Properties

Label 325.2.m.a.49.1
Level $325$
Weight $2$
Character 325.49
Analytic conductor $2.595$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(49,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 325.49
Dual form 325.2.m.a.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 1.50000i) q^{2} +(-1.73205 + 1.00000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(3.00000 + 1.73205i) q^{6} -1.73205 q^{8} +(0.500000 - 0.866025i) q^{9} -2.00000i q^{12} +(2.59808 + 2.50000i) q^{13} +(2.50000 + 4.33013i) q^{16} +(2.59808 + 1.50000i) q^{17} -1.73205 q^{18} +(3.00000 + 1.73205i) q^{19} +(5.19615 - 3.00000i) q^{23} +(3.00000 - 1.73205i) q^{24} +(1.50000 - 6.06218i) q^{26} -4.00000i q^{27} +(1.50000 + 2.59808i) q^{29} -3.46410i q^{31} +(2.59808 - 4.50000i) q^{32} -5.19615i q^{34} +(0.500000 + 0.866025i) q^{36} +(4.33013 + 7.50000i) q^{37} -6.00000i q^{38} +(-7.00000 - 1.73205i) q^{39} +(-4.50000 + 2.59808i) q^{41} +(6.92820 + 4.00000i) q^{43} +(-9.00000 - 5.19615i) q^{46} -3.46410 q^{47} +(-8.66025 - 5.00000i) q^{48} +(3.50000 + 6.06218i) q^{49} -6.00000 q^{51} +(-3.46410 + 1.00000i) q^{52} +3.00000i q^{53} +(-6.00000 + 3.46410i) q^{54} -6.92820 q^{57} +(2.59808 - 4.50000i) q^{58} +(-6.00000 - 3.46410i) q^{59} +(-0.500000 + 0.866025i) q^{61} +(-5.19615 + 3.00000i) q^{62} +1.00000 q^{64} +(1.73205 + 3.00000i) q^{67} +(-2.59808 + 1.50000i) q^{68} +(-6.00000 + 10.3923i) q^{69} +(3.00000 + 1.73205i) q^{71} +(-0.866025 + 1.50000i) q^{72} -1.73205 q^{73} +(7.50000 - 12.9904i) q^{74} +(-3.00000 + 1.73205i) q^{76} +(3.46410 + 12.0000i) q^{78} -4.00000 q^{79} +(5.50000 + 9.52628i) q^{81} +(7.79423 + 4.50000i) q^{82} -13.8564 q^{83} -13.8564i q^{86} +(-5.19615 - 3.00000i) q^{87} +(6.00000 - 3.46410i) q^{89} +6.00000i q^{92} +(3.46410 + 6.00000i) q^{93} +(3.00000 + 5.19615i) q^{94} +10.3923i q^{96} +(-3.46410 + 6.00000i) q^{97} +(6.06218 - 10.5000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 12 q^{6} + 2 q^{9} + 10 q^{16} + 12 q^{19} + 12 q^{24} + 6 q^{26} + 6 q^{29} + 2 q^{36} - 28 q^{39} - 18 q^{41} - 36 q^{46} + 14 q^{49} - 24 q^{51} - 24 q^{54} - 24 q^{59} - 2 q^{61} + 4 q^{64}+ \cdots + 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 1.50000i −0.612372 1.06066i −0.990839 0.135045i \(-0.956882\pi\)
0.378467 0.925615i \(-0.376451\pi\)
\(3\) −1.73205 + 1.00000i −1.00000 + 0.577350i −0.908248 0.418432i \(-0.862580\pi\)
−0.0917517 + 0.995782i \(0.529247\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 3.00000 + 1.73205i 1.22474 + 0.707107i
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) −1.73205 −0.612372
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 2.00000i 0.577350i
\(13\) 2.59808 + 2.50000i 0.720577 + 0.693375i
\(14\) 0 0
\(15\) 0 0
\(16\) 2.50000 + 4.33013i 0.625000 + 1.08253i
\(17\) 2.59808 + 1.50000i 0.630126 + 0.363803i 0.780801 0.624780i \(-0.214811\pi\)
−0.150675 + 0.988583i \(0.548145\pi\)
\(18\) −1.73205 −0.408248
\(19\) 3.00000 + 1.73205i 0.688247 + 0.397360i 0.802955 0.596040i \(-0.203260\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.19615 3.00000i 1.08347 0.625543i 0.151642 0.988436i \(-0.451544\pi\)
0.931831 + 0.362892i \(0.118211\pi\)
\(24\) 3.00000 1.73205i 0.612372 0.353553i
\(25\) 0 0
\(26\) 1.50000 6.06218i 0.294174 1.18889i
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) 2.59808 4.50000i 0.459279 0.795495i
\(33\) 0 0
\(34\) 5.19615i 0.891133i
\(35\) 0 0
\(36\) 0.500000 + 0.866025i 0.0833333 + 0.144338i
\(37\) 4.33013 + 7.50000i 0.711868 + 1.23299i 0.964155 + 0.265340i \(0.0854841\pi\)
−0.252286 + 0.967653i \(0.581183\pi\)
\(38\) 6.00000i 0.973329i
\(39\) −7.00000 1.73205i −1.12090 0.277350i
\(40\) 0 0
\(41\) −4.50000 + 2.59808i −0.702782 + 0.405751i −0.808383 0.588657i \(-0.799657\pi\)
0.105601 + 0.994409i \(0.466323\pi\)
\(42\) 0 0
\(43\) 6.92820 + 4.00000i 1.05654 + 0.609994i 0.924473 0.381246i \(-0.124505\pi\)
0.132068 + 0.991241i \(0.457838\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −9.00000 5.19615i −1.32698 0.766131i
\(47\) −3.46410 −0.505291 −0.252646 0.967559i \(-0.581301\pi\)
−0.252646 + 0.967559i \(0.581301\pi\)
\(48\) −8.66025 5.00000i −1.25000 0.721688i
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) −3.46410 + 1.00000i −0.480384 + 0.138675i
\(53\) 3.00000i 0.412082i 0.978543 + 0.206041i \(0.0660580\pi\)
−0.978543 + 0.206041i \(0.933942\pi\)
\(54\) −6.00000 + 3.46410i −0.816497 + 0.471405i
\(55\) 0 0
\(56\) 0 0
\(57\) −6.92820 −0.917663
\(58\) 2.59808 4.50000i 0.341144 0.590879i
\(59\) −6.00000 3.46410i −0.781133 0.450988i 0.0556984 0.998448i \(-0.482261\pi\)
−0.836832 + 0.547460i \(0.815595\pi\)
\(60\) 0 0
\(61\) −0.500000 + 0.866025i −0.0640184 + 0.110883i −0.896258 0.443533i \(-0.853725\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) −5.19615 + 3.00000i −0.659912 + 0.381000i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 1.73205 + 3.00000i 0.211604 + 0.366508i 0.952217 0.305424i \(-0.0987981\pi\)
−0.740613 + 0.671932i \(0.765465\pi\)
\(68\) −2.59808 + 1.50000i −0.315063 + 0.181902i
\(69\) −6.00000 + 10.3923i −0.722315 + 1.25109i
\(70\) 0 0
\(71\) 3.00000 + 1.73205i 0.356034 + 0.205557i 0.667340 0.744753i \(-0.267433\pi\)
−0.311305 + 0.950310i \(0.600766\pi\)
\(72\) −0.866025 + 1.50000i −0.102062 + 0.176777i
\(73\) −1.73205 −0.202721 −0.101361 0.994850i \(-0.532320\pi\)
−0.101361 + 0.994850i \(0.532320\pi\)
\(74\) 7.50000 12.9904i 0.871857 1.51010i
\(75\) 0 0
\(76\) −3.00000 + 1.73205i −0.344124 + 0.198680i
\(77\) 0 0
\(78\) 3.46410 + 12.0000i 0.392232 + 1.35873i
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 7.79423 + 4.50000i 0.860729 + 0.496942i
\(83\) −13.8564 −1.52094 −0.760469 0.649374i \(-0.775031\pi\)
−0.760469 + 0.649374i \(0.775031\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 13.8564i 1.49417i
\(87\) −5.19615 3.00000i −0.557086 0.321634i
\(88\) 0 0
