Properties

Label 325.2.f.a.307.1
Level $325$
Weight $2$
Character 325.307
Analytic conductor $2.595$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(18,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.18");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 325.307
Dual form 325.2.f.a.18.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(-1.00000 + 1.00000i) q^{3} +1.00000 q^{4} +(1.00000 + 1.00000i) q^{6} +2.00000 q^{7} -3.00000i q^{8} +1.00000i q^{9} +O(q^{10})\) \(q-1.00000i q^{2} +(-1.00000 + 1.00000i) q^{3} +1.00000 q^{4} +(1.00000 + 1.00000i) q^{6} +2.00000 q^{7} -3.00000i q^{8} +1.00000i q^{9} +(-1.00000 + 1.00000i) q^{11} +(-1.00000 + 1.00000i) q^{12} +(2.00000 + 3.00000i) q^{13} -2.00000i q^{14} -1.00000 q^{16} +(1.00000 - 1.00000i) q^{17} +1.00000 q^{18} +(5.00000 - 5.00000i) q^{19} +(-2.00000 + 2.00000i) q^{21} +(1.00000 + 1.00000i) q^{22} +(3.00000 + 3.00000i) q^{23} +(3.00000 + 3.00000i) q^{24} +(3.00000 - 2.00000i) q^{26} +(-4.00000 - 4.00000i) q^{27} +2.00000 q^{28} +(5.00000 + 5.00000i) q^{31} -5.00000i q^{32} -2.00000i q^{33} +(-1.00000 - 1.00000i) q^{34} +1.00000i q^{36} +(-5.00000 - 5.00000i) q^{38} +(-5.00000 - 1.00000i) q^{39} +(-7.00000 - 7.00000i) q^{41} +(2.00000 + 2.00000i) q^{42} +(-1.00000 - 1.00000i) q^{43} +(-1.00000 + 1.00000i) q^{44} +(3.00000 - 3.00000i) q^{46} -6.00000 q^{47} +(1.00000 - 1.00000i) q^{48} -3.00000 q^{49} +2.00000i q^{51} +(2.00000 + 3.00000i) q^{52} +(-5.00000 + 5.00000i) q^{53} +(-4.00000 + 4.00000i) q^{54} -6.00000i q^{56} +10.0000i q^{57} +(7.00000 + 7.00000i) q^{59} -14.0000 q^{61} +(5.00000 - 5.00000i) q^{62} +2.00000i q^{63} -7.00000 q^{64} -2.00000 q^{66} +4.00000i q^{67} +(1.00000 - 1.00000i) q^{68} -6.00000 q^{69} +(1.00000 + 1.00000i) q^{71} +3.00000 q^{72} -10.0000i q^{73} +(5.00000 - 5.00000i) q^{76} +(-2.00000 + 2.00000i) q^{77} +(-1.00000 + 5.00000i) q^{78} -2.00000i q^{79} +5.00000 q^{81} +(-7.00000 + 7.00000i) q^{82} -6.00000 q^{83} +(-2.00000 + 2.00000i) q^{84} +(-1.00000 + 1.00000i) q^{86} +(3.00000 + 3.00000i) q^{88} +(-5.00000 - 5.00000i) q^{89} +(4.00000 + 6.00000i) q^{91} +(3.00000 + 3.00000i) q^{92} -10.0000 q^{93} +6.00000i q^{94} +(5.00000 + 5.00000i) q^{96} -2.00000i q^{97} +3.00000i q^{98} +(-1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{4} + 2 q^{6} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{4} + 2 q^{6} + 4 q^{7} - 2 q^{11} - 2 q^{12} + 4 q^{13} - 2 q^{16} + 2 q^{17} + 2 q^{18} + 10 q^{19} - 4 q^{21} + 2 q^{22} + 6 q^{23} + 6 q^{24} + 6 q^{26} - 8 q^{27} + 4 q^{28} + 10 q^{31} - 2 q^{34} - 10 q^{38} - 10 q^{39} - 14 q^{41} + 4 q^{42} - 2 q^{43} - 2 q^{44} + 6 q^{46} - 12 q^{47} + 2 q^{48} - 6 q^{49} + 4 q^{52} - 10 q^{53} - 8 q^{54} + 14 q^{59} - 28 q^{61} + 10 q^{62} - 14 q^{64} - 4 q^{66} + 2 q^{68} - 12 q^{69} + 2 q^{71} + 6 q^{72} + 10 q^{76} - 4 q^{77} - 2 q^{78} + 10 q^{81} - 14 q^{82} - 12 q^{83} - 4 q^{84} - 2 q^{86} + 6 q^{88} - 10 q^{89} + 8 q^{91} + 6 q^{92} - 20 q^{93} + 10 q^{96} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) −1.00000 + 1.00000i −0.577350 + 0.577350i −0.934172 0.356822i \(-0.883860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 + 1.00000i 0.408248 + 0.408248i
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.00000 + 1.00000i −0.301511 + 0.301511i −0.841605 0.540094i \(-0.818389\pi\)
0.540094 + 0.841605i \(0.318389\pi\)
\(12\) −1.00000 + 1.00000i −0.288675 + 0.288675i
\(13\) 2.00000 + 3.00000i 0.554700 + 0.832050i
\(14\) 2.00000i 0.534522i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.00000 1.00000i 0.242536 0.242536i −0.575363 0.817898i \(-0.695139\pi\)
0.817898 + 0.575363i \(0.195139\pi\)
\(18\) 1.00000 0.235702
\(19\) 5.00000 5.00000i 1.14708 1.14708i 0.159954 0.987124i \(-0.448865\pi\)
0.987124 0.159954i \(-0.0511347\pi\)
\(20\) 0 0
\(21\) −2.00000 + 2.00000i −0.436436 + 0.436436i
\(22\) 1.00000 + 1.00000i 0.213201 + 0.213201i
\(23\) 3.00000 + 3.00000i 0.625543 + 0.625543i 0.946943 0.321400i \(-0.104153\pi\)
−0.321400 + 0.946943i \(0.604153\pi\)
\(24\) 3.00000 + 3.00000i 0.612372 + 0.612372i
\(25\) 0 0
\(26\) 3.00000 2.00000i 0.588348 0.392232i
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 2.00000 0.377964
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 5.00000 + 5.00000i 0.898027 + 0.898027i 0.995261 0.0972349i \(-0.0309998\pi\)
