Properties

Label 325.2.f.a.18.1
Level $325$
Weight $2$
Character 325.18
Analytic conductor $2.595$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(18,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.18");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 18.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 325.18
Dual form 325.2.f.a.307.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-1.00000 - 1.00000i) q^{3} +1.00000 q^{4} +(1.00000 - 1.00000i) q^{6} +2.00000 q^{7} +3.00000i q^{8} -1.00000i q^{9} +O(q^{10})\) \(q+1.00000i q^{2} +(-1.00000 - 1.00000i) q^{3} +1.00000 q^{4} +(1.00000 - 1.00000i) q^{6} +2.00000 q^{7} +3.00000i q^{8} -1.00000i q^{9} +(-1.00000 - 1.00000i) q^{11} +(-1.00000 - 1.00000i) q^{12} +(2.00000 - 3.00000i) q^{13} +2.00000i q^{14} -1.00000 q^{16} +(1.00000 + 1.00000i) q^{17} +1.00000 q^{18} +(5.00000 + 5.00000i) q^{19} +(-2.00000 - 2.00000i) q^{21} +(1.00000 - 1.00000i) q^{22} +(3.00000 - 3.00000i) q^{23} +(3.00000 - 3.00000i) q^{24} +(3.00000 + 2.00000i) q^{26} +(-4.00000 + 4.00000i) q^{27} +2.00000 q^{28} +(5.00000 - 5.00000i) q^{31} +5.00000i q^{32} +2.00000i q^{33} +(-1.00000 + 1.00000i) q^{34} -1.00000i q^{36} +(-5.00000 + 5.00000i) q^{38} +(-5.00000 + 1.00000i) q^{39} +(-7.00000 + 7.00000i) q^{41} +(2.00000 - 2.00000i) q^{42} +(-1.00000 + 1.00000i) q^{43} +(-1.00000 - 1.00000i) q^{44} +(3.00000 + 3.00000i) q^{46} -6.00000 q^{47} +(1.00000 + 1.00000i) q^{48} -3.00000 q^{49} -2.00000i q^{51} +(2.00000 - 3.00000i) q^{52} +(-5.00000 - 5.00000i) q^{53} +(-4.00000 - 4.00000i) q^{54} +6.00000i q^{56} -10.0000i q^{57} +(7.00000 - 7.00000i) q^{59} -14.0000 q^{61} +(5.00000 + 5.00000i) q^{62} -2.00000i q^{63} -7.00000 q^{64} -2.00000 q^{66} -4.00000i q^{67} +(1.00000 + 1.00000i) q^{68} -6.00000 q^{69} +(1.00000 - 1.00000i) q^{71} +3.00000 q^{72} +10.0000i q^{73} +(5.00000 + 5.00000i) q^{76} +(-2.00000 - 2.00000i) q^{77} +(-1.00000 - 5.00000i) q^{78} +2.00000i q^{79} +5.00000 q^{81} +(-7.00000 - 7.00000i) q^{82} -6.00000 q^{83} +(-2.00000 - 2.00000i) q^{84} +(-1.00000 - 1.00000i) q^{86} +(3.00000 - 3.00000i) q^{88} +(-5.00000 + 5.00000i) q^{89} +(4.00000 - 6.00000i) q^{91} +(3.00000 - 3.00000i) q^{92} -10.0000 q^{93} -6.00000i q^{94} +(5.00000 - 5.00000i) q^{96} +2.00000i q^{97} -3.00000i q^{98} +(-1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{4} + 2 q^{6} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{4} + 2 q^{6} + 4 q^{7} - 2 q^{11} - 2 q^{12} + 4 q^{13} - 2 q^{16} + 2 q^{17} + 2 q^{18} + 10 q^{19} - 4 q^{21} + 2 q^{22} + 6 q^{23} + 6 q^{24} + 6 q^{26} - 8 q^{27} + 4 q^{28} + 10 q^{31} - 2 q^{34} - 10 q^{38} - 10 q^{39} - 14 q^{41} + 4 q^{42} - 2 q^{43} - 2 q^{44} + 6 q^{46} - 12 q^{47} + 2 q^{48} - 6 q^{49} + 4 q^{52} - 10 q^{53} - 8 q^{54} + 14 q^{59} - 28 q^{61} + 10 q^{62} - 14 q^{64} - 4 q^{66} + 2 q^{68} - 12 q^{69} + 2 q^{71} + 6 q^{72} + 10 q^{76} - 4 q^{77} - 2 q^{78} + 10 q^{81} - 14 q^{82} - 12 q^{83} - 4 q^{84} - 2 q^{86} + 6 q^{88} - 10 q^{89} + 8 q^{91} + 6 q^{92} - 20 q^{93} + 10 q^{96} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) −1.00000 1.00000i −0.577350 0.577350i 0.356822 0.934172i \(-0.383860\pi\)