\(89\) 6.00000 3.46410i 0.635999 0.367194i −0.147073 0.989126i \(-0.546985\pi\)
0.783072 + 0.621932i \(0.213652\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.00000i 0.625543i
\(93\) 3.46410 + 6.00000i 0.359211 + 0.622171i
\(94\) 3.00000 + 5.19615i 0.309426 + 0.535942i
\(95\) 0 0
\(96\) 10.3923i 1.06066i
\(97\) −3.46410 + 6.00000i −0.351726 + 0.609208i −0.986552 0.163448i \(-0.947739\pi\)
0.634826 + 0.772655i \(0.281072\pi\)
\(98\) 6.06218 10.5000i 0.612372 1.06066i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.50000 + 2.59808i 0.149256 + 0.258518i 0.930953 0.365140i \(-0.118979\pi\)
−0.781697 + 0.623658i \(0.785646\pi\)
\(102\) 5.19615 + 9.00000i 0.514496 + 0.891133i
\(103\) 10.0000i 0.985329i 0.870219 + 0.492665i \(0.163977\pi\)
−0.870219 + 0.492665i \(0.836023\pi\)
\(104\) −4.50000 4.33013i −0.441261 0.424604i
\(105\) 0 0
\(106\) 4.50000 2.59808i 0.437079 0.252347i
\(107\) 5.19615 3.00000i 0.502331 0.290021i −0.227345 0.973814i \(-0.573004\pi\)
0.729676 + 0.683793i \(0.239671\pi\)
\(108\) 3.46410 + 2.00000i 0.333333 + 0.192450i
\(109\) 13.8564i 1.32720i −0.748086 0.663602i \(-0.769027\pi\)
0.748086 0.663602i \(-0.230973\pi\)
\(110\) 0 0
\(111\) −15.0000 8.66025i −1.42374 0.821995i
\(112\) 0 0
\(113\) −12.9904 7.50000i −1.22203 0.705541i −0.256681 0.966496i \(-0.582629\pi\)
−0.965351 + 0.260955i \(0.915962\pi\)
\(114\) 6.00000 + 10.3923i 0.561951 + 0.973329i
\(115\) 0 0
\(116\) −3.00000 −0.278543
\(117\) 3.46410 1.00000i 0.320256 0.0924500i
\(118\) 12.0000i 1.10469i
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) 1.73205 0.156813
\(123\) 5.19615 9.00000i 0.468521 0.811503i
\(124\) 3.00000 + 1.73205i 0.269408 + 0.155543i
\(125\) 0 0
\(126\) 0 0
\(127\) −1.73205 + 1.00000i −0.153695 + 0.0887357i −0.574875 0.818241i \(-0.694949\pi\)
0.421180 + 0.906977i \(0.361616\pi\)
\(128\) −6.06218 10.5000i −0.535826 0.928078i
\(129\) −16.0000 −1.40872
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.00000 5.19615i 0.259161 0.448879i
\(135\) 0 0
\(136\) −4.50000 2.59808i −0.385872 0.222783i
\(137\) 7.79423 13.5000i 0.665906 1.15338i −0.313133 0.949709i \(-0.601379\pi\)
0.979039 0.203674i \(-0.0652881\pi\)
\(138\) 20.7846 1.76930
\(139\) −2.00000 + 3.46410i −0.169638 + 0.293821i −0.938293 0.345843i \(-0.887593\pi\)
0.768655 + 0.639664i \(0.220926\pi\)
\(140\) 0 0
\(141\) 6.00000 3.46410i 0.505291 0.291730i
\(142\) 6.00000i 0.503509i
\(143\) 0 0
\(144\) 5.00000 0.416667
\(145\) 0 0
\(146\) 1.50000 + 2.59808i 0.124141 + 0.215018i
\(147\) −12.1244 7.00000i −1.00000 0.577350i
\(148\) −8.66025 −0.711868
\(149\) 16.5000 + 9.52628i 1.35173 + 0.780423i 0.988492 0.151272i \(-0.0483370\pi\)
0.363241 + 0.931695i \(0.381670\pi\)
\(150\) 0 0
\(151\) 17.3205i 1.40952i −0.709444 0.704761i \(-0.751054\pi\)
0.709444 0.704761i \(-0.248946\pi\)
\(152\) −5.19615 3.00000i −0.421464 0.243332i
\(153\) 2.59808 1.50000i 0.210042 0.121268i
\(154\) 0 0
\(155\) 0 0
\(156\) 5.00000 5.19615i 0.400320 0.416025i
\(157\) 13.0000i 1.03751i −0.854922 0.518756i \(-0.826395\pi\)
0.854922 0.518756i \(-0.173605\pi\)
\(158\) 3.46410 + 6.00000i 0.275589 + 0.477334i
\(159\) −3.00000 5.19615i −0.237915 0.412082i
\(160\) 0 0
\(161\) 0 0
\(162\) 9.52628 16.5000i 0.748455 1.29636i
\(163\) 10.3923 18.0000i 0.813988 1.40987i −0.0960641 0.995375i \(-0.530625\pi\)
0.910052 0.414494i \(-0.136041\pi\)
\(164\) 5.19615i 0.405751i
\(165\) 0 0
\(166\) 12.0000 + 20.7846i 0.931381 + 1.61320i
\(167\) −6.92820 12.0000i −0.536120 0.928588i −0.999108 0.0422232i \(-0.986556\pi\)
0.462988 0.886365i \(-0.346777\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) 0 0
\(171\) 3.00000 1.73205i 0.229416 0.132453i
\(172\) −6.92820 + 4.00000i −0.528271 + 0.304997i
\(173\) 5.19615 + 3.00000i 0.395056 + 0.228086i 0.684349 0.729155i \(-0.260087\pi\)
−0.289292 + 0.957241i \(0.593420\pi\)
\(174\) 10.3923i 0.787839i
\(175\) 0 0
\(176\) 0 0
\(177\) 13.8564 1.04151
\(178\) −10.3923 6.00000i −0.778936 0.449719i
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) −9.00000 + 5.19615i −0.663489 + 0.383065i
\(185\) 0 0
\(186\) 6.00000 10.3923i 0.439941 0.762001i
\(187\) 0 0
\(188\) 1.73205 3.00000i 0.126323 0.218797i
\(189\) 0 0
\(190\) 0 0
\(191\) −9.00000 + 15.5885i −0.651217 + 1.12794i 0.331611 + 0.943416i \(0.392408\pi\)
−0.982828 + 0.184525i \(0.940925\pi\)
\(192\) −1.73205 + 1.00000i −0.125000 + 0.0721688i
\(193\) 2.59808 + 4.50000i 0.187014 + 0.323917i 0.944253 0.329220i \(-0.106786\pi\)
−0.757240 + 0.653137i \(0.773452\pi\)
\(194\) 12.0000 0.861550
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 6.92820 + 12.0000i 0.493614 + 0.854965i 0.999973 0.00735824i \(-0.00234222\pi\)
−0.506359 + 0.862323i \(0.669009\pi\)
\(198\) 0 0
\(199\) −1.00000 + 1.73205i −0.0708881 + 0.122782i −0.899291 0.437351i \(-0.855917\pi\)
0.828403 + 0.560133i \(0.189250\pi\)
\(200\) 0 0
\(201\) −6.00000 3.46410i −0.423207 0.244339i
\(202\) 2.59808 4.50000i 0.182800 0.316619i
\(203\) 0 0
\(204\) 3.00000 5.19615i 0.210042 0.363803i
\(205\) 0 0
\(206\) 15.0000 8.66025i 1.04510 0.603388i
\(207\) 6.00000i 0.417029i
\(208\) −4.33013 + 17.5000i −0.300240 + 1.21341i
\(209\) 0 0
\(210\) 0 0
\(211\) −5.00000 8.66025i −0.344214 0.596196i 0.640996 0.767544i \(-0.278521\pi\)
−0.985211 + 0.171347i \(0.945188\pi\)
\(212\) −2.59808 1.50000i −0.178437 0.103020i
\(213\) −6.92820 −0.474713
\(214\) −9.00000 5.19615i −0.615227 0.355202i
\(215\) 0 0
\(216\) 6.92820i 0.471405i
\(217\) 0 0
\(218\) −20.7846 + 12.0000i −1.40771 + 0.812743i
\(219\) 3.00000 1.73205i 0.202721 0.117041i
\(220\) 0 0
\(221\) 3.00000 + 10.3923i 0.201802 + 0.699062i
\(222\) 30.0000i 2.01347i
\(223\) 5.19615 + 9.00000i 0.347960 + 0.602685i 0.985887 0.167412i \(-0.0535411\pi\)
−0.637927 + 0.770097i \(0.720208\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 25.9808i 1.72821i
\(227\) −12.1244 + 21.0000i −0.804722 + 1.39382i 0.111757 + 0.993736i \(0.464352\pi\)