−0.0972349 + 0.995261i \(0.531000\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 2.00000i 0.348155i
\(34\) −1.00000 1.00000i −0.171499 0.171499i
\(35\) 0 0
\(36\) 1.00000i 0.166667i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −5.00000 5.00000i −0.811107 0.811107i
\(39\) −5.00000 1.00000i −0.800641 0.160128i
\(40\) 0 0
\(41\) −7.00000 7.00000i −1.09322 1.09322i −0.995183 0.0980332i \(-0.968745\pi\)
−0.0980332 0.995183i \(-0.531255\pi\)
\(42\) 2.00000 + 2.00000i 0.308607 + 0.308607i
\(43\) −1.00000 1.00000i −0.152499 0.152499i 0.626734 0.779233i \(-0.284391\pi\)
−0.779233 + 0.626734i \(0.784391\pi\)
\(44\) −1.00000 + 1.00000i −0.150756 + 0.150756i
\(45\) 0 0
\(46\) 3.00000 3.00000i 0.442326 0.442326i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 1.00000 1.00000i 0.144338 0.144338i
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000i 0.280056i
\(52\) 2.00000 + 3.00000i 0.277350 + 0.416025i
\(53\) −5.00000 + 5.00000i −0.686803 + 0.686803i −0.961524 0.274721i \(-0.911414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) −4.00000 + 4.00000i −0.544331 + 0.544331i
\(55\) 0 0
\(56\) 6.00000i 0.801784i
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) 7.00000 + 7.00000i 0.911322 + 0.911322i 0.996376 0.0850540i \(-0.0271063\pi\)
−0.0850540 + 0.996376i \(0.527106\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 5.00000 5.00000i 0.635001 0.635001i
\(63\) 2.00000i 0.251976i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 1.00000 1.00000i 0.121268 0.121268i
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 1.00000 + 1.00000i 0.118678 + 0.118678i 0.763952 0.645273i \(-0.223257\pi\)
−0.645273 + 0.763952i \(0.723257\pi\)
\(72\) 3.00000 0.353553
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 5.00000 5.00000i 0.573539 0.573539i
\(77\) −2.00000 + 2.00000i −0.227921 + 0.227921i
\(78\) −1.00000 + 5.00000i −0.113228 + 0.566139i
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) −7.00000 + 7.00000i −0.773021 + 0.773021i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) −2.00000 + 2.00000i −0.218218 + 0.218218i
\(85\) 0 0
\(86\) −1.00000 + 1.00000i −0.107833 + 0.107833i
\(87\) 0 0
\(88\) 3.00000 + 3.00000i 0.319801 + 0.319801i
\(89\) −5.00000 5.00000i −0.529999 0.529999i 0.390573 0.920572i \(-0.372277\pi\)
−0.920572 + 0.390573i \(0.872277\pi\)
\(90\) 0 0
\(91\) 4.00000 + 6.00000i 0.419314 + 0.628971i
\(92\) 3.00000 + 3.00000i 0.312772 + 0.312772i
\(93\) −10.0000 −1.03695
\(94\) 6.00000i 0.618853i
\(95\) 0 0
\(96\) 5.00000 + 5.00000i 0.510310 + 0.510310i
\(97\) 2.00000i 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) 3.00000i 0.303046i
\(99\) −1.00000 1.00000i −0.100504 0.100504i
\(100\) 0 0
\(101\) 12.0000i 1.19404i −0.802225 0.597022i \(-0.796350\pi\)
0.802225 0.597022i \(-0.203650\pi\)
\(102\) 2.00000 0.198030
\(103\) 7.00000 + 7.00000i 0.689730 + 0.689730i 0.962172 0.272442i \(-0.0878312\pi\)
−0.272442 + 0.962172i \(0.587831\pi\)
\(104\) 9.00000 6.00000i 0.882523 0.588348i
\(105\) 0 0
\(106\) 5.00000 + 5.00000i 0.485643 + 0.485643i
\(107\) −7.00000 7.00000i −0.676716 0.676716i 0.282540 0.959256i \(-0.408823\pi\)
−0.959256 + 0.282540i \(0.908823\pi\)
\(108\) −4.00000 4.00000i −0.384900 0.384900i
\(109\) −9.00000 + 9.00000i −0.862044 + 0.862044i −0.991575 0.129532i \(-0.958653\pi\)
0.129532 + 0.991575i \(0.458653\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) −5.00000 + 5.00000i −0.470360 + 0.470360i −0.902031 0.431671i \(-0.857924\pi\)
0.431671 + 0.902031i \(0.357924\pi\)
\(114\) 10.0000 0.936586
\(115\) 0 0
\(116\) 0 0
\(117\) −3.00000 + 2.00000i −0.277350 + 0.184900i
\(118\) 7.00000 7.00000i 0.644402 0.644402i
\(119\) 2.00000 2.00000i 0.183340 0.183340i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 14.0000i 1.26750i
\(123\) 14.0000 1.26234
\(124\) 5.00000 + 5.00000i 0.449013 + 0.449013i
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) 9.00000 9.00000i 0.798621 0.798621i −0.184257 0.982878i \(-0.558988\pi\)
0.982878 + 0.184257i \(0.0589879\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 2.00000i 0.174078i
\(133\) 10.0000 10.0000i 0.867110 0.867110i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −3.00000 3.00000i −0.257248 0.257248i
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 6.00000i 0.510754i
\(139\) 14.0000i 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(140\) 0 0