−0.934172 + 0.356822i \(0.883860\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 1.00000i 0.408248 0.408248i
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.00000 1.00000i −0.301511 0.301511i 0.540094 0.841605i \(-0.318389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(12\) −1.00000 1.00000i −0.288675 0.288675i
\(13\) 2.00000 3.00000i 0.554700 0.832050i
\(14\) 2.00000i 0.534522i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 1.00000 0.235702
\(19\) 5.00000 + 5.00000i 1.14708 + 1.14708i 0.987124 + 0.159954i \(0.0511347\pi\)
0.159954 + 0.987124i \(0.448865\pi\)
\(20\) 0 0
\(21\) −2.00000 2.00000i −0.436436 0.436436i
\(22\) 1.00000 1.00000i 0.213201 0.213201i
\(23\) 3.00000 3.00000i 0.625543 0.625543i −0.321400 0.946943i \(-0.604153\pi\)
0.946943 + 0.321400i \(0.104153\pi\)
\(24\) 3.00000 3.00000i 0.612372 0.612372i
\(25\) 0 0
\(26\) 3.00000 + 2.00000i 0.588348 + 0.392232i
\(27\) −4.00000 + 4.00000i −0.769800 + 0.769800i
\(28\) 2.00000 0.377964
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 5.00000 5.00000i 0.898027 0.898027i −0.0972349 0.995261i \(-0.531000\pi\)
0.995261 + 0.0972349i \(0.0309998\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 2.00000i 0.348155i
\(34\) −1.00000 + 1.00000i −0.171499 + 0.171499i
\(35\) 0 0
\(36\) 1.00000i 0.166667i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −5.00000 + 5.00000i −0.811107 + 0.811107i
\(39\) −5.00000 + 1.00000i −0.800641 + 0.160128i
\(40\) 0 0
\(41\) −7.00000 + 7.00000i −1.09322 + 1.09322i −0.0980332 + 0.995183i \(0.531255\pi\)
−0.995183 + 0.0980332i \(0.968745\pi\)
\(42\) 2.00000 2.00000i 0.308607 0.308607i
\(43\) −1.00000 + 1.00000i −0.152499 + 0.152499i −0.779233 0.626734i \(-0.784391\pi\)
0.626734 + 0.779233i \(0.284391\pi\)
\(44\) −1.00000 1.00000i −0.150756 0.150756i
\(45\) 0 0
\(46\) 3.00000 + 3.00000i 0.442326 + 0.442326i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 1.00000 + 1.00000i 0.144338 + 0.144338i
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000i 0.280056i
\(52\) 2.00000 3.00000i 0.277350 0.416025i
\(53\) −5.00000 5.00000i −0.686803 0.686803i 0.274721 0.961524i \(-0.411414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) −4.00000 4.00000i −0.544331 0.544331i
\(55\) 0 0
\(56\) 6.00000i 0.801784i
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) 7.00000 7.00000i 0.911322 0.911322i −0.0850540 0.996376i \(-0.527106\pi\)
0.996376 + 0.0850540i \(0.0271063\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 5.00000 + 5.00000i 0.635001 + 0.635001i
