - 18q^{6} + 6q^{7} - 4q^{9} - 20q^{12} + 4q^{14} - 2q^{16} + 2q^{17} + 12q^{19} + 12q^{22} + 10q^{23} - 12q^{24} + 10q^{26} + 4q^{27} + 18q^{28} - 8q^{29} - 6q^{32} - 42q^{33} + 20q^{36} - 6q^{37} + 16q^{38} + 12q^{41} - 4q^{42} + 2q^{43} - 42q^{46} - 28q^{48} + 12q^{49} - 8q^{51} + 6q^{52} + 24q^{53} + 18q^{54} + 12q^{56} - 36q^{58} - 12q^{59} - 28q^{61} - 4q^{62} + 24q^{63} - 8q^{64} + 12q^{66} - 6q^{67} + 14q^{68} - 16q^{69} + 48q^{72} + 10q^{74} + 54q^{76} + 36q^{77} + 56q^{78} - 16q^{79} + 8q^{81} - 4q^{82} - 30q^{84} - 22q^{87} + 18q^{88} + 24q^{89} + 28q^{91} - 44q^{92} + 32q^{94} + 30q^{97} - 72q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.05628 + 0.609843i −0.746903 + 0.431224i −0.824574 0.565755i \(-0.808585\pi\)
0.0776710 + 0.996979i \(0.475252\pi\)
\(3\) 1.16612 + 2.01978i 0.673262 + 1.16612i 0.976974 + 0.213359i \(0.0684405\pi\)
−0.303712 + 0.952764i \(0.598226\pi\)
\(4\) −0.256182 + 0.443720i −0.128091 + 0.221860i
\(5\) 0 0
\(6\) −2.46350 1.42231i −1.00572 0.580654i
\(7\) −3.11786 1.80010i −1.17844 0.680373i −0.222787 0.974867i \(-0.571516\pi\)
−0.955653 + 0.294494i \(0.904849\pi\)
\(8\) 3.06430i 1.08339i
\(9\) −1.21969 + 2.11256i −0.406562 + 0.704187i
\(10\) 0 0
\(11\) −4.65213 + 2.68591i −1.40267 + 0.809832i −0.994666 0.103149i \(-0.967108\pi\)
−0.408004 + 0.912980i \(0.633775\pi\)
\(12\) −1.19496 −0.344955
\(13\) −1.81988 + 3.11256i −0.504745 + 0.863269i
\(14\) 4.39111 1.17357
\(15\) 0 0
\(16\) 1.35638 + 2.34932i 0.339094 + 0.587329i
\(17\) 0.565928 0.980215i 0.137258 0.237737i −0.789200 0.614136i \(-0.789505\pi\)
0.926458 + 0.376399i \(0.122838\pi\)
\(18\) 2.97527i 0.701278i
\(19\) −1.96410 1.13397i −0.450596 0.260152i 0.257486 0.966282i \(-0.417106\pi\)
−0.708082 + 0.706130i \(0.750439\pi\)
\(20\) 0 0
\(21\) 8.39654i 1.83228i
\(22\) 3.27597 5.67414i 0.698438 1.20973i
\(23\) 1.94644 + 3.37133i 0.405860 + 0.702970i 0.994421 0.105483i \(-0.0336387\pi\)
−0.588561 + 0.808453i \(0.700305\pi\)
\(24\) 6.18922 3.57335i 1.26337 0.729407i
\(25\) 0 0
\(26\) 0.0241312 4.39758i 0.00473251 0.862436i
\(27\) 1.30752 0.251632
\(28\) 1.59748 0.922305i 0.301895 0.174299i
\(29\) 0.0123639 + 0.0214150i 0.00229593 + 0.00397666i 0.867171 0.498010i \(-0.165936\pi\)
−0.864875 + 0.501987i \(0.832603\pi\)
\(30\) 0 0
\(31\) 5.46410i 0.981382i 0.871334 + 0.490691i \(0.163256\pi\)
−0.871334 + 0.490691i \(0.836744\pi\)
\(32\) 2.44209 + 1.40994i 0.431705 + 0.249245i
\(33\) −10.8499 6.26420i −1.88873 1.09046i
\(34\) 1.38051i 0.236755i
\(35\) 0 0
\(36\) −0.624924 1.08240i −0.104154 0.180400i
\(37\) −7.53794 + 4.35203i −1.23923 + 0.715470i −0.968937 0.247309i \(-0.920454\pi\)
−0.270293 + 0.962778i \(0.587121\pi\)
\(38\) 2.76619 0.448735
\(39\) −8.40891 0.0461428i −1.34650 0.00738877i
\(40\) 0 0
\(41\) 3.23205 1.86603i 0.504762 0.291424i −0.225916 0.974147i \(-0.572538\pi\)
0.730678 + 0.682723i \(0.239204\pi\)
\(42\) 5.12058 + 8.86910i 0.790122 + 1.36853i
\(43\) 0.565928 0.980215i 0.0863031 0.149481i −0.819643 0.572875i \(-0.805828\pi\)
0.905946 + 0.423394i \(0.139161\pi\)
\(44\) 2.75232i 0.414929i
\(45\) 0 0
\(46\) −4.11196 2.37404i −0.606276 0.350034i
\(47\) 2.58535i 0.377113i 0.982062 + 0.188556i \(0.0603808\pi\)
−0.982062 + 0.188556i \(0.939619\pi\)
\(48\) −3.16341 + 5.47918i −0.456598 + 0.790852i
\(49\) 2.98070 + 5.16273i 0.425815 + 0.737533i
\(50\) 0 0
\(51\) 2.63977 0.369641
\(52\) −0.914884 1.60490i −0.126872 0.222560i
\(53\) 4.43937 0.609795 0.304897 0.952385i \(-0.401378\pi\)
0.304897 + 0.952385i \(0.401378\pi\)
\(54\) −1.38111 + 0.797382i −0.187945 + 0.108510i
\(55\) 0 0
\(56\) −5.51603 + 9.55405i −0.737111 + 1.27671i
\(57\) 5.28942i 0.700600i
\(58\) −0.0261196 0.0150801i −0.00342967 0.00198012i
\(59\) −0.148458 0.0857123i −0.0193276 0.0111588i 0.490305 0.871551i \(-0.336885\pi\)
−0.509633 + 0.860392i \(0.670219\pi\)
\(60\) 0 0
\(61\) −1.68012 + 2.91005i −0.215117 + 0.372594i −0.953309 0.301997i \(-0.902347\pi\)
0.738192 + 0.674591i \(0.235680\pi\)
\(62\) −3.33225 5.77162i −0.423196 0.732997i
\(63\) 7.60563 4.39111i 0.958219 0.553228i
\(64\) −8.86488 −1.10811
\(65\) 0 0
\(66\) 15.2807 1.88093
\(67\) −5.54239 + 3.19990i −0.677111 + 0.390930i −0.798766 0.601642i \(-0.794513\pi\)
0.121655 + 0.992572i \(0.461180\pi\)
\(68\) 0.289961 + 0.502227i 0.0351629 + 0.0609040i
\(69\) −4.53957 + 7.86276i −0.546500 + 0.946566i
\(70\) 0 0
\(71\) 9.35076 + 5.39866i 1.10973 + 0.640703i 0.938760 0.344573i \(-0.111976\pi\)
0.170971 + 0.985276i \(0.445309\pi\)
\(72\) 6.47351 + 3.73748i 0.762911 + 0.440467i
\(73\) 4.70308i 0.550454i −0.961379 0.275227i \(-0.911247\pi\)
0.961379 0.275227i \(-0.0887531\pi\)
\(74\) 5.30812 9.19393i 0.617056 1.06877i
\(75\) 0 0
\(76\) 1.00633 0.581008i 0.115435 0.0666462i
\(77\) 19.3396 2.20395
\(78\) 8.91030 5.07938i 1.00889 0.575126i
\(79\) −11.9826 −1.34815 −0.674075 0.738663i \(-0.735457\pi\)