\(141\) 6.00000 6.00000i 0.505291 0.505291i
\(142\) 1.00000 1.00000i 0.0839181 0.0839181i
\(143\) −5.00000 1.00000i −0.418121 0.0836242i
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) 3.00000 3.00000i 0.247436 0.247436i
\(148\) 0 0
\(149\) 3.00000 3.00000i 0.245770 0.245770i −0.573462 0.819232i \(-0.694400\pi\)
0.819232 + 0.573462i \(0.194400\pi\)
\(150\) 0 0
\(151\) 7.00000 7.00000i 0.569652 0.569652i −0.362379 0.932031i \(-0.618035\pi\)
0.932031 + 0.362379i \(0.118035\pi\)
\(152\) −15.0000 15.0000i −1.21666 1.21666i
\(153\) 1.00000 + 1.00000i 0.0808452 + 0.0808452i
\(154\) 2.00000 + 2.00000i 0.161165 + 0.161165i
\(155\) 0 0
\(156\) −5.00000 1.00000i −0.400320 0.0800641i
\(157\) −13.0000 13.0000i −1.03751 1.03751i −0.999268 0.0382445i \(-0.987823\pi\)
−0.0382445 0.999268i \(-0.512177\pi\)
\(158\) −2.00000 −0.159111
\(159\) 10.0000i 0.793052i
\(160\) 0 0
\(161\) 6.00000 + 6.00000i 0.472866 + 0.472866i
\(162\) 5.00000i 0.392837i
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) −7.00000 7.00000i −0.546608 0.546608i
\(165\) 0 0
\(166\) 6.00000i 0.465690i
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 6.00000 + 6.00000i 0.462910 + 0.462910i
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 0 0
\(171\) 5.00000 + 5.00000i 0.382360 + 0.382360i
\(172\) −1.00000 1.00000i −0.0762493 0.0762493i
\(173\) −11.0000 11.0000i −0.836315 0.836315i 0.152057 0.988372i \(-0.451410\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 1.00000i 0.0753778 0.0753778i
\(177\) −14.0000 −1.05230
\(178\) −5.00000 + 5.00000i −0.374766 + 0.374766i
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 8.00000i 0.594635i 0.954779 + 0.297318i \(0.0960920\pi\)
−0.954779 + 0.297318i \(0.903908\pi\)
\(182\) 6.00000 4.00000i 0.444750 0.296500i
\(183\) 14.0000 14.0000i 1.03491 1.03491i
\(184\) 9.00000 9.00000i 0.663489 0.663489i
\(185\) 0 0
\(186\) 10.0000i 0.733236i
\(187\) 2.00000i 0.146254i
\(188\) −6.00000 −0.437595
\(189\) −8.00000 8.00000i −0.581914 0.581914i
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 7.00000 7.00000i 0.505181 0.505181i
\(193\) 18.0000i 1.29567i 0.761781 + 0.647834i \(0.224325\pi\)
−0.761781 + 0.647834i \(0.775675\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) −1.00000 + 1.00000i −0.0710669 + 0.0710669i
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −4.00000 4.00000i −0.282138 0.282138i
\(202\) −12.0000 −0.844317
\(203\) 0 0
\(204\) 2.00000i 0.140028i
\(205\) 0 0
\(206\) 7.00000 7.00000i 0.487713 0.487713i
\(207\) −3.00000 + 3.00000i −0.208514 + 0.208514i
\(208\) −2.00000 3.00000i −0.138675 0.208013i
\(209\) 10.0000i 0.691714i
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −5.00000 + 5.00000i −0.343401 + 0.343401i
\(213\) −2.00000 −0.137038
\(214\) −7.00000 + 7.00000i −0.478510 + 0.478510i
\(215\) 0 0
\(216\) −12.0000 + 12.0000i −0.816497 + 0.816497i
\(217\) 10.0000 + 10.0000i 0.678844 + 0.678844i
\(218\) 9.00000 + 9.00000i 0.609557 + 0.609557i
\(219\) 10.0000 + 10.0000i 0.675737 + 0.675737i
\(220\) 0 0
\(221\) 5.00000 + 1.00000i 0.336336 + 0.0672673i
\(222\) 0 0
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) 10.0000i 0.668153i
\(225\) 0 0
\(226\) 5.00000 + 5.00000i 0.332595 + 0.332595i
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 10.0000i 0.662266i
\(229\) 3.00000 + 3.00000i 0.198246 + 0.198246i 0.799248 0.601002i \(-0.205232\pi\)
−0.601002 + 0.799248i \(0.705232\pi\)
\(230\) 0 0
\(231\) 4.00000i 0.263181i
\(232\) 0 0
\(233\) 1.00000 + 1.00000i 0.0655122 + 0.0655122i 0.739104 0.673592i \(-0.235249\pi\)
−0.673592 + 0.739104i \(0.735249\pi\)
\(234\) 2.00000 + 3.00000i 0.130744 + 0.196116i
\(235\) 0 0
\(236\) 7.00000 + 7.00000i 0.455661 + 0.455661i
\(237\) 2.00000 + 2.00000i 0.129914 + 0.129914i
\(238\) −2.00000 2.00000i −0.129641 0.129641i
\(239\) −3.00000 + 3.00000i −0.194054 + 0.194054i −0.797445 0.603391i \(-0.793816\pi\)
0.603391 + 0.797445i \(0.293816\pi\)
\(240\) 0 0
\(241\) 17.0000 17.0000i 1.09507 1.09507i 0.100088 0.994979i \(-0.468088\pi\)
0.994979 0.100088i \(-0.0319123\pi\)
\(242\) 9.00000 0.578542
\(243\) 7.00000 7.00000i 0.449050 0.449050i
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) 14.0000i 0.892607i
\(247\) 25.0000 + 5.00000i 1.59071 + 0.318142i
\(248\) 15.0000 15.0000i 0.952501 0.952501i
\(249\) 6.00000 6.00000i 0.380235 0.380235i
\(250\) 0 0