\(63\) 2.00000i 0.251976i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 1.00000 + 1.00000i 0.121268 + 0.121268i
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 1.00000 1.00000i 0.118678 0.118678i −0.645273 0.763952i \(-0.723257\pi\)
0.763952 + 0.645273i \(0.223257\pi\)
\(72\) 3.00000 0.353553
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 5.00000 + 5.00000i 0.573539 + 0.573539i
\(77\) −2.00000 2.00000i −0.227921 0.227921i
\(78\) −1.00000 5.00000i −0.113228 0.566139i
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) −7.00000 7.00000i −0.773021 0.773021i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) −2.00000 2.00000i −0.218218 0.218218i
\(85\) 0 0
\(86\) −1.00000 1.00000i −0.107833 0.107833i
\(87\) 0 0
\(88\) 3.00000 3.00000i 0.319801 0.319801i
\(89\) −5.00000 + 5.00000i −0.529999 + 0.529999i −0.920572 0.390573i \(-0.872277\pi\)
0.390573 + 0.920572i \(0.372277\pi\)
\(90\) 0 0
\(91\) 4.00000 6.00000i 0.419314 0.628971i
\(92\) 3.00000 3.00000i 0.312772 0.312772i
\(93\) −10.0000 −1.03695
\(94\) 6.00000i 0.618853i
\(95\) 0 0
\(96\) 5.00000 5.00000i 0.510310 0.510310i
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 3.00000i 0.303046i
\(99\) −1.00000 + 1.00000i −0.100504 + 0.100504i
\(100\) 0 0
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 2.00000 0.198030
\(103\) 7.00000 7.00000i 0.689730 0.689730i −0.272442 0.962172i \(-0.587831\pi\)
0.962172 + 0.272442i \(0.0878312\pi\)
\(104\) 9.00000 + 6.00000i 0.882523 + 0.588348i
\(105\) 0 0
\(106\) 5.00000 5.00000i 0.485643 0.485643i
\(107\) −7.00000 + 7.00000i −0.676716 + 0.676716i −0.959256 0.282540i \(-0.908823\pi\)
0.282540 + 0.959256i \(0.408823\pi\)
\(108\) −4.00000 + 4.00000i −0.384900 + 0.384900i
\(109\) −9.00000 9.00000i −0.862044 0.862044i 0.129532 0.991575i \(-0.458653\pi\)
−0.991575 + 0.129532i \(0.958653\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) −5.00000 5.00000i −0.470360 0.470360i 0.431671 0.902031i \(-0.357924\pi\)
−0.902031 + 0.431671i \(0.857924\pi\)
\(114\) 10.0000 0.936586
\(115\) 0 0
\(116\) 0 0
\(117\) −3.00000 2.00000i −0.277350 0.184900i
\(118\) 7.00000 + 7.00000i 0.644402 + 0.644402i
\(119\) 2.00000 + 2.00000i 0.183340 + 0.183340i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 14.0000i 1.26750i
\(123\) 14.0000 1.26234
\(124\) 5.00000 5.00000i 0.449013 0.449013i
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) 9.00000 + 9.00000i 0.798621 + 0.798621i 0.982878 0.184257i \(-0.0589879\pi\)
−0.184257 + 0.982878i \(0.558988\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 2.00000i 0.174078i
\(133\) 10.0000 + 10.0000i 0.867110 + 0.867110i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −3.00000 + 3.00000i −0.257248 + 0.257248i
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 6.00000i 0.510754i
\(139\) 14.0000i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) 0 0