−0.674075 + 0.738663i \(0.735457\pi\)
\(80\) 0 0
\(81\) 5.18379 + 8.97859i 0.575976 + 0.997621i
\(82\) −2.27597 + 3.94209i −0.251338 + 0.435331i
\(83\) 12.1286i 1.33129i 0.746270 + 0.665643i \(0.231843\pi\)
−0.746270 + 0.665643i \(0.768157\pi\)
\(84\) 3.72572 + 2.15104i 0.406509 + 0.234698i
\(85\) 0 0
\(86\) 1.38051i 0.148864i
\(87\) −0.0288357 + 0.0499450i −0.00309152 + 0.00535466i
\(88\) 8.23042 + 14.2555i 0.877366 + 1.51964i
\(89\) 13.9898 8.07702i 1.48292 0.856162i 0.483105 0.875562i \(-0.339509\pi\)
0.999812 + 0.0194001i \(0.00617565\pi\)
\(90\) 0 0
\(91\) 11.2771 6.42856i 1.18216 0.673896i
\(92\) −1.99457 −0.207948
\(93\) −11.0363 + 6.37182i −1.14441 + 0.660727i
\(94\) −1.57666 2.73086i −0.162620 0.281666i
\(95\) 0 0
\(96\) 6.57666i 0.671228i
\(97\) 10.5379 + 6.08408i 1.06997 + 0.617745i 0.928172 0.372151i \(-0.121380\pi\)
0.141794 + 0.989896i \(0.454713\pi\)
\(98\) −6.29692 3.63553i −0.636085 0.367244i
\(99\) 13.1039i 1.31699i
\(100\) 0 0
\(101\) −2.02721 3.51122i −0.201714 0.349380i 0.747366 0.664412i \(-0.231318\pi\)
−0.949081 + 0.315032i \(0.897985\pi\)
\(102\) −2.78833 + 1.60984i −0.276086 + 0.159398i
\(103\) −17.9035 −1.76408 −0.882041 0.471173i \(-0.843831\pi\)
−0.882041 + 0.471173i \(0.843831\pi\)
\(104\) 9.53781 + 5.57666i 0.935259 + 0.546837i
\(105\) 0 0
\(106\) −4.68922 + 2.70732i −0.455457 + 0.262958i
\(107\) −4.56593 7.90842i −0.441405 0.764536i 0.556389 0.830922i \(-0.312186\pi\)
−0.997794 + 0.0663862i \(0.978853\pi\)
\(108\) −0.334963 + 0.580172i −0.0322318 + 0.0558271i
\(109\) 7.37605i 0.706498i 0.935529 + 0.353249i \(0.114923\pi\)
−0.935529 + 0.353249i \(0.885077\pi\)
\(110\) 0 0
\(111\) −17.5803 10.1500i −1.66865 0.963396i
\(112\) 9.76645i 0.922843i
\(113\) 3.53794 6.12789i 0.332821 0.576463i −0.650243 0.759727i \(-0.725333\pi\)
0.983064 + 0.183263i \(0.0586661\pi\)
\(114\) 3.22572 + 5.58710i 0.302116 + 0.523280i
\(115\) 0 0
\(116\) −0.0126697 −0.00117635
\(117\) −4.35578 7.64096i −0.402692 0.706407i
\(118\) 0.209084 0.0192478
\(119\) −3.52897 + 2.03745i −0.323500 + 0.186773i
\(120\) 0 0
\(121\) 8.92820 15.4641i 0.811655 1.40583i
\(122\) 4.09843i 0.371055i
\(123\) 7.53794 + 4.35203i 0.679673 + 0.392409i
\(124\) −2.42453 1.39980i −0.217729 0.125706i
\(125\) 0 0
\(126\) −5.35578 + 9.27648i −0.477131 + 0.826415i
\(127\) 5.71806 + 9.90396i 0.507395 + 0.878835i 0.999963 + 0.00856072i \(0.00272499\pi\)
−0.492568 + 0.870274i \(0.663942\pi\)
\(128\) 4.47962 2.58631i 0.395946 0.228600i
\(129\) 2.63977 0.232418
\(130\) 0 0
\(131\) −10.5680 −0.923328 −0.461664 0.887055i \(-0.652747\pi\)
−0.461664 + 0.887055i \(0.652747\pi\)
\(132\) 5.55910 3.20955i 0.483858 0.279355i
\(133\) 4.08253 + 7.07115i 0.354000 + 0.613146i
\(134\) 3.90288 6.75998i 0.337157 0.583974i
\(135\) 0 0
\(136\) −3.00367 1.73417i −0.257563 0.148704i
\(137\) −3.27940 1.89336i −0.280178 0.161761i 0.353326 0.935500i \(-0.385051\pi\)
−0.633504 + 0.773739i \(0.718384\pi\)
\(138\) 11.0737i 0.942656i
\(139\) −1.00693 + 1.74406i −0.0854068 + 0.147929i −0.905564 0.424209i \(-0.860552\pi\)
0.820158 + 0.572138i \(0.193886\pi\)
\(140\) 0 0
\(141\) −5.22186 + 3.01484i −0.439760 + 0.253895i
\(142\) −13.1694 −1.10515
\(143\) 0.106280 19.3681i 0.00888757 1.61964i
\(144\) −6.61742 −0.551452
\(145\) 0 0
\(146\) 2.86814 + 4.96777i 0.237369 + 0.411136i
\(147\) −6.95174 + 12.0408i −0.573370 + 0.993105i
\(148\) 4.45965i 0.366581i
\(149\) 4.77855 + 2.75890i 0.391474 + 0.226018i 0.682799 0.730607i \(-0.260763\pi\)
−0.291324 + 0.956624i \(0.594096\pi\)
\(150\) 0 0
\(151\) 4.88961i 0.397911i 0.980009 + 0.198956i \(0.0637549\pi\)
−0.980009 + 0.198956i \(0.936245\pi\)
\(152\) −3.47484 + 6.01859i −0.281846 + 0.488172i
\(153\) 1.38051 + 2.39111i 0.111608 + 0.193310i
\(154\) −20.4280 + 11.7941i −1.64614 + 0.950397i
\(155\) 0 0
\(156\) 2.17469 3.71938i 0.174114 0.297789i
\(157\) −10.0405 −0.801323 −0.400661 0.916226i \(-0.631220\pi\)
−0.400661 + 0.916226i \(0.631220\pi\)
\(158\) 12.6570 7.30752i 1.00694 0.581355i
\(159\) 5.17686 + 8.96658i 0.410551 + 0.711096i
\(160\) 0 0
\(161\) 14.0151i 1.10454i
\(162\) −10.9511 6.32260i −0.860397 0.496750i
\(163\) −5.87273 3.39062i −0.459988 0.265574i 0.252051 0.967714i \(-0.418895\pi\)
−0.712039 + 0.702140i \(0.752228\pi\)
\(164\) 1.91217i 0.149315i
\(165\) 0 0
\(166\) −7.39654 12.8112i −0.574083 0.994341i
\(167\) 9.08444 5.24490i 0.702975 0.405863i −0.105479 0.994421i \(-0.533638\pi\)
0.808455 + 0.588559i \(0.200304\pi\)
\(168\) −25.7295 −1.98507
\(169\) −6.37605 11.3290i −0.490466 0.871460i
\(170\) 0 0
\(171\) 4.79118 2.76619i 0.366391 0.211536i
\(172\) 0.289961 + 0.502227i 0.0221093 + 0.0382944i
\(173\) 2.22923 3.86113i 0.169485 0.293557i −0.768754 0.639545i \(-0.779123\pi\)
0.938239 + 0.345988i \(0.112456\pi\)
\(174\) 0.0703412i 0.00533255i
\(175\) 0 0