−0.916479 + 0.400083i \(0.868981\pi\)
\(228\) 3.46410 6.00000i 0.229416 0.397360i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.59808 4.50000i −0.170572 0.295439i
\(233\) 6.00000i 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) −4.50000 4.33013i −0.294174 0.283069i
\(235\) 0 0
\(236\) 6.00000 3.46410i 0.390567 0.225494i
\(237\) 6.92820 4.00000i 0.450035 0.259828i
\(238\) 0 0
\(239\) 20.7846i 1.34444i −0.740349 0.672222i \(-0.765340\pi\)
0.740349 0.672222i \(-0.234660\pi\)
\(240\) 0 0
\(241\) −1.50000 0.866025i −0.0966235 0.0557856i 0.450910 0.892570i \(-0.351100\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 19.0526 1.22474
\(243\) −8.66025 5.00000i −0.555556 0.320750i
\(244\) −0.500000 0.866025i −0.0320092 0.0554416i
\(245\) 0 0
\(246\) −18.0000 −1.14764
\(247\) 3.46410 + 12.0000i 0.220416 + 0.763542i
\(248\) 6.00000i 0.381000i
\(249\) 24.0000 13.8564i 1.52094 0.878114i
\(250\) 0 0
\(251\) 9.00000 15.5885i 0.568075 0.983935i −0.428681 0.903456i \(-0.641022\pi\)
0.996756 0.0804789i \(-0.0256450\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 3.00000 + 1.73205i 0.188237 + 0.108679i
\(255\) 0 0
\(256\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(257\) 2.59808 1.50000i 0.162064 0.0935674i −0.416775 0.909010i \(-0.636840\pi\)
0.578838 + 0.815442i \(0.303506\pi\)
\(258\) 13.8564 + 24.0000i 0.862662 + 1.49417i
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) −15.5885 27.0000i −0.963058 1.66807i
\(263\) −10.3923 + 6.00000i −0.640817 + 0.369976i −0.784929 0.619586i \(-0.787301\pi\)
0.144112 + 0.989561i \(0.453967\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.92820 + 12.0000i −0.423999 + 0.734388i
\(268\) −3.46410 −0.211604
\(269\) −3.00000 + 5.19615i −0.182913 + 0.316815i −0.942871 0.333157i \(-0.891886\pi\)
0.759958 + 0.649972i \(0.225219\pi\)
\(270\) 0 0
\(271\) 18.0000 10.3923i 1.09342 0.631288i 0.158937 0.987289i \(-0.449193\pi\)
0.934485 + 0.356001i \(0.115860\pi\)
\(272\) 15.0000i 0.909509i
\(273\) 0 0
\(274\) −27.0000 −1.63113
\(275\) 0 0
\(276\) −6.00000 10.3923i −0.361158 0.625543i
\(277\) 6.06218 + 3.50000i 0.364241 + 0.210295i 0.670940 0.741512i \(-0.265891\pi\)
−0.306699 + 0.951807i \(0.599224\pi\)
\(278\) 6.92820 0.415526
\(279\) −3.00000 1.73205i −0.179605 0.103695i
\(280\) 0 0
\(281\) 22.5167i 1.34323i 0.740900 + 0.671616i \(0.234399\pi\)
−0.740900 + 0.671616i \(0.765601\pi\)
\(282\) −10.3923 6.00000i −0.618853 0.357295i
\(283\) −3.46410 + 2.00000i −0.205919 + 0.118888i −0.599414 0.800439i \(-0.704600\pi\)
0.393494 + 0.919327i \(0.371266\pi\)
\(284\) −3.00000 + 1.73205i −0.178017 + 0.102778i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −2.59808 4.50000i −0.153093 0.265165i
\(289\) −4.00000 6.92820i −0.235294 0.407541i
\(290\) 0 0
\(291\) 13.8564i 0.812277i
\(292\) 0.866025 1.50000i 0.0506803 0.0877809i
\(293\) 2.59808 4.50000i 0.151781 0.262893i −0.780101 0.625653i \(-0.784832\pi\)
0.931882 + 0.362761i \(0.118166\pi\)
\(294\) 24.2487i 1.41421i
\(295\) 0 0
\(296\) −7.50000 12.9904i −0.435929 0.755051i
\(297\) 0 0
\(298\) 33.0000i 1.91164i
\(299\) 21.0000 + 5.19615i 1.21446 + 0.300501i
\(300\) 0 0
\(301\) 0 0
\(302\) −25.9808 + 15.0000i −1.49502 + 0.863153i
\(303\) −5.19615 3.00000i −0.298511 0.172345i
\(304\) 17.3205i 0.993399i
\(305\) 0 0
\(306\) −4.50000 2.59808i −0.257248 0.148522i
\(307\) −17.3205 −0.988534 −0.494267 0.869310i \(-0.664563\pi\)
−0.494267 + 0.869310i \(0.664563\pi\)
\(308\) 0 0
\(309\) −10.0000 17.3205i −0.568880 0.985329i
\(310\) 0 0
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 12.1244 + 3.00000i 0.686406 + 0.169842i
\(313\) 10.0000i 0.565233i −0.959233 0.282617i \(-0.908798\pi\)
0.959233 0.282617i \(-0.0912024\pi\)
\(314\) −19.5000 + 11.2583i −1.10045 + 0.635344i
\(315\) 0 0
\(316\) 2.00000 3.46410i 0.112509 0.194871i
\(317\) −5.19615 −0.291845 −0.145922 0.989296i \(-0.546615\pi\)
−0.145922 + 0.989296i \(0.546615\pi\)
\(318\) −5.19615 + 9.00000i −0.291386 + 0.504695i
\(319\) 0 0
\(320\) 0 0
\(321\) −6.00000 + 10.3923i −0.334887 + 0.580042i
\(322\) 0 0
\(323\) 5.19615 + 9.00000i 0.289122 + 0.500773i
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −36.0000 −1.99386
\(327\) 13.8564 + 24.0000i 0.766261 + 1.32720i
\(328\) 7.79423 4.50000i 0.430364 0.248471i
\(329\) 0 0
\(330\) 0 0
\(331\) −24.0000 13.8564i −1.31916 0.761617i −0.335566 0.942017i \(-0.608928\pi\)
−0.983593 + 0.180400i \(0.942261\pi\)
\(332\) 6.92820 12.0000i 0.380235 0.658586i
\(333\) 8.66025 0.474579
\(334\) −12.0000 + 20.7846i −0.656611 + 1.13728i
\(335\) 0 0
\(336\) 0 0
\(337\) 23.0000i 1.25289i −0.779466 0.626445i \(-0.784509\pi\)
0.779466 0.626445i \(-0.215491\pi\)
\(338\) 19.0526 12.0000i 1.03632 0.652714i
\(339\) 30.0000 1.62938
\(340\) 0 0
\(341\) 0 0
\(342\) −5.19615 3.00000i −0.280976 0.162221i
\(343\) 0 0
\(344\) −12.0000 6.92820i −0.646997 0.373544i
\(345\) 0 0
\(346\) 10.3923i 0.558694i
\(347\) 25.9808 + 15.0000i 1.39472 + 0.805242i 0.993833 0.110885i \(-0.0353686\pi\)
0.400887 + 0.916127i \(0.368702\pi\)
\(348\) 5.19615 3.00000i 0.278543 0.160817i
\(349\) −12.0000 + 6.92820i −0.642345 + 0.370858i −0.785517 0.618840i \(-0.787603\pi\)
0.143172 + 0.989698i \(0.454270\pi\)
\(350\) 0 0
\(351\) 10.0000 10.3923i 0.533761 0.554700i
\(352\) 0 0
\(353\) −16.4545 28.5000i −0.875784 1.51690i −0.855926 0.517099i \(-0.827012\pi\)
−0.0198582 0.999803i \(-0.506321\pi\)
\(354\) −12.0000 20.7846i −0.637793 1.10469i
\(355\) 0 0
\(356\) 6.92820i 0.367194i
\(357\) 0 0
\(358\) 0 0
\(359\) 6.92820i 0.365657i −0.983145 0.182828i \(-0.941475\pi\)
0.983145 0.182828i \(-0.0585252\pi\)
\(360\) 0 0
\(361\) −3.50000 6.06218i −0.184211 0.319062i
\(362\) −9.52628 16.5000i −0.500690 0.867221i
\(363\) 22.0000i 1.15470i
\(364\) 0 0
\(365\) 0 0
\(366\) −3.00000 + 1.73205i −0.156813 + 0.0905357i
\(367\) −19.0526 + 11.0000i −0.994535 + 0.574195i −0.906627 0.421933i \(-0.861352\pi\)