\(141\) 6.00000 + 6.00000i 0.505291 + 0.505291i
\(142\) 1.00000 + 1.00000i 0.0839181 + 0.0839181i
\(143\) −5.00000 + 1.00000i −0.418121 + 0.0836242i
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) 3.00000 + 3.00000i 0.247436 + 0.247436i
\(148\) 0 0
\(149\) 3.00000 + 3.00000i 0.245770 + 0.245770i 0.819232 0.573462i \(-0.194400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 7.00000 + 7.00000i 0.569652 + 0.569652i 0.932031 0.362379i \(-0.118035\pi\)
−0.362379 + 0.932031i \(0.618035\pi\)
\(152\) −15.0000 + 15.0000i −1.21666 + 1.21666i
\(153\) 1.00000 1.00000i 0.0808452 0.0808452i
\(154\) 2.00000 2.00000i 0.161165 0.161165i
\(155\) 0 0
\(156\) −5.00000 + 1.00000i −0.400320 + 0.0800641i
\(157\) −13.0000 + 13.0000i −1.03751 + 1.03751i −0.0382445 + 0.999268i \(0.512177\pi\)
−0.999268 + 0.0382445i \(0.987823\pi\)
\(158\) −2.00000 −0.159111
\(159\) 10.0000i 0.793052i
\(160\) 0 0
\(161\) 6.00000 6.00000i 0.472866 0.472866i
\(162\) 5.00000i 0.392837i
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) −7.00000 + 7.00000i −0.546608 + 0.546608i
\(165\) 0 0
\(166\) 6.00000i 0.465690i
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 6.00000 6.00000i 0.462910 0.462910i
\(169\) −5.00000 12.0000i −0.384615 0.923077i
\(170\) 0 0
\(171\) 5.00000 5.00000i 0.382360 0.382360i
\(172\) −1.00000 + 1.00000i −0.0762493 + 0.0762493i
\(173\) −11.0000 + 11.0000i −0.836315 + 0.836315i −0.988372 0.152057i \(-0.951410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 + 1.00000i 0.0753778 + 0.0753778i
\(177\) −14.0000 −1.05230
\(178\) −5.00000 5.00000i −0.374766 0.374766i
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 8.00000i 0.594635i −0.954779 0.297318i \(-0.903908\pi\)
0.954779 0.297318i \(-0.0960920\pi\)
\(182\) 6.00000 + 4.00000i 0.444750 + 0.296500i
\(183\) 14.0000 + 14.0000i 1.03491 + 1.03491i
\(184\) 9.00000 + 9.00000i 0.663489 + 0.663489i
\(185\) 0 0
\(186\) 10.0000i 0.733236i
\(187\) 2.00000i 0.146254i
\(188\) −6.00000 −0.437595
\(189\) −8.00000 + 8.00000i −0.581914 + 0.581914i
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 7.00000 + 7.00000i 0.505181 + 0.505181i
\(193\) 18.0000i 1.29567i −0.761781 0.647834i \(-0.775675\pi\)
0.761781 0.647834i \(-0.224325\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) −1.00000 1.00000i −0.0710669 0.0710669i
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −4.00000 + 4.00000i −0.282138 + 0.282138i
\(202\) −12.0000 −0.844317
\(203\) 0 0
\(204\) 2.00000i 0.140028i
\(205\) 0 0
\(206\) 7.00000 + 7.00000i 0.487713 + 0.487713i
\(207\) −3.00000 3.00000i −0.208514 0.208514i
\(208\) −2.00000 + 3.00000i −0.138675 + 0.208013i
\(209\) 10.0000i 0.691714i
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −5.00000 5.00000i −0.343401 0.343401i
\(213\) −2.00000 −0.137038
\(214\) −7.00000 7.00000i −0.478510 0.478510i
\(215\) 0 0