\(251\) 2.00000i 0.126239i −0.998006 0.0631194i \(-0.979895\pi\)
0.998006 0.0631194i \(-0.0201049\pi\)
\(252\) 2.00000i 0.125988i
\(253\) −6.00000 −0.377217
\(254\) −9.00000 9.00000i −0.564710 0.564710i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −11.0000 + 11.0000i −0.686161 + 0.686161i −0.961381 0.275220i \(-0.911249\pi\)
0.275220 + 0.961381i \(0.411249\pi\)
\(258\) 2.00000i 0.124515i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000i 1.23560i
\(263\) −1.00000 + 1.00000i −0.0616626 + 0.0616626i −0.737266 0.675603i \(-0.763883\pi\)
0.675603 + 0.737266i \(0.263883\pi\)
\(264\) −6.00000 −0.369274
\(265\) 0 0
\(266\) −10.0000 10.0000i −0.613139 0.613139i
\(267\) 10.0000 0.611990
\(268\) 4.00000i 0.244339i
\(269\) 12.0000i 0.731653i 0.930683 + 0.365826i \(0.119214\pi\)
−0.930683 + 0.365826i \(0.880786\pi\)
\(270\) 0 0
\(271\) −9.00000 + 9.00000i −0.546711 + 0.546711i −0.925488 0.378777i \(-0.876345\pi\)
0.378777 + 0.925488i \(0.376345\pi\)
\(272\) −1.00000 + 1.00000i −0.0606339 + 0.0606339i
\(273\) −10.0000 2.00000i −0.605228 0.121046i
\(274\) 16.0000i 0.966595i
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) −15.0000 + 15.0000i −0.901263 + 0.901263i −0.995545 0.0942828i \(-0.969944\pi\)
0.0942828 + 0.995545i \(0.469944\pi\)
\(278\) −14.0000 −0.839664
\(279\) −5.00000 + 5.00000i −0.299342 + 0.299342i
\(280\) 0 0
\(281\) 1.00000 1.00000i 0.0596550 0.0596550i −0.676650 0.736305i \(-0.736569\pi\)
0.736305 + 0.676650i \(0.236569\pi\)
\(282\) −6.00000 6.00000i −0.357295 0.357295i
\(283\) −9.00000 9.00000i −0.534994 0.534994i 0.387060 0.922055i \(-0.373491\pi\)
−0.922055 + 0.387060i \(0.873491\pi\)
\(284\) 1.00000 + 1.00000i 0.0593391 + 0.0593391i
\(285\) 0 0
\(286\) −1.00000 + 5.00000i −0.0591312 + 0.295656i
\(287\) −14.0000 14.0000i −0.826394 0.826394i
\(288\) 5.00000 0.294628
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 2.00000 + 2.00000i 0.117242 + 0.117242i
\(292\) 10.0000i 0.585206i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) −3.00000 3.00000i −0.174964 0.174964i
\(295\) 0 0
\(296\) 0 0
\(297\) 8.00000 0.464207
\(298\) −3.00000 3.00000i −0.173785 0.173785i
\(299\) −3.00000 + 15.0000i −0.173494 + 0.867472i
\(300\) 0 0
\(301\) −2.00000 2.00000i −0.115278 0.115278i
\(302\) −7.00000 7.00000i −0.402805 0.402805i
\(303\) 12.0000 + 12.0000i 0.689382 + 0.689382i
\(304\) −5.00000 + 5.00000i −0.286770 + 0.286770i
\(305\) 0 0
\(306\) 1.00000 1.00000i 0.0571662 0.0571662i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) −2.00000 + 2.00000i −0.113961 + 0.113961i
\(309\) −14.0000 −0.796432
\(310\) 0 0
\(311\) 6.00000i 0.340229i −0.985424 0.170114i \(-0.945586\pi\)
0.985424 0.170114i \(-0.0544137\pi\)
\(312\) −3.00000 + 15.0000i −0.169842 + 0.849208i
\(313\) −9.00000 + 9.00000i −0.508710 + 0.508710i −0.914130 0.405420i \(-0.867125\pi\)
0.405420 + 0.914130i \(0.367125\pi\)
\(314\) −13.0000 + 13.0000i −0.733632 + 0.733632i
\(315\) 0 0
\(316\) 2.00000i 0.112509i
\(317\) 14.0000i 0.786318i 0.919470 + 0.393159i \(0.128618\pi\)
−0.919470 + 0.393159i \(0.871382\pi\)
\(318\) −10.0000 −0.560772
\(319\) 0 0
\(320\) 0 0
\(321\) 14.0000 0.781404
\(322\) 6.00000 6.00000i 0.334367 0.334367i
\(323\) 10.0000i 0.556415i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 18.0000i 0.995402i
\(328\) −21.0000 + 21.0000i −1.15953 + 1.15953i
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) −3.00000 3.00000i −0.164895 0.164895i 0.619836 0.784731i \(-0.287199\pi\)
−0.784731 + 0.619836i \(0.787199\pi\)
\(332\) −6.00000 −0.329293
\(333\) 0 0
\(334\) 18.0000i 0.984916i
\(335\) 0 0
\(336\) 2.00000 2.00000i 0.109109 0.109109i
\(337\) 13.0000 13.0000i 0.708155 0.708155i −0.257992 0.966147i \(-0.583061\pi\)
0.966147 + 0.257992i \(0.0830608\pi\)
\(338\) 12.0000 + 5.00000i 0.652714 + 0.271964i
\(339\) 10.0000i 0.543125i
\(340\) 0 0
\(341\) −10.0000 −0.541530
\(342\) 5.00000 5.00000i 0.270369 0.270369i
\(343\) −20.0000 −1.07990
\(344\) −3.00000 + 3.00000i −0.161749 + 0.161749i
\(345\) 0 0
\(346\) −11.0000 + 11.0000i −0.591364 + 0.591364i
\(347\) −3.00000 3.00000i −0.161048 0.161048i 0.621983 0.783031i \(-0.286327\pi\)
−0.783031 + 0.621983i \(0.786327\pi\)
\(348\) 0 0
\(349\) −9.00000 9.00000i −0.481759 0.481759i 0.423934 0.905693i \(-0.360649\pi\)
−0.905693 + 0.423934i \(0.860649\pi\)
\(350\) 0 0
\(351\) 4.00000 20.0000i 0.213504 1.06752i
\(352\) 5.00000 + 5.00000i 0.266501 + 0.266501i