\(176\) −12.6201 7.28621i −0.951275 0.549219i
\(177\) 0.399804i 0.0300511i
\(178\) −9.85143 + 17.0632i −0.738396 + 1.27894i
\(179\) 9.31564 + 16.1352i 0.696284 + 1.20600i 0.969746 + 0.244116i \(0.0784979\pi\)
−0.273462 + 0.961883i \(0.588169\pi\)
\(180\) 0 0
\(181\) −18.0900 −1.34462 −0.672310 0.740270i \(-0.734698\pi\)
−0.672310 + 0.740270i \(0.734698\pi\)
\(182\) −7.99131 + 13.6676i −0.592355 + 1.01311i
\(183\) −7.83690 −0.579320
\(184\) 10.3307 5.96446i 0.761593 0.439706i
\(185\) 0 0
\(186\) 7.77162 13.4608i 0.569843 0.986997i
\(187\) 6.08012i 0.444622i
\(188\) −1.14717 0.662321i −0.0836662 0.0483047i
\(189\) −4.07666 2.35366i −0.296533 0.171204i
\(190\) 0 0
\(191\) −13.6682 + 23.6740i −0.988994 + 1.71299i −0.366361 + 0.930473i \(0.619397\pi\)
−0.622632 + 0.782515i \(0.713937\pi\)
\(192\) −10.3375 17.9052i −0.746048 1.29219i
\(193\) 18.8511 10.8837i 1.35693 0.783425i 0.367723 0.929935i \(-0.380137\pi\)
0.989209 + 0.146510i \(0.0468041\pi\)
\(194\) −14.8413 −1.06555
\(195\) 0 0
\(196\) −3.05441 −0.218172
\(197\) 1.46940 0.848360i 0.104691 0.0604432i −0.446741 0.894664i \(-0.647415\pi\)
0.551431 + 0.834220i \(0.314082\pi\)
\(198\) 7.99131 + 13.8413i 0.567917 + 0.983662i
\(199\) 12.6627 21.9325i 0.897637 1.55475i 0.0671309 0.997744i \(-0.478615\pi\)
0.830506 0.557009i \(-0.188051\pi\)
\(200\) 0 0
\(201\) −12.9262 7.46296i −0.911746 0.526397i
\(202\) 4.28259 + 2.47256i 0.301322 + 0.173968i
\(203\) 0.0890252i 0.00624834i
\(204\) −0.676260 + 1.17132i −0.0473477 + 0.0820086i
\(205\) 0 0
\(206\) 18.9111 10.9183i 1.31760 0.760715i
\(207\) −9.49617 −0.660030
\(208\) −9.78083 0.0536711i −0.678179 0.00372142i
\(209\) 12.1830 0.842716
\(210\) 0 0
\(211\) 0.167753 + 0.290558i 0.0115486 + 0.0200028i 0.871742 0.489965i \(-0.162991\pi\)
−0.860193 + 0.509968i \(0.829657\pi\)
\(212\) −1.13729 + 1.96984i −0.0781092 + 0.135289i
\(213\) 25.1820i 1.72544i
\(214\) 9.64579 + 5.56900i 0.659373 + 0.380689i
\(215\) 0 0
\(216\) 4.00663i 0.272616i
\(217\) 9.83592 17.0363i 0.667706 1.15650i
\(218\) −4.49824 7.79118i −0.304659 0.527685i
\(219\) 9.49922 5.48438i 0.641898 0.370600i
\(220\) 0 0
\(221\) 2.02106 + 3.54536i 0.135951 + 0.238487i
\(222\) 24.7597 1.66176
\(223\) 10.6493 6.14838i 0.713130 0.411726i −0.0990887 0.995079i \(-0.531593\pi\)
0.812219 + 0.583353i \(0.198259\pi\)
\(224\) −5.07606 8.79200i −0.339159 0.587440i
\(225\) 0 0
\(226\) 8.63036i 0.574083i
\(227\) −6.60974 3.81613i −0.438704 0.253286i 0.264344 0.964428i \(-0.414845\pi\)
−0.703048 + 0.711143i \(0.748178\pi\)
\(228\) 2.34702 + 1.35505i 0.155435 + 0.0897406i
\(229\) 14.4008i 0.951631i 0.879545 + 0.475815i \(0.157847\pi\)
−0.879545 + 0.475815i \(0.842153\pi\)
\(230\) 0 0
\(231\) 22.5523 + 39.0618i 1.48384 + 2.57008i
\(232\) 0.0656218 0.0378868i 0.00430828 0.00248739i
\(233\) 9.49617 0.622115 0.311057 0.950391i \(-0.399317\pi\)
0.311057 + 0.950391i \(0.399317\pi\)
\(234\) 9.26071 + 5.41465i 0.605392 + 0.353966i
\(235\) 0 0
\(236\) 0.0760645 0.0439159i 0.00495138 0.00285868i
\(237\) −13.9732 24.2023i −0.907657 1.57211i
\(238\) 2.48505 4.30423i 0.161082 0.279002i
\(239\) 19.9143i 1.28815i −0.764962 0.644076i \(-0.777242\pi\)
0.764962 0.644076i \(-0.222758\pi\)
\(240\) 0 0
\(241\) 20.1493 + 11.6332i 1.29793 + 0.749360i 0.980046 0.198770i \(-0.0636947\pi\)
0.317883 + 0.948130i \(0.397028\pi\)
\(242\) 21.7792i 1.40002i
\(243\) −10.1286 + 17.5432i −0.649750 + 1.12540i
\(244\) −0.860832 1.49100i −0.0551091 0.0954518i
\(245\) 0 0
\(246\) −10.6162 −0.676866
\(247\) 7.10400 4.04968i 0.452017 0.257675i
\(248\) 16.7436 1.06322
\(249\) −24.4972 + 14.1434i −1.55244 + 0.896304i
\(250\) 0 0
\(251\) 5.92008 10.2539i 0.373672 0.647219i −0.616455 0.787390i \(-0.711432\pi\)
0.990127 + 0.140171i \(0.0447652\pi\)
\(252\) 4.49969i 0.283454i
\(253\) −18.1101 10.4559i −1.13858 0.657357i
\(254\) −12.0797 6.97424i −0.757950 0.437603i
\(255\) 0 0
\(256\) 5.71040 9.89070i 0.356900 0.618169i
\(257\) 2.77501 + 4.80646i 0.173100 + 0.299819i 0.939502 0.342543i \(-0.111288\pi\)
−0.766402 + 0.642361i \(0.777955\pi\)
\(258\) −2.78833 + 1.60984i −0.173594 + 0.100224i
\(259\) 31.3363 1.94714
\(260\) 0 0
\(261\) −0.0603205 −0.00373375
\(262\) 11.1627 6.44481i 0.689636 0.398161i
\(263\) 3.42983 + 5.94065i 0.211493 + 0.366316i 0.952182 0.305532i \(-0.0988342\pi\)
−0.740689 + 0.671848i \(0.765501\pi\)
\(264\) −19.1954 + 33.2474i −1.18139 + 2.04623i
\(265\) 0 0
\(266\) −8.62459 4.97941i −0.528807 0.305307i
\(267\) 32.6277 + 18.8376i 1.99678 + 1.15284i
\(268\) 3.27903i 0.200299i
\(269\) 0.710994 1.23148i 0.0433501 0.0750845i −0.843536 0.537072i \(-0.819530\pi\)
0.886886 + 0.461988i \(0.152864\pi\)
\(270\) 0 0
\(271\) 8.63381 4.98473i 0.524467 0.302801i −0.214294 0.976769i \(-0.568745\pi\)
0.738760 + 0.673968i \(0.235412\pi\)
\(272\) 3.07045 0.186173
\(273\) 26.1347 + 15.2807i 1.58175 + 0.924831i