−0.0879086 + 0.996129i \(0.528018\pi\)
\(368\) 25.9808 + 15.0000i 1.35434 + 0.781929i
\(369\) 5.19615i 0.270501i
\(370\) 0 0
\(371\) 0 0
\(372\) −6.92820 −0.359211
\(373\) 16.4545 + 9.50000i 0.851981 + 0.491891i 0.861319 0.508065i \(-0.169639\pi\)
−0.00933789 + 0.999956i \(0.502972\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.00000 0.309426
\(377\) −2.59808 + 10.5000i −0.133808 + 0.540778i
\(378\) 0 0
\(379\) 21.0000 12.1244i 1.07870 0.622786i 0.148153 0.988964i \(-0.452667\pi\)
0.930545 + 0.366178i \(0.119334\pi\)
\(380\) 0 0
\(381\) 2.00000 3.46410i 0.102463 0.177471i
\(382\) 31.1769 1.59515
\(383\) −10.3923 + 18.0000i −0.531022 + 0.919757i 0.468323 + 0.883558i \(0.344859\pi\)
−0.999345 + 0.0361995i \(0.988475\pi\)
\(384\) 21.0000 + 12.1244i 1.07165 + 0.618718i
\(385\) 0 0
\(386\) 4.50000 7.79423i 0.229044 0.396716i
\(387\) 6.92820 4.00000i 0.352180 0.203331i
\(388\) −3.46410 6.00000i −0.175863 0.304604i
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) −6.06218 10.5000i −0.306186 0.530330i
\(393\) −31.1769 + 18.0000i −1.57267 + 0.907980i
\(394\) 12.0000 20.7846i 0.604551 1.04711i
\(395\) 0 0
\(396\) 0 0
\(397\) 6.92820 12.0000i 0.347717 0.602263i −0.638127 0.769931i \(-0.720290\pi\)
0.985843 + 0.167668i \(0.0536238\pi\)
\(398\) 3.46410 0.173640
\(399\) 0 0
\(400\) 0 0
\(401\) −1.50000 + 0.866025i −0.0749064 + 0.0432472i −0.536985 0.843592i \(-0.680437\pi\)
0.462079 + 0.886839i \(0.347104\pi\)
\(402\) 12.0000i 0.598506i
\(403\) 8.66025 9.00000i 0.431398 0.448322i
\(404\) −3.00000 −0.149256
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 10.3923 0.514496
\(409\) −13.5000 7.79423i −0.667532 0.385400i 0.127609 0.991825i \(-0.459270\pi\)
−0.795141 + 0.606425i \(0.792603\pi\)
\(410\) 0 0
\(411\) 31.1769i 1.53784i
\(412\) −8.66025 5.00000i −0.426660 0.246332i
\(413\) 0 0
\(414\) −9.00000 + 5.19615i −0.442326 + 0.255377i
\(415\) 0 0
\(416\) 18.0000 5.19615i 0.882523 0.254762i
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) 9.00000 + 15.5885i 0.439679 + 0.761546i 0.997665 0.0683046i \(-0.0217590\pi\)
−0.557986 + 0.829851i \(0.688426\pi\)
\(420\) 0 0
\(421\) 15.5885i 0.759735i −0.925041 0.379867i \(-0.875970\pi\)
0.925041 0.379867i \(-0.124030\pi\)
\(422\) −8.66025 + 15.0000i −0.421575 + 0.730189i
\(423\) −1.73205 + 3.00000i −0.0842152 + 0.145865i
\(424\) 5.19615i 0.252347i
\(425\) 0 0
\(426\) 6.00000 + 10.3923i 0.290701 + 0.503509i
\(427\) 0 0
\(428\) 6.00000i 0.290021i
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 + 3.46410i −0.289010 + 0.166860i −0.637495 0.770454i \(-0.720029\pi\)
0.348485 + 0.937314i \(0.386696\pi\)
\(432\) 17.3205 10.0000i 0.833333 0.481125i
\(433\) −14.7224 8.50000i −0.707515 0.408484i 0.102625 0.994720i \(-0.467276\pi\)
−0.810140 + 0.586236i \(0.800609\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 12.0000 + 6.92820i 0.574696 + 0.331801i
\(437\) 20.7846 0.994263
\(438\) −5.19615 3.00000i −0.248282 0.143346i
\(439\) −14.0000 24.2487i −0.668184 1.15733i −0.978412 0.206666i \(-0.933739\pi\)
0.310228 0.950662i \(-0.399595\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 12.9904 13.5000i 0.617889 0.642130i
\(443\) 12.0000i 0.570137i 0.958507 + 0.285069i \(0.0920164\pi\)
−0.958507 + 0.285069i \(0.907984\pi\)
\(444\) 15.0000 8.66025i 0.711868 0.410997i
\(445\) 0 0
\(446\) 9.00000 15.5885i 0.426162 0.738135i
\(447\) −38.1051 −1.80231
\(448\) 0 0
\(449\) 6.00000 + 3.46410i 0.283158 + 0.163481i 0.634852 0.772634i \(-0.281061\pi\)
−0.351694 + 0.936115i \(0.614394\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 12.9904 7.50000i 0.611016 0.352770i
\(453\) 17.3205 + 30.0000i 0.813788 + 1.40952i
\(454\) 42.0000 1.97116
\(455\) 0 0
\(456\) 12.0000 0.561951
\(457\) 0.866025 + 1.50000i 0.0405110 + 0.0701670i 0.885570 0.464506i \(-0.153768\pi\)
−0.845059 + 0.534673i \(0.820435\pi\)
\(458\) 0 0
\(459\) 6.00000 10.3923i 0.280056 0.485071i
\(460\) 0 0
\(461\) 19.5000 + 11.2583i 0.908206 + 0.524353i 0.879853 0.475245i \(-0.157641\pi\)
0.0283522 + 0.999598i \(0.490974\pi\)
\(462\) 0 0
\(463\) −13.8564 −0.643962 −0.321981 0.946746i \(-0.604349\pi\)
−0.321981 + 0.946746i \(0.604349\pi\)
\(464\) −7.50000 + 12.9904i −0.348179 + 0.603063i
\(465\) 0 0
\(466\) −9.00000 + 5.19615i −0.416917 + 0.240707i
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) −0.866025 + 3.50000i −0.0400320 + 0.161788i
\(469\) 0 0
\(470\) 0 0
\(471\) 13.0000 + 22.5167i 0.599008 + 1.03751i
\(472\) 10.3923 + 6.00000i 0.478345 + 0.276172i
\(473\) 0 0
\(474\) −12.0000 6.92820i −0.551178 0.318223i
\(475\) 0 0
\(476\) 0 0
\(477\) 2.59808 + 1.50000i 0.118958 + 0.0686803i
\(478\) −31.1769 + 18.0000i −1.42600 + 0.823301i
\(479\) −21.0000 + 12.1244i −0.959514 + 0.553976i −0.896024 0.444006i \(-0.853557\pi\)
−0.0634909 + 0.997982i \(0.520223\pi\)
\(480\) 0 0
\(481\) −7.50000 + 30.3109i −0.341971 + 1.38206i
\(482\) 3.00000i 0.136646i
\(483\) 0 0
\(484\) −5.50000 9.52628i −0.250000 0.433013i
\(485\) 0 0
\(486\) 17.3205i 0.785674i
\(487\) 3.46410 6.00000i 0.156973 0.271886i −0.776802 0.629744i \(-0.783160\pi\)
0.933776 + 0.357858i \(0.116493\pi\)
\(488\) 0.866025 1.50000i 0.0392031 0.0679018i
\(489\) 41.5692i 1.87983i
\(490\) 0 0
\(491\) −6.00000 10.3923i −0.270776 0.468998i 0.698285 0.715820i \(-0.253947\pi\)
−0.969061 + 0.246822i \(0.920614\pi\)
\(492\) 5.19615 + 9.00000i 0.234261 + 0.405751i
\(493\) 9.00000i 0.405340i
\(494\) 15.0000 15.5885i 0.674882 0.701358i
\(495\) 0 0
\(496\) 15.0000 8.66025i 0.673520 0.388857i
\(497\) 0 0
\(498\) −41.5692 24.0000i −1.86276 1.07547i
\(499\) 31.1769i 1.39567i 0.716258 + 0.697835i \(0.245853\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 24.0000 + 13.8564i 1.07224 + 0.619059i
\(502\) −31.1769 −1.39149
\(503\) 31.1769 + 18.0000i 1.39011 + 0.802580i 0.993327 0.115332i \(-0.0367932\pi\)