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 14.0000i 0.744092i
\(355\) 0 0
\(356\) −5.00000 5.00000i −0.264999 0.264999i
\(357\) 4.00000i 0.211702i
\(358\) 20.0000i 1.05703i
\(359\) −1.00000 1.00000i −0.0527780 0.0527780i 0.680225 0.733003i \(-0.261882\pi\)
−0.733003 + 0.680225i \(0.761882\pi\)
\(360\) 0 0
\(361\) 31.0000i 1.63158i
\(362\) 8.00000 0.420471
\(363\) −9.00000 9.00000i −0.472377 0.472377i
\(364\) 4.00000 + 6.00000i 0.209657 + 0.314485i
\(365\) 0 0
\(366\) −14.0000 14.0000i −0.731792 0.731792i
\(367\) 1.00000 + 1.00000i 0.0521996 + 0.0521996i 0.732725 0.680525i \(-0.238248\pi\)
−0.680525 + 0.732725i \(0.738248\pi\)
\(368\) −3.00000 3.00000i −0.156386 0.156386i
\(369\) 7.00000 7.00000i 0.364405 0.364405i
\(370\) 0 0
\(371\) −10.0000 + 10.0000i −0.519174 + 0.519174i
\(372\) −10.0000 −0.518476
\(373\) 15.0000 15.0000i 0.776671 0.776671i −0.202593 0.979263i \(-0.564937\pi\)
0.979263 + 0.202593i \(0.0649367\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) −8.00000 + 8.00000i −0.411476 + 0.411476i
\(379\) 1.00000 1.00000i 0.0513665 0.0513665i −0.680957 0.732323i \(-0.738436\pi\)
0.732323 + 0.680957i \(0.238436\pi\)
\(380\) 0 0
\(381\) 18.0000i 0.922168i
\(382\) 8.00000i 0.409316i
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) 3.00000 + 3.00000i 0.153093 + 0.153093i
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) 1.00000 1.00000i 0.0508329 0.0508329i
\(388\) 2.00000i 0.101535i
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 9.00000i 0.454569i
\(393\) 20.0000 20.0000i 1.00887 1.00887i
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) −1.00000 1.00000i −0.0502519 0.0502519i
\(397\) −16.0000 −0.803017 −0.401508 0.915855i \(-0.631514\pi\)
−0.401508 + 0.915855i \(0.631514\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 20.0000i 1.00125i
\(400\) 0 0
\(401\) −11.0000 + 11.0000i −0.549314 + 0.549314i −0.926242 0.376929i \(-0.876980\pi\)
0.376929 + 0.926242i \(0.376980\pi\)
\(402\) −4.00000 + 4.00000i −0.199502 + 0.199502i
\(403\) −5.00000 + 25.0000i −0.249068 + 1.24534i
\(404\) 12.0000i 0.597022i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) 7.00000 7.00000i 0.346128 0.346128i −0.512537 0.858665i \(-0.671294\pi\)
0.858665 + 0.512537i \(0.171294\pi\)
\(410\) 0 0
\(411\) −16.0000 + 16.0000i −0.789222 + 0.789222i
\(412\) 7.00000 + 7.00000i 0.344865 + 0.344865i
\(413\) 14.0000 + 14.0000i 0.688895 + 0.688895i
\(414\) 3.00000 + 3.00000i 0.147442 + 0.147442i
\(415\) 0 0
\(416\) 15.0000 10.0000i 0.735436 0.490290i
\(417\) 14.0000 + 14.0000i 0.685583 + 0.685583i
\(418\) 10.0000 0.489116
\(419\) 38.0000i 1.85642i −0.372055 0.928211i \(-0.621347\pi\)
0.372055 0.928211i \(-0.378653\pi\)
\(420\) 0 0
\(421\) −11.0000 11.0000i −0.536107 0.536107i 0.386276 0.922383i \(-0.373761\pi\)
−0.922383 + 0.386276i \(0.873761\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 6.00000i 0.291730i
\(424\) 15.0000 + 15.0000i 0.728464 + 0.728464i
\(425\) 0 0
\(426\) 2.00000i 0.0969003i
\(427\) −28.0000 −1.35501
\(428\) −7.00000 7.00000i −0.338358 0.338358i
\(429\) 6.00000 4.00000i 0.289683 0.193122i
\(430\) 0 0
\(431\) 13.0000 + 13.0000i 0.626188 + 0.626188i 0.947107 0.320919i \(-0.103992\pi\)
−0.320919 + 0.947107i \(0.603992\pi\)
\(432\) 4.00000 + 4.00000i 0.192450 + 0.192450i
\(433\) 17.0000 + 17.0000i 0.816968 + 0.816968i 0.985668 0.168700i \(-0.0539568\pi\)
−0.168700 + 0.985668i \(0.553957\pi\)
\(434\) 10.0000 10.0000i 0.480015 0.480015i
\(435\) 0 0
\(436\) −9.00000 + 9.00000i −0.431022 + 0.431022i
\(437\) 30.0000 1.43509
\(438\) 10.0000 10.0000i 0.477818 0.477818i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 3.00000i 0.142857i
\(442\) 1.00000 5.00000i 0.0475651 0.237826i
\(443\) −25.0000 + 25.0000i −1.18779 + 1.18779i −0.210108 + 0.977678i \(0.567381\pi\)
−0.977678 + 0.210108i \(0.932619\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.00000i 0.0947027i
\(447\) 6.00000i 0.283790i
\(448\) −14.0000 −0.661438
\(449\) 3.00000 + 3.00000i 0.141579 + 0.141579i 0.774344 0.632765i \(-0.218080\pi\)
−0.632765 + 0.774344i \(0.718080\pi\)
\(450\) 0 0
\(451\) 14.0000 0.659234
\(452\) −5.00000 + 5.00000i −0.235180 + 0.235180i
\(453\) 14.0000i 0.657777i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) 2.00000i 0.0935561i −0.998905 0.0467780i \(-0.985105\pi\)
0.998905 0.0467780i \(-0.0148953\pi\)