\(274\) 4.61862 0.279021
\(275\) 0 0
\(276\) −2.32591 4.02860i −0.140003 0.242493i
\(277\) 8.76187 15.1760i 0.526449 0.911837i −0.473076 0.881022i \(-0.656856\pi\)
0.999525 0.0308154i \(-0.00981039\pi\)
\(278\) 2.45628i 0.147318i
\(279\) −11.5432 6.66449i −0.691076 0.398993i
\(280\) 0 0
\(281\) 10.7352i 0.640406i −0.947349 0.320203i \(-0.896249\pi\)
0.947349 0.320203i \(-0.103751\pi\)
\(282\) 3.67716 6.36903i 0.218972 0.379270i
\(283\) −0.659192 1.14175i −0.0391849 0.0678702i 0.845768 0.533551i \(-0.179143\pi\)
−0.884953 + 0.465681i \(0.845809\pi\)
\(284\) −4.79099 + 2.76608i −0.284293 + 0.164137i
\(285\) 0 0
\(286\) 11.6992 + 20.5229i 0.691790 + 1.21355i
\(287\) −13.4361 −0.793109
\(288\) −5.95717 + 3.43937i −0.351030 + 0.202667i
\(289\) 7.85945 + 13.6130i 0.462321 + 0.800763i
\(290\) 0 0
\(291\) 28.3792i 1.66362i
\(292\) 2.08685 + 1.20485i 0.122124 + 0.0705082i
\(293\) −16.2316 9.37133i −0.948261 0.547479i −0.0557207 0.998446i \(-0.517746\pi\)
−0.892540 + 0.450968i \(0.851079\pi\)
\(294\) 16.9579i 0.989004i
\(295\) 0 0
\(296\) 13.3359 + 23.0985i 0.775134 + 1.34257i
\(297\) −6.08275 + 3.51187i −0.352957 + 0.203780i
\(298\) −6.72998 −0.389857
\(299\) −14.0357 0.0770194i −0.811708 0.00445415i
\(300\) 0 0
\(301\) −3.52897 + 2.03745i −0.203406 + 0.117437i
\(302\) −2.98190 5.16480i −0.171589 0.297201i
\(303\) 4.72794 8.18904i 0.271613 0.470448i
\(304\) 6.15239i 0.352864i
\(305\) 0 0
\(306\) −2.91641 1.68379i −0.166720 0.0962558i
\(307\) 14.3043i 0.816387i 0.912895 + 0.408194i \(0.133841\pi\)
−0.912895 + 0.408194i \(0.866159\pi\)
\(308\) −4.95445 + 8.58137i −0.282306 + 0.488969i
\(309\) −20.8777 36.1612i −1.18769 2.05714i
\(310\) 0 0
\(311\) −2.76102 −0.156563 −0.0782815 0.996931i \(-0.524943\pi\)
−0.0782815 + 0.996931i \(0.524943\pi\)
\(312\) −0.141395 + 25.7674i −0.00800494 + 1.45879i
\(313\) 16.3858 0.926179 0.463090 0.886311i \(-0.346741\pi\)
0.463090 + 0.886311i \(0.346741\pi\)
\(314\) 10.6056 6.12316i 0.598510 0.345550i
\(315\) 0 0
\(316\) 3.06973 5.31693i 0.172686 0.299101i
\(317\) 1.78575i 0.100297i −0.998742 0.0501487i \(-0.984030\pi\)
0.998742 0.0501487i \(-0.0159695\pi\)
\(318\) −10.9364 6.31414i −0.613284 0.354080i
\(319\) −0.115037 0.0664168i −0.00644085 0.00371863i
\(320\) 0 0
\(321\) 10.6489 18.4444i 0.594362 1.02946i
\(322\) 8.54702 + 14.8039i 0.476307 + 0.824987i
\(323\) −2.22308 + 1.28349i −0.123695 + 0.0714156i
\(324\) −5.31197 −0.295110
\(325\) 0 0
\(326\) 8.27099 0.458088
\(327\) −14.8980 + 8.60139i −0.823864 + 0.475658i
\(328\) −5.71806 9.90396i −0.315727 0.546855i
\(329\) 4.65389 8.06077i 0.256577 0.444405i
\(330\) 0 0
\(331\) −6.25652 3.61220i −0.343889 0.198545i 0.318101 0.948057i \(-0.396955\pi\)
−0.661991 + 0.749512i \(0.730288\pi\)
\(332\) −5.38170 3.10713i −0.295359 0.170526i
\(333\) 21.2325i 1.16353i
\(334\) −6.39714 + 11.0802i −0.350036 + 0.606280i
\(335\) 0 0
\(336\) 19.7261 11.3889i 1.07615 0.621315i
\(337\) −4.36219 −0.237624 −0.118812 0.992917i \(-0.537909\pi\)
−0.118812 + 0.992917i \(0.537909\pi\)
\(338\) 13.6438 + 8.07818i 0.742125 + 0.439395i
\(339\) 16.5027 0.896303
\(340\) 0 0
\(341\) −14.6761 25.4197i −0.794754 1.37655i
\(342\) −3.37388 + 5.84374i −0.182439 + 0.315993i
\(343\) 3.73913i 0.201894i
\(344\) −3.00367 1.73417i −0.161947 0.0935002i
\(345\) 0 0
\(346\) 5.43792i 0.292344i
\(347\) −13.3536 + 23.1291i −0.716858 + 1.24163i 0.245381 + 0.969427i \(0.421087\pi\)
−0.962239 + 0.272207i \(0.912246\pi\)
\(348\) −0.0147744 0.0255900i −0.000791991 0.00137177i
\(349\) −20.4131 + 11.7855i −1.09269 + 0.630865i −0.934292 0.356510i \(-0.883967\pi\)
−0.158399 + 0.987375i \(0.550633\pi\)
\(350\) 0 0
\(351\) −2.37953 + 4.06973i −0.127010 + 0.217226i
\(352\) −15.1479 −0.807385
\(353\) −4.96862 + 2.86863i −0.264453 + 0.152682i −0.626364 0.779531i \(-0.715458\pi\)
0.361911 + 0.932213i \(0.382124\pi\)
\(354\) 0.243818 + 0.422305i 0.0129588 + 0.0224453i
\(355\) 0 0
\(356\) 8.27675i 0.438667i
\(357\) −8.23042 4.75184i −0.435600 0.251494i
\(358\) −19.6799 11.3622i −1.04011 0.600509i
\(359\) 24.7583i 1.30669i 0.757059 + 0.653347i \(0.226636\pi\)
−0.757059 + 0.653347i \(0.773364\pi\)
\(360\) 0 0
\(361\) −6.92820 12.0000i −0.364642 0.631579i
\(362\) 19.1081 11.0321i 1.00430 0.579833i
\(363\) 41.6455 2.18582
\(364\) −0.0364951 + 6.65074i −0.00191286 + 0.348593i
\(365\) 0 0
\(366\) 8.27796 4.77928i 0.432696 0.249817i
\(367\) 13.0268 + 22.5630i 0.679992 + 1.17778i 0.974983 + 0.222280i \(0.0713500\pi\)
−0.294991 + 0.955500i \(0.595317\pi\)
\(368\) −5.28021 + 9.14558i −0.275250 + 0.476747i
\(369\) 9.10387i 0.473928i
\(370\) 0 0
\(371\) −13.8413 7.99131i −0.718607 0.414888i
\(372\) 6.52938i 0.338532i
\(373\) 6.60224 11.4354i 0.341851 0.592103i −0.642926 0.765929i \(-0.722280\pi\)
0.984776 + 0.173826i \(0.0556129\pi\)
\(374\) −3.70792 6.42231i −0.191732 0.332089i