0.396783 + 0.917912i \(0.370127\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −13.8564 22.0000i −0.615385 0.977054i
\(508\) 2.00000i 0.0887357i
\(509\) −16.5000 + 9.52628i −0.731350 + 0.422245i −0.818916 0.573914i \(-0.805424\pi\)
0.0875661 + 0.996159i \(0.472091\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 8.66025 0.382733
\(513\) 6.92820 12.0000i 0.305888 0.529813i
\(514\) −4.50000 2.59808i −0.198486 0.114596i
\(515\) 0 0
\(516\) 8.00000 13.8564i 0.352180 0.609994i
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) 9.00000 0.394297 0.197149 0.980374i \(-0.436832\pi\)
0.197149 + 0.980374i \(0.436832\pi\)
\(522\) −2.59808 4.50000i −0.113715 0.196960i
\(523\) 13.8564 8.00000i 0.605898 0.349816i −0.165460 0.986216i \(-0.552911\pi\)
0.771358 + 0.636401i \(0.219578\pi\)
\(524\) −9.00000 + 15.5885i −0.393167 + 0.680985i
\(525\) 0 0
\(526\) 18.0000 + 10.3923i 0.784837 + 0.453126i
\(527\) 5.19615 9.00000i 0.226348 0.392046i
\(528\) 0 0
\(529\) 6.50000 11.2583i 0.282609 0.489493i
\(530\) 0 0
\(531\) −6.00000 + 3.46410i −0.260378 + 0.150329i
\(532\) 0 0
\(533\) −18.1865 4.50000i −0.787746 0.194917i
\(534\) 24.0000 1.03858
\(535\) 0 0
\(536\) −3.00000 5.19615i −0.129580 0.224440i
\(537\) 0 0
\(538\) 10.3923 0.448044
\(539\) 0 0
\(540\) 0 0
\(541\) 29.4449i 1.26593i −0.774179 0.632967i \(-0.781837\pi\)
0.774179 0.632967i \(-0.218163\pi\)
\(542\) −31.1769 18.0000i −1.33916 0.773166i
\(543\) −19.0526 + 11.0000i −0.817624 + 0.472055i
\(544\) 13.5000 7.79423i 0.578808 0.334175i
\(545\) 0 0
\(546\) 0 0
\(547\) 22.0000i 0.940652i −0.882493 0.470326i \(-0.844136\pi\)
0.882493 0.470326i \(-0.155864\pi\)
\(548\) 7.79423 + 13.5000i 0.332953 + 0.576691i
\(549\) 0.500000 + 0.866025i 0.0213395 + 0.0369611i
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) 10.3923 18.0000i 0.442326 0.766131i
\(553\) 0 0
\(554\) 12.1244i 0.515115i
\(555\) 0 0
\(556\) −2.00000 3.46410i −0.0848189 0.146911i
\(557\) −7.79423 13.5000i −0.330252 0.572013i 0.652309 0.757953i \(-0.273800\pi\)
−0.982561 + 0.185940i \(0.940467\pi\)
\(558\) 6.00000i 0.254000i
\(559\) 8.00000 + 27.7128i 0.338364 + 1.17213i
\(560\) 0 0
\(561\) 0 0
\(562\) 33.7750 19.5000i 1.42471 0.822558i
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 6.92820i 0.291730i
\(565\) 0 0
\(566\) 6.00000 + 3.46410i 0.252199 + 0.145607i
\(567\) 0 0
\(568\) −5.19615 3.00000i −0.218026 0.125877i
\(569\) −21.0000 36.3731i −0.880366 1.52484i −0.850935 0.525271i \(-0.823964\pi\)
−0.0294311 0.999567i \(-0.509370\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) 36.0000i 1.50392i
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) −19.0526 −0.793168 −0.396584 0.917998i \(-0.629805\pi\)
−0.396584 + 0.917998i \(0.629805\pi\)
\(578\) −6.92820 + 12.0000i −0.288175 + 0.499134i
\(579\) −9.00000 5.19615i −0.374027 0.215945i
\(580\) 0 0
\(581\) 0 0
\(582\) −20.7846 + 12.0000i −0.861550 + 0.497416i
\(583\) 0 0
\(584\) 3.00000 0.124141
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) −10.3923 18.0000i −0.428936 0.742940i 0.567843 0.823137i \(-0.307778\pi\)
−0.996779 + 0.0801976i \(0.974445\pi\)
\(588\) 12.1244 7.00000i 0.500000 0.288675i
\(589\) 6.00000 10.3923i 0.247226 0.428207i
\(590\) 0 0
\(591\) −24.0000 13.8564i −0.987228 0.569976i
\(592\) −21.6506 + 37.5000i −0.889836 + 1.54124i
\(593\) 25.9808 1.06690 0.533451 0.845831i \(-0.320895\pi\)
0.533451 + 0.845831i \(0.320895\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.5000 + 9.52628i −0.675866 + 0.390212i
\(597\) 4.00000i 0.163709i
\(598\) −10.3923 36.0000i −0.424973 1.47215i
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) −12.5000 21.6506i −0.509886 0.883148i −0.999934 0.0114528i \(-0.996354\pi\)
0.490049 0.871695i \(-0.336979\pi\)
\(602\) 0 0
\(603\) 3.46410 0.141069
\(604\) 15.0000 + 8.66025i 0.610341 + 0.352381i
\(605\) 0 0
\(606\) 10.3923i 0.422159i
\(607\) 29.4449 + 17.0000i 1.19513 + 0.690009i 0.959466 0.281826i \(-0.0909400\pi\)
0.235665 + 0.971834i \(0.424273\pi\)
\(608\) 15.5885 9.00000i 0.632195 0.364998i
\(609\) 0 0
\(610\) 0 0
\(611\) −9.00000 8.66025i −0.364101 0.350356i
\(612\) 3.00000i 0.121268i
\(613\) 6.06218 + 10.5000i 0.244849 + 0.424091i 0.962089 0.272735i \(-0.0879283\pi\)
−0.717240 + 0.696826i \(0.754595\pi\)
\(614\) 15.0000 + 25.9808i 0.605351 + 1.04850i
\(615\) 0 0
\(616\) 0 0
\(617\) 11.2583 19.5000i 0.453243 0.785040i −0.545342 0.838214i \(-0.683600\pi\)
0.998585 + 0.0531732i \(0.0169335\pi\)
\(618\) −17.3205 + 30.0000i −0.696733 + 1.20678i
\(619\) 20.7846i 0.835404i −0.908584 0.417702i \(-0.862836\pi\)
0.908584 0.417702i \(-0.137164\pi\)
\(620\) 0 0
\(621\) −12.0000 20.7846i −0.481543 0.834058i
\(622\) 25.9808 + 45.0000i 1.04173 + 1.80434i
\(623\) 0 0
\(624\) −10.0000 34.6410i −0.400320 1.38675i
\(625\) 0 0
\(626\) −15.0000 + 8.66025i −0.599521 + 0.346133i
\(627\) 0 0
\(628\) 11.2583 + 6.50000i 0.449256 + 0.259378i
\(629\) 25.9808i 1.03592i
\(630\) 0 0
\(631\) −42.0000 24.2487i −1.67199 0.965326i −0.966521 0.256589i \(-0.917401\pi\)
−0.705473 0.708737i \(-0.749265\pi\)
\(632\) 6.92820 0.275589
\(633\) 17.3205 + 10.0000i 0.688428 + 0.397464i
\(634\) 4.50000 + 7.79423i 0.178718 + 0.309548i
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) −6.06218 + 24.5000i −0.240192 + 0.970725i
\(638\) 0 0
\(639\) 3.00000 1.73205i 0.118678 0.0685189i
\(640\) 0 0
\(641\) −16.5000 + 28.5788i −0.651711 + 1.12880i 0.330997 + 0.943632i \(0.392615\pi\)
−0.982708 + 0.185164i \(0.940718\pi\)
\(642\) 20.7846 0.820303
\(643\) 6.92820 12.0000i 0.273222 0.473234i −0.696463 0.717592i \(-0.745244\pi\)
0.969685 + 0.244359i \(0.0785774\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 9.00000 15.5885i 0.354100 0.613320i
\(647\) 15.5885 9.00000i 0.612845 0.353827i −0.161233 0.986916i \(-0.551547\pi\)
0.774078 + 0.633090i \(0.218214\pi\)
\(648\) −9.52628 16.5000i −0.374228 0.648181i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 10.3923 + 18.0000i 0.406994 + 0.704934i