\(458\) 3.00000 3.00000i 0.140181 0.140181i
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) 17.0000 + 17.0000i 0.791769 + 0.791769i 0.981782 0.190013i \(-0.0608529\pi\)
−0.190013 + 0.981782i \(0.560853\pi\)
\(462\) −4.00000 −0.186097
\(463\) 24.0000i 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.00000 1.00000i 0.0463241 0.0463241i
\(467\) 9.00000 9.00000i 0.416470 0.416470i −0.467515 0.883985i \(-0.654851\pi\)
0.883985 + 0.467515i \(0.154851\pi\)
\(468\) −3.00000 + 2.00000i −0.138675 + 0.0924500i
\(469\) 8.00000i 0.369406i
\(470\) 0 0
\(471\) 26.0000 1.19802
\(472\) 21.0000 21.0000i 0.966603 0.966603i
\(473\) 2.00000 0.0919601
\(474\) 2.00000 2.00000i 0.0918630 0.0918630i
\(475\) 0 0
\(476\) 2.00000 2.00000i 0.0916698 0.0916698i
\(477\) −5.00000 5.00000i −0.228934 0.228934i
\(478\) 3.00000 + 3.00000i 0.137217 + 0.137217i
\(479\) 7.00000 + 7.00000i 0.319838 + 0.319838i 0.848705 0.528867i \(-0.177383\pi\)
−0.528867 + 0.848705i \(0.677383\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −17.0000 17.0000i −0.774329 0.774329i
\(483\) −12.0000 −0.546019
\(484\) 9.00000i 0.409091i
\(485\) 0 0
\(486\) −7.00000 7.00000i −0.317526 0.317526i
\(487\) 16.0000i 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) 42.0000i 1.90125i
\(489\) −4.00000 4.00000i −0.180886 0.180886i
\(490\) 0 0
\(491\) 22.0000i 0.992846i 0.868081 + 0.496423i \(0.165354\pi\)
−0.868081 + 0.496423i \(0.834646\pi\)
\(492\) 14.0000 0.631169
\(493\) 0 0
\(494\) 5.00000 25.0000i 0.224961 1.12480i
\(495\) 0 0
\(496\) −5.00000 5.00000i −0.224507 0.224507i
\(497\) 2.00000 + 2.00000i 0.0897123 + 0.0897123i
\(498\) −6.00000 6.00000i −0.268866 0.268866i
\(499\) −3.00000 + 3.00000i −0.134298 + 0.134298i −0.771060 0.636762i \(-0.780273\pi\)
0.636762 + 0.771060i \(0.280273\pi\)
\(500\) 0 0
\(501\) −18.0000 + 18.0000i −0.804181 + 0.804181i
\(502\) −2.00000 −0.0892644
\(503\) 3.00000 3.00000i 0.133763 0.133763i −0.637055 0.770818i \(-0.719848\pi\)
0.770818 + 0.637055i \(0.219848\pi\)
\(504\) 6.00000 0.267261
\(505\) 0 0
\(506\) 6.00000i 0.266733i
\(507\) −7.00000 17.0000i −0.310881 0.754997i
\(508\) 9.00000 9.00000i 0.399310 0.399310i
\(509\) −13.0000 + 13.0000i −0.576215 + 0.576215i −0.933858 0.357643i \(-0.883580\pi\)
0.357643 + 0.933858i \(0.383580\pi\)
\(510\) 0 0
\(511\) 20.0000i 0.884748i
\(512\) 11.0000i 0.486136i
\(513\) −40.0000 −1.76604
\(514\) 11.0000 + 11.0000i 0.485189 + 0.485189i
\(515\) 0 0
\(516\) 2.00000 0.0880451
\(517\) 6.00000 6.00000i 0.263880 0.263880i
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −9.00000 + 9.00000i −0.393543 + 0.393543i −0.875948 0.482405i \(-0.839763\pi\)
0.482405 + 0.875948i \(0.339763\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) 1.00000 + 1.00000i 0.0436021 + 0.0436021i
\(527\) 10.0000 0.435607
\(528\) 2.00000i 0.0870388i
\(529\) 5.00000i 0.217391i
\(530\) 0 0
\(531\) −7.00000 + 7.00000i −0.303774 + 0.303774i
\(532\) 10.0000 10.0000i 0.433555 0.433555i
\(533\) 7.00000 35.0000i 0.303204 1.51602i
\(534\) 10.0000i 0.432742i
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) −20.0000 + 20.0000i −0.863064 + 0.863064i
\(538\) 12.0000 0.517357
\(539\) 3.00000 3.00000i 0.129219 0.129219i
\(540\) 0 0
\(541\) 9.00000 9.00000i 0.386940 0.386940i −0.486654 0.873595i \(-0.661783\pi\)
0.873595 + 0.486654i \(0.161783\pi\)
\(542\) 9.00000 + 9.00000i 0.386583 + 0.386583i
\(543\) −8.00000 8.00000i −0.343313 0.343313i
\(544\) −5.00000 5.00000i −0.214373 0.214373i
\(545\) 0 0
\(546\) −2.00000 + 10.0000i −0.0855921 + 0.427960i
\(547\) 9.00000 + 9.00000i 0.384812 + 0.384812i 0.872832 0.488020i \(-0.162281\pi\)
−0.488020 + 0.872832i \(0.662281\pi\)
\(548\) 16.0000 0.683486
\(549\) 14.0000i 0.597505i
\(550\) 0 0
\(551\) 0 0
\(552\) 18.0000i 0.766131i
\(553\) 4.00000i 0.170097i
\(554\) 15.0000 + 15.0000i 0.637289 + 0.637289i
\(555\) 0 0
\(556\) 14.0000i 0.593732i
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 5.00000 + 5.00000i 0.211667 + 0.211667i
\(559\) 1.00000 5.00000i 0.0422955 0.211477i
\(560\) 0 0
\(561\) −2.00000 2.00000i −0.0844401 0.0844401i
\(562\) −1.00000 1.00000i −0.0421825 0.0421825i
\(563\) 15.0000 + 15.0000i 0.632175 + 0.632175i 0.948613 0.316438i \(-0.102487\pi\)
−0.316438 + 0.948613i \(0.602487\pi\)
\(564\) 6.00000 6.00000i 0.252646 0.252646i
\(565\) 0 0
\(566\) −9.00000 + 9.00000i −0.378298 + 0.378298i