\(375\) 0 0
\(376\) 7.92229 0.408561
\(377\) −0.0891563 0.000489234i −0.00459178 2.51968e-5i
\(378\) 5.74146 0.295309
\(379\) 22.5147 12.9989i 1.15650 0.667707i 0.206039 0.978544i \(-0.433943\pi\)
0.950463 + 0.310837i \(0.100609\pi\)
\(380\) 0 0
\(381\) −13.3359 + 23.0985i −0.683220 + 1.18337i
\(382\) 33.3418i 1.70591i
\(383\) −8.31401 4.80010i −0.424826 0.245274i 0.272314 0.962208i \(-0.412211\pi\)
−0.697140 + 0.716935i \(0.745544\pi\)
\(384\) 10.4476 + 6.03191i 0.533151 + 0.307815i
\(385\) 0 0
\(386\) −13.2747 + 22.9924i −0.675664 + 1.17028i
\(387\) 1.38051 + 2.39111i 0.0701752 + 0.121547i
\(388\) −5.39926 + 3.11726i −0.274106 + 0.158255i
\(389\) −5.63129 −0.285518 −0.142759 0.989758i \(-0.545597\pi\)
−0.142759 + 0.989758i \(0.545597\pi\)
\(390\) 0 0
\(391\) 4.40617 0.222829
\(392\) 15.8201 9.13376i 0.799038 0.461325i
\(393\) −12.3236 21.3450i −0.621641 1.07671i
\(394\) −1.03473 + 1.79221i −0.0521291 + 0.0902903i
\(395\) 0 0
\(396\) 5.81445 + 3.35697i 0.292187 + 0.168694i
\(397\) 14.5196 + 8.38291i 0.728719 + 0.420726i 0.817953 0.575285i \(-0.195109\pi\)
−0.0892344 + 0.996011i \(0.528442\pi\)
\(398\) 30.8891i 1.54833i
\(399\) −9.52147 + 16.4917i −0.476670 + 0.825616i
\(400\) 0 0
\(401\) 12.0187 6.93902i 0.600187 0.346518i −0.168928 0.985628i \(-0.554031\pi\)
0.769115 + 0.639110i \(0.220697\pi\)
\(402\) 18.2050 0.907980
\(403\) −17.0073 9.94402i −0.847196 0.495347i
\(404\) 2.07733 0.103351
\(405\) 0 0
\(406\) 0.0542914 + 0.0940355i 0.00269444 + 0.00466690i
\(407\) 23.3783 40.4924i 1.15882 2.00713i
\(408\) 8.08903i 0.400466i
\(409\) −25.4829 14.7125i −1.26005 0.727489i −0.286964 0.957941i \(-0.592646\pi\)
−0.973083 + 0.230453i \(0.925979\pi\)
\(410\) 0 0
\(411\) 8.83157i 0.435629i
\(412\) 4.58655 7.94413i 0.225963 0.391379i
\(413\) 0.308581 + 0.534478i 0.0151843 + 0.0262999i
\(414\) 10.0306 5.79118i 0.492978 0.284621i
\(415\) 0 0
\(416\) −8.83284 + 5.03522i −0.433066 + 0.246872i
\(417\) −4.69683 −0.230005
\(418\) −12.8687 + 7.42973i −0.629427 + 0.363400i
\(419\) −3.48397 6.03440i −0.170203 0.294800i 0.768288 0.640104i \(-0.221109\pi\)
−0.938491 + 0.345305i \(0.887776\pi\)
\(420\) 0 0
\(421\) 7.12125i 0.347069i 0.984828 + 0.173534i \(0.0555188\pi\)
−0.984828 + 0.173534i \(0.944481\pi\)
\(422\) −0.354389 0.204607i −0.0172514 0.00996010i
\(423\) −5.46171 3.15332i −0.265558 0.153320i
\(424\) 13.6036i 0.660647i
\(425\) 0 0
\(426\) −15.3571 26.5993i −0.744054 1.28874i
\(427\) 10.4767 6.04875i 0.507005 0.292720i
\(428\) 4.67883 0.226160
\(429\) 39.2433 22.3709i 1.89468 1.08008i
\(430\) 0 0
\(431\) 26.1664 15.1072i 1.26039 0.727687i 0.287241 0.957858i \(-0.407262\pi\)
0.973150 + 0.230171i \(0.0739286\pi\)
\(432\) 1.77349 + 3.07177i 0.0853270 + 0.147791i
\(433\) −0.600065 + 1.03934i −0.0288373 + 0.0499476i −0.880084 0.474818i \(-0.842514\pi\)
0.851247 + 0.524766i \(0.175847\pi\)
\(434\) 23.9935i 1.15172i
\(435\) 0 0
\(436\) −3.27290 1.88961i −0.156744 0.0904960i
\(437\) 8.82884i 0.422341i
\(438\) −6.68922 + 11.5861i −0.319623 + 0.553604i
\(439\) −8.27705 14.3363i −0.395042 0.684233i 0.598064 0.801448i \(-0.295937\pi\)
−0.993107 + 0.117215i \(0.962603\pi\)
\(440\) 0 0
\(441\) −14.5421 −0.692481
\(442\) −4.29692 2.51236i −0.204383 0.119501i
\(443\) −4.55949 −0.216628 −0.108314 0.994117i \(-0.534545\pi\)
−0.108314 + 0.994117i \(0.534545\pi\)
\(444\) 9.00753 5.20050i 0.427478 0.246805i
\(445\) 0 0
\(446\) −7.49910 + 12.9888i −0.355093 + 0.615038i
\(447\) 12.8689i 0.608676i
\(448\) 27.6395 + 15.9577i 1.30584 + 0.753929i
\(449\) 11.9963 + 6.92608i 0.566142 + 0.326862i 0.755607 0.655025i \(-0.227342\pi\)
−0.189465 + 0.981887i \(0.560675\pi\)
\(450\) 0 0
\(451\) −10.0239 + 17.3620i −0.472009 + 0.817544i
\(452\) 1.81271 + 3.13971i 0.0852628 + 0.147680i
\(453\) −9.87596 + 5.70189i −0.464013 + 0.267898i
\(454\) 9.30897 0.436892
\(455\) 0 0
\(456\) −16.2083 −0.759025
\(457\) −34.7402 + 20.0573i −1.62508 + 0.938240i −0.639548 + 0.768751i \(0.720878\pi\)
−0.985532 + 0.169489i \(0.945788\pi\)
\(458\) −8.78222 15.2113i −0.410366 0.710775i
\(459\) 0.739961 1.28165i 0.0345384 0.0598223i
\(460\) 0 0
\(461\) 6.52897 + 3.76950i 0.304084 + 0.175563i 0.644276 0.764793i \(-0.277159\pi\)
−0.340192 + 0.940356i \(0.610492\pi\)
\(462\) −47.6432 27.5068i −2.21656 1.27973i
\(463\) 23.3031i 1.08299i 0.840705 + 0.541494i \(0.182141\pi\)
−0.840705 + 0.541494i \(0.817859\pi\)
\(464\) −0.0335403 + 0.0580936i −0.00155707 + 0.00269693i
\(465\) 0 0
\(466\) −10.0306 + 5.79118i −0.464659 + 0.268271i
\(467\) −22.6297 −1.04718 −0.523589 0.851971i \(-0.675407\pi\)
−0.523589 + 0.851971i \(0.675407\pi\)
\(468\) 4.50632 + 0.0247279i 0.208305 + 0.00114305i
\(469\) 23.0405 1.06391
\(470\) 0 0
\(471\) −11.7085 20.2797i −0.539500 0.934441i
\(472\) −0.262648 + 0.454919i −0.0120893 + 0.0209394i
\(473\) 6.08012i 0.279564i