\(653\) 25.9808 15.0000i 1.01671 0.586995i 0.103558 0.994623i \(-0.466977\pi\)
0.913148 + 0.407628i \(0.133644\pi\)
\(654\) 24.0000 41.5692i 0.938474 1.62549i
\(655\) 0 0
\(656\) −22.5000 12.9904i −0.878477 0.507189i
\(657\) −0.866025 + 1.50000i −0.0337869 + 0.0585206i
\(658\) 0 0
\(659\) −6.00000 + 10.3923i −0.233727 + 0.404827i −0.958902 0.283738i \(-0.908425\pi\)
0.725175 + 0.688565i \(0.241759\pi\)
\(660\) 0 0
\(661\) −40.5000 + 23.3827i −1.57527 + 0.909481i −0.579761 + 0.814787i \(0.696854\pi\)
−0.995506 + 0.0946945i \(0.969813\pi\)
\(662\) 48.0000i 1.86557i
\(663\) −15.5885 15.0000i −0.605406 0.582552i
\(664\) 24.0000 0.931381
\(665\) 0 0
\(666\) −7.50000 12.9904i −0.290619 0.503367i
\(667\) 15.5885 + 9.00000i 0.603587 + 0.348481i
\(668\) 13.8564 0.536120
\(669\) −18.0000 10.3923i −0.695920 0.401790i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 16.4545 9.50000i 0.634274 0.366198i −0.148132 0.988968i \(-0.547326\pi\)
0.782405 + 0.622770i \(0.213993\pi\)
\(674\) −34.5000 + 19.9186i −1.32889 + 0.767235i
\(675\) 0 0
\(676\) −11.5000 6.06218i −0.442308 0.233161i
\(677\) 6.00000i 0.230599i −0.993331 0.115299i \(-0.963217\pi\)
0.993331 0.115299i \(-0.0367827\pi\)
\(678\) −25.9808 45.0000i −0.997785 1.72821i
\(679\) 0 0
\(680\) 0 0
\(681\) 48.4974i 1.85843i
\(682\) 0 0
\(683\) 12.1244 21.0000i 0.463926 0.803543i −0.535227 0.844708i \(-0.679774\pi\)
0.999152 + 0.0411658i \(0.0131072\pi\)
\(684\) 3.46410i 0.132453i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 40.0000i 1.52499i
\(689\) −7.50000 + 7.79423i −0.285727 + 0.296936i
\(690\) 0 0
\(691\) 12.0000 6.92820i 0.456502 0.263561i −0.254071 0.967186i \(-0.581770\pi\)
0.710572 + 0.703624i \(0.248436\pi\)
\(692\) −5.19615 + 3.00000i −0.197528 + 0.114043i
\(693\) 0 0
\(694\) 51.9615i 1.97243i
\(695\) 0 0
\(696\) 9.00000 + 5.19615i 0.341144 + 0.196960i
\(697\) −15.5885 −0.590455
\(698\) 20.7846 + 12.0000i 0.786709 + 0.454207i
\(699\) 6.00000 + 10.3923i 0.226941 + 0.393073i
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) −24.2487 6.00000i −0.915209 0.226455i
\(703\) 30.0000i 1.13147i
\(704\) 0 0
\(705\) 0 0
\(706\) −28.5000 + 49.3634i −1.07261 + 1.85782i
\(707\) 0 0
\(708\) −6.92820 + 12.0000i −0.260378 + 0.450988i
\(709\) 4.50000 + 2.59808i 0.169001 + 0.0975728i 0.582115 0.813107i \(-0.302225\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) 0 0
\(711\) −2.00000 + 3.46410i −0.0750059 + 0.129914i
\(712\) −10.3923 + 6.00000i −0.389468 + 0.224860i
\(713\) −10.3923 18.0000i −0.389195 0.674105i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 20.7846 + 36.0000i 0.776215 + 1.34444i
\(718\) −10.3923 + 6.00000i −0.387837 + 0.223918i
\(719\) −24.0000 + 41.5692i −0.895049 + 1.55027i −0.0613050 + 0.998119i \(0.519526\pi\)
−0.833744 + 0.552151i \(0.813807\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6.06218 + 10.5000i −0.225611 + 0.390770i
\(723\) 3.46410 0.128831
\(724\) −5.50000 + 9.52628i −0.204406 + 0.354041i
\(725\) 0 0
\(726\) −33.0000 + 19.0526i −1.22474 + 0.707107i
\(727\) 32.0000i 1.18681i −0.804902 0.593407i \(-0.797782\pi\)
0.804902 0.593407i \(-0.202218\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 12.0000 + 20.7846i 0.443836 + 0.768747i
\(732\) 1.73205 + 1.00000i 0.0640184 + 0.0369611i
\(733\) −12.1244 −0.447823 −0.223912 0.974609i \(-0.571883\pi\)
−0.223912 + 0.974609i \(0.571883\pi\)
\(734\) 33.0000 + 19.0526i 1.21805 + 0.703243i
\(735\) 0 0
\(736\) 31.1769i 1.14920i
\(737\) 0 0
\(738\) 7.79423 4.50000i 0.286910 0.165647i
\(739\) 18.0000 10.3923i 0.662141 0.382287i −0.130951 0.991389i \(-0.541803\pi\)
0.793092 + 0.609102i \(0.208470\pi\)
\(740\) 0 0
\(741\) −18.0000 17.3205i −0.661247 0.636285i
\(742\) 0 0
\(743\) 17.3205 + 30.0000i 0.635428 + 1.10059i 0.986424 + 0.164216i \(0.0525096\pi\)
−0.350997 + 0.936377i \(0.614157\pi\)
\(744\) −6.00000 10.3923i −0.219971 0.381000i
\(745\) 0 0
\(746\) 32.9090i 1.20488i
\(747\) −6.92820 + 12.0000i −0.253490 + 0.439057i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.00000 + 13.8564i 0.291924 + 0.505627i 0.974265 0.225407i \(-0.0723712\pi\)
−0.682341 + 0.731034i \(0.739038\pi\)
\(752\) −8.66025 15.0000i −0.315807 0.546994i
\(753\) 36.0000i 1.31191i
\(754\) 18.0000 5.19615i 0.655521 0.189233i
\(755\) 0 0
\(756\) 0 0
\(757\) −22.5167 + 13.0000i −0.818382 + 0.472493i −0.849858 0.527011i \(-0.823312\pi\)
0.0314762 + 0.999505i \(0.489979\pi\)
\(758\) −36.3731 21.0000i −1.32113 0.762754i
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0000 + 17.3205i 1.08750 + 0.627868i 0.932910 0.360111i \(-0.117261\pi\)
0.154590 + 0.987979i \(0.450594\pi\)
\(762\) −6.92820 −0.250982
\(763\) 0 0
\(764\) −9.00000 15.5885i −0.325609 0.563971i
\(765\) 0 0
\(766\) 36.0000 1.30073
\(767\) −6.92820 24.0000i −0.250163 0.866590i
\(768\) 38.0000i 1.37121i
\(769\) −6.00000 + 3.46410i −0.216366 + 0.124919i −0.604266 0.796782i \(-0.706534\pi\)
0.387901 + 0.921701i \(0.373200\pi\)
\(770\) 0 0
\(771\) −3.00000 + 5.19615i −0.108042 + 0.187135i
\(772\) −5.19615 −0.187014
\(773\) −17.3205 + 30.0000i −0.622975 + 1.07903i 0.365953 + 0.930633i \(0.380743\pi\)
−0.988929 + 0.148392i \(0.952590\pi\)
\(774\) −12.0000 6.92820i −0.431331 0.249029i
\(775\) 0 0
\(776\) 6.00000 10.3923i 0.215387 0.373062i
\(777\) 0 0
\(778\) −7.79423 13.5000i −0.279437 0.483998i
\(779\) −18.0000 −0.644917
\(780\) 0 0
\(781\) 0 0
\(782\) −15.5885 27.0000i −0.557442 0.965518i
\(783\) 10.3923 6.00000i 0.371391 0.214423i
\(784\) −17.5000 + 30.3109i −0.625000 + 1.08253i
\(785\) 0 0
\(786\) 54.0000 + 31.1769i 1.92612 + 1.11204i
\(787\) −19.0526 + 33.0000i −0.679150 + 1.17632i 0.296087 + 0.955161i \(0.404318\pi\)
−0.975237 + 0.221162i \(0.929015\pi\)
\(788\) −13.8564 −0.493614
\(789\) 12.0000 20.7846i 0.427211 0.739952i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.46410 + 1.00000i −0.123014 + 0.0355110i