\(567\) 10.0000 0.419961
\(568\) 3.00000 3.00000i 0.125877 0.125877i
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 6.00000i 0.251092i 0.992088 + 0.125546i \(0.0400683\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(572\) −5.00000 1.00000i −0.209061 0.0418121i
\(573\) −8.00000 + 8.00000i −0.334205 + 0.334205i
\(574\) −14.0000 + 14.0000i −0.584349 + 0.584349i
\(575\) 0 0
\(576\) 7.00000i 0.291667i
\(577\) 46.0000i 1.91501i −0.288425 0.957503i \(-0.593132\pi\)
0.288425 0.957503i \(-0.406868\pi\)
\(578\) 15.0000 0.623918
\(579\) −18.0000 18.0000i −0.748054 0.748054i
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 2.00000 2.00000i 0.0829027 0.0829027i
\(583\) 10.0000i 0.414158i
\(584\) −30.0000 −1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 4.00000i 0.165098i 0.996587 + 0.0825488i \(0.0263060\pi\)
−0.996587 + 0.0825488i \(0.973694\pi\)
\(588\) 3.00000 3.00000i 0.123718 0.123718i
\(589\) 50.0000 2.06021
\(590\) 0 0
\(591\) 6.00000 + 6.00000i 0.246807 + 0.246807i
\(592\) 0 0
\(593\) 10.0000i 0.410651i 0.978694 + 0.205325i \(0.0658253\pi\)
−0.978694 + 0.205325i \(0.934175\pi\)
\(594\) 8.00000i 0.328244i
\(595\) 0 0
\(596\) 3.00000 3.00000i 0.122885 0.122885i
\(597\) −8.00000 + 8.00000i −0.327418 + 0.327418i
\(598\) 15.0000 + 3.00000i 0.613396 + 0.122679i
\(599\) 30.0000i 1.22577i 0.790173 + 0.612883i \(0.209990\pi\)
−0.790173 + 0.612883i \(0.790010\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) −2.00000 + 2.00000i −0.0815139 + 0.0815139i
\(603\) −4.00000 −0.162893
\(604\) 7.00000 7.00000i 0.284826 0.284826i
\(605\) 0 0
\(606\) 12.0000 12.0000i 0.487467 0.487467i
\(607\) 13.0000 + 13.0000i 0.527654 + 0.527654i 0.919872 0.392218i \(-0.128292\pi\)
−0.392218 + 0.919872i \(0.628292\pi\)
\(608\) −25.0000 25.0000i −1.01388 1.01388i
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 18.0000i −0.485468 0.728202i
\(612\) 1.00000 + 1.00000i 0.0404226 + 0.0404226i
\(613\) 20.0000 0.807792 0.403896 0.914805i \(-0.367656\pi\)
0.403896 + 0.914805i \(0.367656\pi\)
\(614\) 18.0000i 0.726421i
\(615\) 0 0
\(616\) 6.00000 + 6.00000i 0.241747 + 0.241747i
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) 14.0000i 0.563163i
\(619\) −25.0000 25.0000i −1.00483 1.00483i −0.999988 0.00484658i \(-0.998457\pi\)
−0.00484658 0.999988i \(-0.501543\pi\)
\(620\) 0 0
\(621\) 24.0000i 0.963087i
\(622\) −6.00000 −0.240578
\(623\) −10.0000 10.0000i −0.400642 0.400642i
\(624\) 5.00000 + 1.00000i 0.200160 + 0.0400320i
\(625\) 0 0
\(626\) 9.00000 + 9.00000i 0.359712 + 0.359712i
\(627\) −10.0000 10.0000i −0.399362 0.399362i
\(628\) −13.0000 13.0000i −0.518756 0.518756i
\(629\) 0 0
\(630\) 0 0
\(631\) 11.0000 11.0000i 0.437903 0.437903i −0.453403 0.891306i \(-0.649790\pi\)
0.891306 + 0.453403i \(0.149790\pi\)
\(632\) −6.00000 −0.238667
\(633\) −4.00000 + 4.00000i −0.158986 + 0.158986i
\(634\) 14.0000 0.556011
\(635\) 0 0
\(636\) 10.0000i 0.396526i
\(637\) −6.00000 9.00000i −0.237729 0.356593i
\(638\) 0 0
\(639\) −1.00000 + 1.00000i −0.0395594 + 0.0395594i
\(640\) 0 0
\(641\) 24.0000i 0.947943i 0.880540 + 0.473972i \(0.157180\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(642\) 14.0000i 0.552536i
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 6.00000 + 6.00000i 0.236433 + 0.236433i
\(645\) 0 0
\(646\) −10.0000 −0.393445
\(647\) 1.00000 1.00000i 0.0393141 0.0393141i −0.687176 0.726491i \(-0.741150\pi\)
0.726491 + 0.687176i \(0.241150\pi\)
\(648\) 15.0000i 0.589256i
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 4.00000i 0.156652i
\(653\) −13.0000 + 13.0000i −0.508729 + 0.508729i −0.914136 0.405407i \(-0.867130\pi\)
0.405407 + 0.914136i \(0.367130\pi\)
\(654\) −18.0000 −0.703856
\(655\) 0 0
\(656\) 7.00000 + 7.00000i 0.273304 + 0.273304i
\(657\) 10.0000 0.390137
\(658\) 12.0000i 0.467809i
\(659\) 26.0000i 1.01282i 0.862294 + 0.506408i \(0.169027\pi\)
−0.862294 + 0.506408i \(0.830973\pi\)
\(660\) 0 0
\(661\) 17.0000 17.0000i 0.661223 0.661223i −0.294445 0.955668i \(-0.595135\pi\)
0.955668 + 0.294445i \(0.0951348\pi\)
\(662\) −3.00000 + 3.00000i −0.116598 + 0.116598i
\(663\) −6.00000 + 4.00000i −0.233021 + 0.155347i
\(664\) 18.0000i 0.698535i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000 0.696441
\(669\) 2.00000 2.00000i 0.0773245 0.0773245i
\(670\) 0 0
\(671\) 14.0000 14.0000i 0.540464 0.540464i
\(672\) 10.0000 + 10.0000i 0.385758 + 0.385758i