\(474\) 29.5192 + 17.0429i 1.35586 + 0.782808i
\(475\) 0 0
\(476\) 2.08783i 0.0956956i
\(477\) −5.41465 + 9.37844i −0.247920 + 0.429409i
\(478\) 12.1446 + 21.0351i 0.555482 + 0.962124i
\(479\) −17.8789 + 10.3224i −0.816910 + 0.471643i −0.849350 0.527831i \(-0.823006\pi\)
0.0324399 + 0.999474i \(0.489672\pi\)
\(480\) 0 0
\(481\) 0.172207 31.3825i 0.00785198 1.43092i
\(482\) −28.3777 −1.29257
\(483\) 28.3075 16.3433i 1.28804 0.743648i
\(484\) 4.57449 + 7.92325i 0.207931 + 0.360148i
\(485\) 0 0
\(486\) 24.7074i 1.12075i
\(487\) 2.62929 + 1.51802i 0.119145 + 0.0687882i 0.558388 0.829580i \(-0.311420\pi\)
−0.439243 + 0.898368i \(0.644753\pi\)
\(488\) 8.91725 + 5.14838i 0.403665 + 0.233056i
\(489\) 15.8155i 0.715203i
\(490\) 0 0
\(491\) 5.33401 + 9.23877i 0.240720 + 0.416940i 0.960920 0.276827i \(-0.0892830\pi\)
−0.720199 + 0.693767i \(0.755950\pi\)
\(492\) −3.86217 + 2.22982i −0.174120 + 0.100528i
\(493\) 0.0279884 0.00126053
\(494\) −5.03414 + 8.60992i −0.226497 + 0.387379i
\(495\) 0 0
\(496\) −12.8369 + 7.41139i −0.576394 + 0.332781i
\(497\) −19.4362 33.6646i −0.871835 1.51006i
\(498\) 17.2506 29.8789i 0.773016 1.33890i
\(499\) 33.9143i 1.51821i 0.650966 + 0.759107i \(0.274364\pi\)
−0.650966 + 0.759107i \(0.725636\pi\)
\(500\) 0 0
\(501\) 21.1872 + 12.2324i 0.946572 + 0.546504i
\(502\) 14.4413i 0.644546i
\(503\) −6.31380 + 10.9358i −0.281518 + 0.487604i −0.971759 0.235976i \(-0.924171\pi\)
0.690241 + 0.723580i \(0.257505\pi\)
\(504\) −13.4557 23.3059i −0.599363 1.03813i
\(505\) 0 0
\(506\) 25.5058 1.13387
\(507\) 15.4468 26.0893i 0.686019 1.15866i
\(508\) −5.85945 −0.259971
\(509\) −20.9168 + 12.0763i −0.927120 + 0.535273i −0.885899 0.463877i \(-0.846458\pi\)
−0.0412201 + 0.999150i \(0.513124\pi\)
\(510\) 0 0
\(511\) −8.46601 + 14.6636i −0.374514 + 0.648678i
\(512\) 24.2750i 1.07281i
\(513\) −2.56810 1.48269i −0.113384 0.0654625i
\(514\) −5.86238 3.38465i −0.258578 0.149290i
\(515\) 0 0
\(516\) −0.676260 + 1.17132i −0.0297707 + 0.0515644i
\(517\) −6.94402 12.0274i −0.305398 0.528964i
\(518\) −33.0999 + 19.1103i −1.45433 + 0.839656i
\(519\) 10.3982 0.456431
\(520\) 0 0
\(521\) −24.7521 −1.08441 −0.542205 0.840246i \(-0.682410\pi\)
−0.542205 + 0.840246i \(0.682410\pi\)
\(522\) 0.0637154 0.0367861i 0.00278875 0.00161008i
\(523\) 18.5163 + 32.0712i 0.809662 + 1.40238i 0.913098 + 0.407739i \(0.133683\pi\)
−0.103436 + 0.994636i \(0.532984\pi\)
\(524\) 2.70732 4.68922i 0.118270 0.204850i
\(525\) 0 0
\(526\) −7.24573 4.18332i −0.315929 0.182402i
\(527\) 5.35600 + 3.09229i 0.233311 + 0.134702i
\(528\) 33.9865i 1.47907i
\(529\) 3.92277 6.79444i 0.170555 0.295410i
\(530\) 0 0
\(531\) 0.362145 0.209084i 0.0157157 0.00907348i
\(532\) −4.18348 −0.181377
\(533\) −0.0738376 + 13.4559i −0.00319826 + 0.582840i
\(534\) −45.9519 −1.98854
\(535\) 0 0
\(536\) 9.80545 + 16.9835i 0.423531 + 0.733577i
\(537\) −21.7264 + 37.6312i −0.937562 + 1.62391i
\(538\) 1.73438i 0.0747744i
\(539\) −27.7332 16.0118i −1.19456 0.689677i
\(540\) 0 0
\(541\) 8.38144i 0.360346i 0.983635 + 0.180173i \(0.0576658\pi\)
−0.983635 + 0.180173i \(0.942334\pi\)
\(542\) −6.07981 + 10.5305i −0.261150 + 0.452326i
\(543\) −21.0952 36.5379i −0.905281 1.56799i
\(544\) 2.76409 1.59585i 0.118509 0.0684215i
\(545\) 0 0
\(546\) −36.9245 0.202618i −1.58022 0.00867126i
\(547\) 22.7842 0.974181 0.487091 0.873351i \(-0.338058\pi\)
0.487091 + 0.873351i \(0.338058\pi\)
\(548\) 1.68025 0.970090i 0.0717765 0.0414402i
\(549\) −4.09843 7.09870i −0.174917 0.302965i
\(550\) 0 0
\(551\) 0.0560816i 0.00238915i
\(552\) 24.0938 + 13.9106i 1.02550 + 0.592074i
\(553\) 37.3601 + 21.5699i 1.58871 + 0.917245i
\(554\) 21.3735i 0.908071i
\(555\) 0 0
\(556\) −0.515915 0.893592i −0.0218797 0.0378967i
\(557\) −24.3810 + 14.0764i −1.03306 + 0.596435i −0.917858 0.396908i \(-0.870083\pi\)
−0.115197 + 0.993343i \(0.536750\pi\)
\(558\) 16.2572 0.688222
\(559\) 2.02106 + 3.54536i 0.0854816 + 0.149953i
\(560\) 0 0
\(561\) −12.2805 + 7.09017i −0.518484 + 0.299347i
\(562\) 6.54676 + 11.3393i 0.276159 + 0.478321i
\(563\) 9.06514 15.7013i 0.382050 0.661731i −0.609305 0.792936i \(-0.708551\pi\)
0.991355 + 0.131206i \(0.0418848\pi\)
\(564\) 3.08939i 0.130087i
\(565\) 0 0
\(566\) 1.39258 + 0.804007i 0.0585346 + 0.0337950i
\(567\) 37.3253i 1.56752i
\(568\) 16.5431 28.6535i 0.694133 1.20227i
\(569\) 20.2992 + 35.1593i 0.850988 + 1.47395i 0.880317 + 0.474385i \(0.157330\pi\)
−0.0293292 + 0.999570i \(0.509337\pi\)
\(570\) 0 0
\(571\) −24.7159 −1.03433 −0.517164 0.855886i \(-0.673012\pi\)
−0.517164 + 0.855886i \(0.673012\pi\)
\(572\) 8.56677 + 5.00891i 0.358195 + 0.209433i
\(573\) −63.7551 −2.66341
\(574\) 14.1923 8.19393i 0.592375 0.342008i
\(575\) 0 0
\(576\) 10.8124 18.7276i 0.450516 0.780317i
\(577\) 23.0691i 0.960379i −0.877165 0.480189i \(-0.840568\pi\)
0.877165 0.480189i \(-0.159432\pi\)