\(794\) −24.0000 −0.851728
\(795\) 0 0
\(796\) −1.00000 1.73205i −0.0354441 0.0613909i
\(797\) −36.3731 21.0000i −1.28840 0.743858i −0.310031 0.950726i \(-0.600340\pi\)
−0.978369 + 0.206868i \(0.933673\pi\)
\(798\) 0 0
\(799\) −9.00000 5.19615i −0.318397 0.183827i
\(800\) 0 0
\(801\) 6.92820i 0.244796i
\(802\) 2.59808 + 1.50000i 0.0917413 + 0.0529668i
\(803\) 0 0
\(804\) 6.00000 3.46410i 0.211604 0.122169i
\(805\) 0 0
\(806\) −21.0000 5.19615i −0.739693 0.183027i
\(807\) 12.0000i 0.422420i
\(808\) −2.59808 4.50000i −0.0914000 0.158309i
\(809\) 16.5000 + 28.5788i 0.580109 + 1.00478i 0.995466 + 0.0951198i \(0.0303234\pi\)
−0.415357 + 0.909659i \(0.636343\pi\)
\(810\) 0 0
\(811\) 38.1051i 1.33805i 0.743239 + 0.669026i \(0.233288\pi\)
−0.743239 + 0.669026i \(0.766712\pi\)
\(812\) 0 0
\(813\) −20.7846 + 36.0000i −0.728948 + 1.26258i
\(814\) 0 0
\(815\) 0 0
\(816\) −15.0000 25.9808i −0.525105 0.909509i
\(817\) 13.8564 + 24.0000i 0.484774 + 0.839654i
\(818\) 27.0000i 0.944033i
\(819\) 0 0
\(820\) 0 0
\(821\) −36.0000 + 20.7846i −1.25641 + 0.725388i −0.972375 0.233426i \(-0.925006\pi\)
−0.284034 + 0.958814i \(0.591673\pi\)
\(822\) 46.7654 27.0000i 1.63113 0.941733i
\(823\) −3.46410 2.00000i −0.120751 0.0697156i 0.438408 0.898776i \(-0.355543\pi\)
−0.559159 + 0.829060i \(0.688876\pi\)
\(824\) 17.3205i 0.603388i
\(825\) 0 0
\(826\) 0 0
\(827\) 20.7846 0.722752 0.361376 0.932420i \(-0.382307\pi\)
0.361376 + 0.932420i \(0.382307\pi\)
\(828\) 5.19615 + 3.00000i 0.180579 + 0.104257i
\(829\) 12.5000 + 21.6506i 0.434143 + 0.751958i 0.997225 0.0744432i \(-0.0237179\pi\)
−0.563082 + 0.826401i \(0.690385\pi\)
\(830\) 0 0
\(831\) −14.0000 −0.485655
\(832\) 2.59808 + 2.50000i 0.0900721 + 0.0866719i
\(833\) 21.0000i 0.727607i
\(834\) −12.0000 + 6.92820i −0.415526 + 0.239904i
\(835\) 0 0
\(836\) 0 0
\(837\) −13.8564 −0.478947
\(838\) 15.5885 27.0000i 0.538494 0.932700i
\(839\) −39.0000 22.5167i −1.34643 0.777361i −0.358688 0.933458i \(-0.616776\pi\)
−0.987742 + 0.156096i \(0.950109\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) −23.3827 + 13.5000i −0.805821 + 0.465241i
\(843\) −22.5167 39.0000i −0.775515 1.34323i
\(844\) 10.0000 0.344214
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) 0 0
\(848\) −12.9904 + 7.50000i −0.446092 + 0.257551i
\(849\) 4.00000 6.92820i 0.137280 0.237775i
\(850\) 0 0
\(851\) 45.0000 + 25.9808i 1.54258 + 0.890609i
\(852\) 3.46410 6.00000i 0.118678 0.205557i
\(853\) −25.9808 −0.889564 −0.444782 0.895639i \(-0.646719\pi\)
−0.444782 + 0.895639i \(0.646719\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.00000 + 5.19615i −0.307614 + 0.177601i
\(857\) 3.00000i 0.102478i 0.998686 + 0.0512390i \(0.0163170\pi\)
−0.998686 + 0.0512390i \(0.983683\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.3923 + 6.00000i 0.353963 + 0.204361i
\(863\) 27.7128 0.943355 0.471678 0.881771i \(-0.343649\pi\)
0.471678 + 0.881771i \(0.343649\pi\)
\(864\) −18.0000 10.3923i −0.612372 0.353553i
\(865\) 0 0
\(866\) 29.4449i 1.00058i
\(867\) 13.8564 + 8.00000i 0.470588 + 0.271694i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −3.00000 + 12.1244i −0.101651 + 0.410818i
\(872\) 24.0000i 0.812743i
\(873\) 3.46410 + 6.00000i 0.117242 + 0.203069i
\(874\) −18.0000 31.1769i −0.608859 1.05457i
\(875\) 0 0
\(876\) 3.46410i 0.117041i
\(877\) −6.06218 + 10.5000i −0.204705 + 0.354560i −0.950039 0.312132i \(-0.898957\pi\)
0.745334 + 0.666692i \(0.232290\pi\)
\(878\) −24.2487 + 42.0000i −0.818354 + 1.41743i
\(879\) 10.3923i 0.350524i
\(880\) 0 0
\(881\) −13.5000 23.3827i −0.454827 0.787783i 0.543852 0.839181i \(-0.316965\pi\)
−0.998678 + 0.0513987i \(0.983632\pi\)
\(882\) −6.06218 10.5000i −0.204124 0.353553i
\(883\) 10.0000i 0.336527i −0.985742 0.168263i \(-0.946184\pi\)
0.985742 0.168263i \(-0.0538159\pi\)
\(884\) −10.5000 2.59808i −0.353153 0.0873828i
\(885\) 0 0
\(886\) 18.0000 10.3923i 0.604722 0.349136i
\(887\) 31.1769 18.0000i 1.04682 0.604381i 0.125061 0.992149i \(-0.460087\pi\)
0.921757 + 0.387768i \(0.126754\pi\)
\(888\) 25.9808 + 15.0000i 0.871857 + 0.503367i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −10.3923 −0.347960
\(893\) −10.3923 6.00000i −0.347765 0.200782i
\(894\) 33.0000 + 57.1577i 1.10369 + 1.91164i
\(895\) 0 0
\(896\) 0 0
\(897\) −41.5692 + 12.0000i −1.38796 + 0.400668i
\(898\) 12.0000i 0.400445i
\(899\) 9.00000 5.19615i 0.300167 0.173301i
\(900\) 0 0
\(901\) −4.50000 + 7.79423i −0.149917 + 0.259663i
\(902\) 0 0
\(903\) 0 0
\(904\) 22.5000 + 12.9904i 0.748339 + 0.432054i
\(905\) 0 0
\(906\) 30.0000 51.9615i 0.996683 1.72631i
\(907\) 24.2487 14.0000i 0.805165 0.464862i −0.0401089 0.999195i \(-0.512770\pi\)
0.845274 + 0.534333i \(0.179437\pi\)
\(908\) −12.1244 21.0000i −0.402361 0.696909i
\(909\) 3.00000 0.0995037
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) −17.3205 30.0000i −0.573539 0.993399i
\(913\) 0 0
\(914\) 1.50000 2.59808i 0.0496156 0.0859367i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −20.7846 −0.685994
\(919\) 11.0000 19.0526i 0.362857 0.628486i −0.625573 0.780165i \(-0.715135\pi\)
0.988430 + 0.151680i \(0.0484682\pi\)
\(920\) 0 0
\(921\) 30.0000 17.3205i 0.988534 0.570730i
\(922\) 39.0000i 1.28440i
\(923\) 3.46410 + 12.0000i 0.114022 + 0.394985i
\(924\) 0 0
\(925\) 0 0
\(926\) 12.0000 + 20.7846i 0.394344 + 0.683025i
\(927\) 8.66025 + 5.00000i 0.284440 + 0.164222i
\(928\) 15.5885 0.511716
\(929\) 40.5000 + 23.3827i 1.32876 + 0.767161i 0.985108 0.171935i \(-0.0550020\pi\)
0.343654 + 0.939096i \(0.388335\pi\)
\(930\) 0 0
\(931\) 24.2487i 0.794719i
\(932\) 5.19615 + 3.00000i 0.170206 + 0.0982683i
\(933\) 51.9615 30.0000i 1.70114 0.982156i
\(934\) 18.0000 10.3923i 0.588978 0.340047i
\(935\) 0 0
\(936\) −6.00000 + 1.73205i −0.196116 + 0.0566139i
\(937\) 7.00000i 0.228680i 0.993442 + 0.114340i \(0.0364753\pi\)
−0.993442 + 0.114340i \(0.963525\pi\)