\(673\) −15.0000 15.0000i −0.578208 0.578208i 0.356202 0.934409i \(-0.384072\pi\)
−0.934409 + 0.356202i \(0.884072\pi\)
\(674\) −13.0000 13.0000i −0.500741 0.500741i
\(675\) 0 0
\(676\) −5.00000 + 12.0000i −0.192308 + 0.461538i
\(677\) 23.0000 + 23.0000i 0.883962 + 0.883962i 0.993935 0.109973i \(-0.0350764\pi\)
−0.109973 + 0.993935i \(0.535076\pi\)
\(678\) −10.0000 −0.384048
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) −12.0000 12.0000i −0.459841 0.459841i
\(682\) 10.0000i 0.382920i
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 5.00000 + 5.00000i 0.191180 + 0.191180i
\(685\) 0 0
\(686\) 20.0000i 0.763604i
\(687\) −6.00000 −0.228914
\(688\) 1.00000 + 1.00000i 0.0381246 + 0.0381246i
\(689\) −25.0000 5.00000i −0.952424 0.190485i
\(690\) 0 0
\(691\) −3.00000 3.00000i −0.114125 0.114125i 0.647738 0.761863i \(-0.275715\pi\)
−0.761863 + 0.647738i \(0.775715\pi\)
\(692\) −11.0000 11.0000i −0.418157 0.418157i
\(693\) −2.00000 2.00000i −0.0759737 0.0759737i
\(694\) −3.00000 + 3.00000i −0.113878 + 0.113878i
\(695\) 0 0
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) −9.00000 + 9.00000i −0.340655 + 0.340655i
\(699\) −2.00000 −0.0756469
\(700\) 0 0
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) −20.0000 4.00000i −0.754851 0.150970i
\(703\) 0 0
\(704\) 7.00000 7.00000i 0.263822 0.263822i
\(705\) 0 0
\(706\) 12.0000i 0.451626i
\(707\) 24.0000i 0.902613i
\(708\) −14.0000 −0.526152
\(709\) −29.0000 29.0000i −1.08912 1.08912i −0.995619 0.0934984i \(-0.970195\pi\)
−0.0934984 0.995619i \(-0.529805\pi\)
\(710\) 0 0
\(711\) 2.00000 0.0750059
\(712\) −15.0000 + 15.0000i −0.562149 + 0.562149i
\(713\) 30.0000i 1.12351i
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) 6.00000i 0.224074i
\(718\) −1.00000 + 1.00000i −0.0373197 + 0.0373197i
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) 14.0000 + 14.0000i 0.521387 + 0.521387i
\(722\) −31.0000 −1.15370
\(723\) 34.0000i 1.26447i
\(724\) 8.00000i 0.297318i
\(725\) 0 0
\(726\) −9.00000 + 9.00000i −0.334021 + 0.334021i
\(727\) −35.0000 + 35.0000i −1.29808 + 1.29808i −0.368418 + 0.929660i \(0.620100\pi\)
−0.929660 + 0.368418i \(0.879900\pi\)
\(728\) 18.0000 12.0000i 0.667124 0.444750i
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) −2.00000 −0.0739727
\(732\) 14.0000 14.0000i 0.517455 0.517455i
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 1.00000 1.00000i 0.0369107 0.0369107i
\(735\) 0 0
\(736\) 15.0000 15.0000i 0.552907 0.552907i
\(737\) −4.00000 4.00000i −0.147342 0.147342i
\(738\) −7.00000 7.00000i −0.257674 0.257674i
\(739\) 3.00000 + 3.00000i 0.110357 + 0.110357i 0.760129 0.649772i \(-0.225136\pi\)
−0.649772 + 0.760129i \(0.725136\pi\)
\(740\) 0 0
\(741\) −30.0000 + 20.0000i −1.10208 + 0.734718i
\(742\) 10.0000 + 10.0000i 0.367112 + 0.367112i
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 30.0000i 1.09985i
\(745\) 0 0
\(746\) −15.0000 15.0000i −0.549189 0.549189i
\(747\) 6.00000i 0.219529i
\(748\) 2.00000i 0.0731272i
\(749\) −14.0000 14.0000i −0.511549 0.511549i
\(750\) 0 0
\(751\) 50.0000i 1.82453i 0.409605 + 0.912263i \(0.365667\pi\)
−0.409605 + 0.912263i \(0.634333\pi\)
\(752\) 6.00000 0.218797
\(753\) 2.00000 + 2.00000i 0.0728841 + 0.0728841i
\(754\) 0 0
\(755\) 0 0
\(756\) −8.00000 8.00000i −0.290957 0.290957i
\(757\) 35.0000 + 35.0000i 1.27210 + 1.27210i 0.944986 + 0.327111i \(0.106075\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) −1.00000 1.00000i −0.0363216 0.0363216i
\(759\) 6.00000 6.00000i 0.217786 0.217786i
\(760\) 0 0
\(761\) −7.00000 + 7.00000i −0.253750 + 0.253750i −0.822506 0.568756i \(-0.807425\pi\)
0.568756 + 0.822506i \(0.307425\pi\)
\(762\) 18.0000 0.652071
\(763\) −18.0000 + 18.0000i −0.651644 + 0.651644i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 30.0000i 1.08394i
\(767\) −7.00000 + 35.0000i −0.252755 + 1.26378i
\(768\) 17.0000 17.0000i 0.613435 0.613435i
\(769\) 15.0000 15.0000i 0.540914 0.540914i −0.382883 0.923797i \(-0.625069\pi\)
0.923797 + 0.382883i \(0.125069\pi\)
\(770\) 0 0
\(771\) 22.0000i 0.792311i
\(772\) 18.0000i 0.647834i
\(773\) 32.0000 1.15096 0.575480 0.817816i \(-0.304815\pi\)
0.575480 + 0.817816i \(0.304815\pi\)
\(774\) −1.00000 1.00000i −0.0359443 0.0359443i
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 18.0000i 0.645331i
\(779\) −70.0000 −2.50801
\(780\) 0 0
\(