\(578\) −16.6036 9.58607i −0.690617 0.398728i
\(579\) 43.9654 + 25.3834i 1.82714 + 1.05490i
\(580\) 0 0
\(581\) 21.8327 37.8153i 0.905771 1.56884i
\(582\) −17.3068 29.9763i −0.717392 1.24256i
\(583\) −20.6525 + 11.9237i −0.855341 + 0.493831i
\(584\) −14.4116 −0.596358
\(585\) 0 0
\(586\) 22.8602 0.944345
\(587\) 17.6256 10.1762i 0.727487 0.420015i −0.0900152 0.995940i \(-0.528692\pi\)
0.817502 + 0.575926i \(0.195358\pi\)
\(588\) −3.56182 6.16925i −0.146887 0.254416i
\(589\) 6.19615 10.7321i 0.255308 0.442206i
\(590\) 0 0
\(591\) 3.42701 + 1.97859i 0.140968 + 0.0813881i
\(592\) −20.4486 11.8060i −0.840432 0.485223i
\(593\) 10.3834i 0.426395i 0.977009 + 0.213198i \(0.0683878\pi\)
−0.977009 + 0.213198i \(0.931612\pi\)
\(594\) 4.28339 7.41904i 0.175750 0.304407i
\(595\) 0 0
\(596\) −2.44836 + 1.41356i −0.100289 + 0.0579017i
\(597\) 59.0652 2.41738
\(598\) 14.8726 8.47825i 0.608187 0.346701i
\(599\) −31.5965 −1.29100 −0.645499 0.763761i \(-0.723351\pi\)
−0.645499 + 0.763761i \(0.723351\pi\)
\(600\) 0 0
\(601\) 21.9423 + 38.0051i 0.895044 + 1.55026i 0.833751 + 0.552141i \(0.186189\pi\)
0.0612928 + 0.998120i \(0.480478\pi\)
\(602\) 2.48505 4.30423i 0.101283 0.175428i
\(603\) 15.6115i 0.635750i
\(604\) −2.16962 1.25263i −0.0882806 0.0509688i
\(605\) 0 0
\(606\) 11.5332i 0.468505i
\(607\) 1.08770 1.88395i 0.0441484 0.0764673i −0.843107 0.537746i \(-0.819276\pi\)
0.887255 + 0.461279i \(0.152609\pi\)
\(608\) −3.19768 5.53854i −0.129683 0.224617i
\(609\) 0.179812 0.103814i 0.00728634 0.00420677i
\(610\) 0 0
\(611\) −8.04707 4.70504i −0.325550 0.190346i
\(612\) −1.41465 −0.0571837
\(613\) 12.7843 7.38100i 0.516352 0.298116i −0.219089 0.975705i \(-0.570309\pi\)
0.735441 + 0.677589i \(0.236975\pi\)
\(614\) −8.72336 15.1093i −0.352046 0.609762i
\(615\) 0 0
\(616\) 59.2622i 2.38774i
\(617\) −17.5779 10.1486i −0.707659 0.408567i 0.102535 0.994729i \(-0.467305\pi\)
−0.810194 + 0.586162i \(0.800638\pi\)
\(618\) 44.1053 + 25.4642i 1.77418 + 1.02432i
\(619\) 9.94207i 0.399605i −0.979836 0.199803i \(-0.935970\pi\)
0.979836 0.199803i \(-0.0640301\pi\)
\(620\) 0 0
\(621\) 2.54500 + 4.40807i 0.102127 + 0.176890i
\(622\) 2.91641 1.68379i 0.116937 0.0675138i
\(623\) −58.1577 −2.33004
\(624\) −11.2973 19.8178i −0.452252 0.793345i
\(625\) 0 0
\(626\) −17.3080 + 9.99276i −0.691766 + 0.399391i
\(627\) 14.2069 + 24.6070i 0.567368 + 0.982711i
\(628\) 2.57221 4.45519i 0.102642 0.177782i
\(629\) 9.85174i 0.392815i
\(630\) 0 0
\(631\) 0.843006 + 0.486710i 0.0335596 + 0.0193756i 0.516686 0.856175i \(-0.327165\pi\)
−0.483126 + 0.875551i \(0.660499\pi\)
\(632\) 36.7183i 1.46058i
\(633\) −0.391243 + 0.677652i −0.0155505 + 0.0269342i
\(634\) 1.08903 + 1.88625i 0.0432507 + 0.0749124i
\(635\) 0 0
\(636\) −5.30487 −0.210352
\(637\) −21.4938 0.117945i −0.851617 0.00467314i
\(638\) 0.162015 0.00641425
\(639\) −22.8100 + 13.1694i −0.902350 + 0.520972i
\(640\) 0 0
\(641\) −6.31047 + 10.9301i −0.249249 + 0.431711i −0.963318 0.268364i \(-0.913517\pi\)
0.714069 + 0.700075i \(0.246850\pi\)
\(642\) 25.9766i 1.02521i
\(643\) 8.62599 + 4.98022i 0.340176 + 0.196401i 0.660350 0.750958i \(-0.270408\pi\)
−0.320174 + 0.947359i \(0.603741\pi\)
\(644\) 6.21878 + 3.59042i 0.245054 + 0.141482i
\(645\) 0 0
\(646\) 1.56546 2.71146i 0.0615923 0.106681i
\(647\) 18.1381 + 31.4162i 0.713084 + 1.23510i 0.963694 + 0.267009i \(0.0860354\pi\)
−0.250610 + 0.968088i \(0.580631\pi\)
\(648\) 27.5131 15.8847i 1.08081 0.624009i
\(649\) 0.920861 0.0361470
\(650\) 0 0
\(651\) 45.8796 1.79816
\(652\) 3.00898 1.73723i 0.117841 0.0680353i
\(653\) 6.87769 + 11.9125i 0.269145 + 0.466172i 0.968641 0.248464i \(-0.0799257\pi\)
−0.699497 + 0.714636i \(0.746592\pi\)
\(654\) 10.4910 18.1709i 0.410231 0.710540i
\(655\) 0 0
\(656\) 8.76776 + 5.06207i 0.342324 + 0.197641i
\(657\) 9.93555 + 5.73629i 0.387623 + 0.223794i
\(658\) 11.3526i 0.442570i
\(659\) 1.29092 2.23593i 0.0502869 0.0870995i −0.839786 0.542917i \(-0.817320\pi\)
0.890073 + 0.455818i \(0.150653\pi\)
\(660\) 0 0
\(661\) −21.5437 + 12.4382i −0.837951 + 0.483791i −0.856567 0.516036i \(-0.827407\pi\)
0.0186163 + 0.999827i \(0.494074\pi\)
\(662\) 8.81151 0.342469
\(663\) −4.80406 + 8.21643i −0.186574 + 0.319100i
\(664\) 37.1656 1.44231
\(665\) 0 0
\(666\) 12.9485 + 22.4274i 0.501743 + 0.869045i
\(667\) −0.0481312 + 0.0833657i −0.00186365 + 0.00322793i
\(668\) 5.37460i 0.207949i
\(669\) 24.8368 + 14.3395i 0.960246 + 0.554398i
\(670\) 0 0
\(671\) 18.0506i 0.696834i
\(672\) 11.8386 20.5051i 0.456685 0.791002i
\(673\) −21.6611 37.5181i −0.834974 1.44622i −0.894052 0.447964i \(-0.852149\pi\)
0.0590774 0.998253i \(-0.481184\pi\)
\(674\) 4.60770 2.66025i 0.177482 0.102469i
\(675\) 0 0
\(676\) 6.66033 + 0.0730977i 0.256167 + 0.00281145i
\(677\) 41.3625 1.58969 0.794845 0.606813i \(-0.207552\pi\)
0.794845 + 0.606813i \(0.207552\pi\)