\(938\) 0 0
\(939\) 10.0000 + 17.3205i 0.326338 + 0.565233i
\(940\) 0 0
\(941\) 20.7846i 0.677559i −0.940866 0.338779i \(-0.889986\pi\)
0.940866 0.338779i \(-0.110014\pi\)
\(942\) 22.5167 39.0000i 0.733632 1.27069i
\(943\) −15.5885 + 27.0000i −0.507630 + 0.879241i
\(944\) 34.6410i 1.12747i
\(945\) 0 0
\(946\) 0 0
\(947\) −8.66025 15.0000i −0.281420 0.487435i 0.690314 0.723510i \(-0.257472\pi\)
−0.971735 + 0.236075i \(0.924139\pi\)
\(948\) 8.00000i 0.259828i
\(949\) −4.50000 4.33013i −0.146076 0.140562i
\(950\) 0 0
\(951\) 9.00000 5.19615i 0.291845 0.168497i
\(952\) 0 0
\(953\) −5.19615 3.00000i −0.168320 0.0971795i 0.413473 0.910516i \(-0.364315\pi\)
−0.581793 + 0.813337i \(0.697649\pi\)
\(954\) 5.19615i 0.168232i
\(955\) 0 0
\(956\) 18.0000 + 10.3923i 0.582162 + 0.336111i
\(957\) 0 0
\(958\) 36.3731 + 21.0000i 1.17516 + 0.678479i
\(959\) 0 0
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 51.9615 15.0000i 1.67531 0.483619i
\(963\) 6.00000i 0.193347i
\(964\) 1.50000 0.866025i 0.0483117 0.0278928i
\(965\) 0 0
\(966\) 0 0
\(967\) 58.8897 1.89377 0.946883 0.321578i \(-0.104213\pi\)
0.946883 + 0.321578i \(0.104213\pi\)
\(968\) 9.52628 16.5000i 0.306186 0.530330i
\(969\) −18.0000 10.3923i −0.578243 0.333849i
\(970\) 0 0
\(971\) −3.00000 + 5.19615i −0.0962746 + 0.166752i −0.910140 0.414301i \(-0.864026\pi\)
0.813865 + 0.581054i \(0.197359\pi\)
\(972\) 8.66025 5.00000i 0.277778 0.160375i
\(973\) 0 0
\(974\) −12.0000 −0.384505
\(975\) 0 0
\(976\) −5.00000 −0.160046
\(977\) 21.6506 + 37.5000i 0.692665 + 1.19973i 0.970961 + 0.239236i \(0.0768970\pi\)
−0.278296 + 0.960495i \(0.589770\pi\)
\(978\) 62.3538 36.0000i 1.99386 1.15115i
\(979\) 0 0
\(980\) 0 0
\(981\) −12.0000 6.92820i −0.383131 0.221201i
\(982\) −10.3923 + 18.0000i −0.331632 + 0.574403i
\(983\) −51.9615 −1.65732 −0.828658 0.559756i \(-0.810895\pi\)
−0.828658 + 0.559756i \(0.810895\pi\)
\(984\) −9.00000 + 15.5885i −0.286910 + 0.496942i
\(985\) 0 0
\(986\) 13.5000 7.79423i 0.429928 0.248219i
\(987\) 0 0
\(988\) −12.1244 3.00000i −0.385727 0.0954427i
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) −1.00000 1.73205i −0.0317660 0.0550204i 0.849705 0.527258i \(-0.176780\pi\)
−0.881471 + 0.472237i \(0.843446\pi\)
\(992\) −15.5885 9.00000i −0.494934 0.285750i
\(993\) 55.4256 1.75888
\(994\) 0 0
\(995\) 0 0
\(996\) 27.7128i 0.878114i
\(997\) −14.7224 8.50000i −0.466264 0.269198i 0.248410 0.968655i \(-0.420092\pi\)
−0.714675 + 0.699457i \(0.753425\pi\)
\(998\) 46.7654 27.0000i 1.48033 0.854670i
\(999\) 30.0000 17.3205i 0.949158 0.547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.m.a.49.1 4
5.2 odd 4 325.2.n.a.101.1 2
5.3 odd 4 13.2.e.a.10.1 yes 2
5.4 even 2 inner 325.2.m.a.49.2 4
13.4 even 6 inner 325.2.m.a.199.2 4
15.8 even 4 117.2.q.c.10.1 2
20.3 even 4 208.2.w.b.49.1 2
35.3 even 12 637.2.k.c.569.1 2
35.13 even 4 637.2.q.a.491.1 2
35.18 odd 12 637.2.k.a.569.1 2
35.23 odd 12 637.2.u.c.361.1 2
35.33 even 12 637.2.u.b.361.1 2
40.3 even 4 832.2.w.a.257.1 2
40.13 odd 4 832.2.w.d.257.1 2
60.23 odd 4 1872.2.by.d.1297.1 2
65.2 even 12 4225.2.a.v.1.2 2
65.3 odd 12 169.2.b.a.168.1 2
65.4 even 6 inner 325.2.m.a.199.1 4
65.8 even 4 169.2.c.a.146.1 4
65.17 odd 12 325.2.n.a.251.1 2
65.18 even 4 169.2.c.a.146.2 4
65.23 odd 12 169.2.b.a.168.2 2
65.28 even 12 169.2.a.a.1.1 2
65.33 even 12 169.2.c.a.22.1 4
65.37 even 12 4225.2.a.v.1.1 2
65.38 odd 4 169.2.e.a.23.1 2
65.43 odd 12 13.2.e.a.4.1 2
65.48 odd 12 169.2.e.a.147.1 2
65.58 even 12 169.2.c.a.22.2 4
65.63 even 12 169.2.a.a.1.2 2
195.23 even 12 1521.2.b.a.1351.1 2
195.68 even 12 1521.2.b.a.1351.2 2
195.128 odd 12 1521.2.a.k.1.1 2
195.158 odd 12 1521.2.a.k.1.2 2
195.173 even 12 117.2.q.c.82.1 2
260.3 even 12 2704.2.f.b.337.2 2
260.23 even 12 2704.2.f.b.337.1 2
260.43 even 12 208.2.w.b.17.1 2
260.63 odd 12 2704.2.a.o.1.1 2
260.223 odd 12 2704.2.a.o.1.2 2
455.108 even 12 637.2.u.b.30.1 2
455.173 even 12 637.2.k.c.459.1 2
455.223 odd 12 8281.2.a.q.1.1 2
455.258 odd 12 8281.2.a.q.1.2 2
455.303 odd 12 637.2.k.a.459.1 2
455.368 odd 12 637.2.u.c.30.1 2
455.433 even 12 637.2.q.a.589.1 2
520.43 even 12 832.2.w.a.641.1 2
520.173 odd 12 832.2.w.d.641.1 2
780.563 odd 12 1872.2.by.d.433.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.2.e.a.4.1 2 65.43 odd 12
13.2.e.a.10.1 yes 2 5.3 odd 4
117.2.q.c.10.1 2 15.8 even 4
117.2.q.c.82.1 2 195.173 even 12
169.2.a.a.1.1 2 65.28 even 12
169.2.a.a.1.2 2 65.63 even 12
169.2.b.a.168.1 2 65.3 odd 12
169.2.b.a.168.2 2 65.23 odd 12
169.2.c.a.22.1 4 65.33 even 12
169.2.c.a.22.2 4 65.58 even 12
169.2.c.a.146.1 4 65.8 even 4
169.2.c.a.146.2 4 65.18 even 4
169.2.e.a.23.1 2 65.38 odd 4
169.2.e.a.147.1 2 65.48 odd 12
208.2.w.b.17.1 2 260.43 even 12
208.2.w.b.49.1 2 20.3 even 4
325.2.m.a.49.1 4 1.1 even 1 trivial
325.2.m.a.49.2 4 5.4 even 2 inner
325.2.m.a.199.1 4 65.4 even 6 inner
325.2.m.a.199.2 4 13.4 even 6 inner
325.2.n.a.101.1 2 5.2 odd 4
325.2.n.a.251.1 2 65.17 odd 12
637.2.k.a.459.1 2 455.303 odd 12
637.2.k.a.569.1 2 35.18 odd 12
637.2.k.c.459.1 2 455.173 even 12
637.2.k.c.569.1 2 35.3 even 12
637.2.q.a.491.1 2 35.13 even 4
637.2.q.a.589.1 2 455.433 even 12
637.2.u.b.30.1 2 455.108 even 12
637.2.u.b.361.1 2 35.33 even 12
637.2.u.c.30.1 2 455.368 odd 12
637.2.u.c.361.1 2 35.23 odd 12
832.2.w.a.257.1 2 40.3 even 4
832.2.w.a.641.1 2 520.43 even 12
832.2.w.d.257.1 2 40.13 odd 4
832.2.w.d.641.1 2 520.173 odd 12
1521.2.a.k.1.1 2 195.128 odd 12
1521.2.a.k.1.2 2 195.158 odd 12
1521.2.b.a.1351.1 2 195.23 even 12
1521.2.b.a.1351.2 2 195.68 even 12
1872.2.by.d.433.1 2 780.563 odd 12
1872.2.by.d.1297.1 2 60.23 odd 4
2704.2.a.o.1.1 2 260.63 odd 12
2704.2.a.o.1.2 2 260.223 odd 12
2704.2.f.b.337.1 2 260.23 even 12
2704.2.f.b.337.2 2 260.3 even 12
4225.2.a.v.1.1 2 65.37 even 12
4225.2.a.v.1.2 2 65.2 even 12
8281.2.a.q.1.1 2 455.223 odd 12
8281.2.a.q.1.2 2 455.258 odd 12