\(678\) −17.4315 + 10.0641i −0.669451 + 0.386508i
\(679\) −21.9039 37.9386i −0.840594 1.45595i
\(680\) 0 0
\(681\) 17.8003i 0.682110i
\(682\) 31.0041 + 17.9002i 1.18721 + 0.685435i
\(683\) −2.27495 1.31344i −0.0870484 0.0502574i 0.455844 0.890060i \(-0.349338\pi\)
−0.542892 + 0.839802i \(0.682671\pi\)
\(684\) 2.83459i 0.108383i
\(685\) 0 0
\(686\) −2.28028 3.94957i −0.0870617 0.150795i
\(687\) −29.0865 + 16.7931i −1.10972 + 0.640696i
\(688\) 3.07045 0.117060
\(689\) −8.07914 + 13.8178i −0.307791 + 0.526417i
\(690\) 0 0
\(691\) −13.2288 + 7.63765i −0.503247 + 0.290550i −0.730053 0.683390i \(-0.760505\pi\)
0.226806 + 0.973940i \(0.427172\pi\)
\(692\) 1.14218 + 1.97831i 0.0434190 + 0.0752039i
\(693\) −23.5882 + 40.8560i −0.896043 + 1.55199i
\(694\) 32.5744i 1.23651i
\(695\) 0 0
\(696\) 0.153046 + 0.0883613i 0.00580120 + 0.00334933i
\(697\) 4.22414i 0.160001i
\(698\) 14.3747 24.8976i 0.544089 0.942390i
\(699\) 11.0737 + 19.1802i 0.418846 + 0.725463i
\(700\) 0 0
\(701\) 48.1947 1.82029 0.910144 0.414292i \(-0.135971\pi\)
0.910144 + 0.414292i \(0.135971\pi\)
\(702\) 0.0315519 5.74991i 0.00119085 0.217017i
\(703\) 19.7404 0.744522
\(704\) 41.2406 23.8103i 1.55431 0.897383i
\(705\) 0 0
\(706\) 3.49884 6.06016i 0.131680 0.228077i
\(707\) 14.5967i 0.548964i
\(708\) 0.177401 + 0.102423i 0.00666715 + 0.00384928i
\(709\) −33.6624 19.4350i −1.26422 0.729896i −0.290329 0.956927i \(-0.593765\pi\)
−0.973887 + 0.227031i \(0.927098\pi\)
\(710\) 0 0
\(711\) 14.6150 25.3140i 0.548107 0.949349i
\(712\) −24.7504 42.8689i −0.927560 1.60658i
\(713\) −18.4213 + 10.6355i −0.689882 + 0.398304i
\(714\) 11.5915 0.433801
\(715\) 0 0
\(716\) −9.54600 −0.356751
\(717\) 40.2227 23.2226i 1.50214 0.867263i
\(718\) −15.0987 26.1517i −0.563478 0.975973i
\(719\) 3.30830 5.73015i 0.123379 0.213698i −0.797719 0.603029i \(-0.793960\pi\)
0.921098 + 0.389331i \(0.127294\pi\)
\(720\) 0 0
\(721\) 55.8205 + 32.2280i 2.07887 + 1.20023i
\(722\) 14.6362 + 8.45024i 0.544705 + 0.314485i
\(723\) 54.2629i 2.01806i
\(724\) 4.63433 8.02690i 0.172234 0.298317i
\(725\) 0 0
\(726\) −43.9893 + 25.3973i −1.63260 + 0.942581i
\(727\) −18.3735 −0.681435 −0.340717 0.940166i \(-0.610670\pi\)
−0.340717 + 0.940166i \(0.610670\pi\)
\(728\) −19.6990 34.5562i −0.730094 1.28074i
\(729\) −16.1420 −0.597853
\(730\) 0 0
\(731\) −0.640548 1.10946i −0.0236915 0.0410349i
\(732\) 2.00767 3.47739i 0.0742057 0.128528i
\(733\) 0.791131i 0.0292211i −0.999893 0.0146105i \(-0.995349\pi\)
0.999893 0.0146105i \(-0.00465084\pi\)
\(734\) −27.5198 15.8886i −1.01578 0.586458i
\(735\) 0 0
\(736\) 10.9774i 0.404634i
\(737\) 17.1893 29.7727i 0.633175 1.09669i
\(738\) −5.55193 9.61623i −0.204369 0.353978i
\(739\) −27.0073 + 15.5926i −0.993478 + 0.573585i −0.906312 0.422609i \(-0.861114\pi\)
−0.0871658 + 0.996194i \(0.527781\pi\)
\(740\) 0 0
\(741\) 16.4636 + 9.62612i 0.604806 + 0.353624i
\(742\) 19.4938 0.715639
\(743\) −4.81773 + 2.78152i −0.176745 + 0.102044i −0.585763 0.810483i \(-0.699205\pi\)
0.409017 + 0.912527i \(0.365872\pi\)
\(744\) 19.5251 + 33.8185i 0.715826 + 1.23985i
\(745\) 0 0
\(746\) 16.1053i 0.589658i
\(747\) −25.6224 14.7931i −0.937474 0.541251i
\(748\) −2.69787 1.55762i −0.0986439 0.0569521i
\(749\) 32.8765i 1.20128i
\(750\) 0 0
\(751\) −17.6048 30.4925i −0.642410 1.11269i −0.984893 0.173163i \(-0.944601\pi\)
0.342483 0.939524i \(-0.388732\pi\)
\(752\) −6.07381 + 3.50672i −0.221489 + 0.127877i
\(753\) 27.6142 1.00632
\(754\) 0.0944723 0.0538546i 0.00344048 0.00196127i
\(755\) 0 0
\(756\) 2.08873 1.20593i 0.0759665 0.0438593i
\(757\) 25.0223 + 43.3399i 0.909451 + 1.57522i 0.814828 + 0.579703i \(0.196831\pi\)
0.0946237 + 0.995513i \(0.469835\pi\)
\(758\) −15.8545 + 27.4609i −0.575863 + 0.997424i
\(759\) 48.7715i 1.77029i
\(760\) 0 0
\(761\) 38.8161 + 22.4105i 1.40708 + 0.812379i 0.995106 0.0988165i \(-0.0315057\pi\)
0.411975 + 0.911195i \(0.364839\pi\)
\(762\) 32.5313i 1.17848i
\(763\) 13.2776 22.9975i 0.480682 0.832566i
\(764\) −7.00307 12.1297i −0.253362 0.438836i
\(765\) 0 0
\(766\) 11.7092 0.423072
\(767\) 0.536961 0.306098i 0.0193885 0.0110526i
\(768\) 26.6361 0.961148
\(769\) −34.0897 + 19.6817i −1.22930 + 0.709739i −0.966884 0.255215i \(-0.917854\pi\)
−0.262420 + 0.964954i \(0.584521\pi\)
\(770\) 0 0
\(771\) −6.47201 + 11.2099i −0.233084 + 0.403713i
\(772\) 11.1528i 0.401399i
\(773\) 42.2452 + 24.3902i 1.51945 + 0.877256i 0.999737 + 0.0229167i \(0.00729525\pi\)
0.519715 + 0.854340i \(0.326038\pi\)
\(774\) −2.91641 1.68379i −0.104828 0.0605225i
\(775\) 0 0
\(776\) 18.6434 32.2914i 0.669260 1.15919i
\(777\) 36.5420 + 63.2926i 1.31094 + 2.27061i
\(778\) 5.94822 3.43420i 0.213254 0.123122i
\(779\) −8.46410 −0.303258
\(780\) 0 0
\(781\) −58.0013 −2.07545
\(782\) −4.65415 + 2.68707i −0.166432 + 0.0960895i
\(783\) 0.0161661 + 0.0280005i