\(216\) −12.0000 12.0000i −0.816497 0.816497i
\(217\) 10.0000 10.0000i 0.678844 0.678844i
\(218\) 9.00000 9.00000i 0.609557 0.609557i
\(219\) 10.0000 10.0000i 0.675737 0.675737i
\(220\) 0 0
\(221\) 5.00000 1.00000i 0.336336 0.0672673i
\(222\) 0 0
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) 10.0000i 0.668153i
\(225\) 0 0
\(226\) 5.00000 5.00000i 0.332595 0.332595i
\(227\) 12.0000i 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 10.0000i 0.662266i
\(229\) 3.00000 3.00000i 0.198246 0.198246i −0.601002 0.799248i \(-0.705232\pi\)
0.799248 + 0.601002i \(0.205232\pi\)
\(230\) 0 0
\(231\) 4.00000i 0.263181i
\(232\) 0 0
\(233\) 1.00000 1.00000i 0.0655122 0.0655122i −0.673592 0.739104i \(-0.735249\pi\)
0.739104 + 0.673592i \(0.235249\pi\)
\(234\) 2.00000 3.00000i 0.130744 0.196116i
\(235\) 0 0
\(236\) 7.00000 7.00000i 0.455661 0.455661i
\(237\) 2.00000 2.00000i 0.129914 0.129914i
\(238\) −2.00000 + 2.00000i −0.129641 + 0.129641i
\(239\) −3.00000 3.00000i −0.194054 0.194054i 0.603391 0.797445i \(-0.293816\pi\)
−0.797445 + 0.603391i \(0.793816\pi\)
\(240\) 0 0
\(241\) 17.0000 + 17.0000i 1.09507 + 1.09507i 0.994979 + 0.100088i \(0.0319123\pi\)
0.100088 + 0.994979i \(0.468088\pi\)
\(242\) 9.00000 0.578542
\(243\) 7.00000 + 7.00000i 0.449050 + 0.449050i
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) 14.0000i 0.892607i
\(247\) 25.0000 5.00000i 1.59071 0.318142i
\(248\) 15.0000 + 15.0000i 0.952501 + 0.952501i
\(249\) 6.00000 + 6.00000i 0.380235 + 0.380235i
\(250\) 0 0
\(251\) 2.00000i 0.126239i 0.998006 + 0.0631194i \(0.0201049\pi\)
−0.998006 + 0.0631194i \(0.979895\pi\)
\(252\) 2.00000i 0.125988i
\(253\) −6.00000 −0.377217
\(254\) −9.00000 + 9.00000i −0.564710 + 0.564710i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −11.0000 11.0000i −0.686161 0.686161i 0.275220 0.961381i \(-0.411249\pi\)
−0.961381 + 0.275220i \(0.911249\pi\)
\(258\) 2.00000i 0.124515i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000i 1.23560i
\(263\) −1.00000 1.00000i −0.0616626 0.0616626i 0.675603 0.737266i \(-0.263883\pi\)
−0.737266 + 0.675603i \(0.763883\pi\)
\(264\) −6.00000 −0.369274
\(265\) 0 0
\(266\) −10.0000 + 10.0000i −0.613139 + 0.613139i
\(267\) 10.0000 0.611990
\(268\) 4.00000i 0.244339i
\(269\) 12.0000i 0.731653i −0.930683 0.365826i \(-0.880786\pi\)
0.930683 0.365826i \(-0.119214\pi\)
\(270\) 0 0
\(271\) −9.00000 9.00000i −0.546711 0.546711i 0.378777 0.925488i \(-0.376345\pi\)
−0.925488 + 0.378777i \(0.876345\pi\)
\(272\) −1.00000 1.00000i −0.0606339 0.0606339i
\(273\) −10.0000 + 2.00000i −0.605228 + 0.121046i
\(274\) 16.0000i 0.966595i
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) −15.0000 15.0000i −0.901263 0.901263i 0.0942828 0.995545i \(-0.469944\pi\)
−0.995545 + 0.0942828i \(0.969944\pi\)
\(278\) −14.0000 −0.839664
\(279\) −5.00000 5.00000i −0.299342 0.299342i
\(280\) 0 0
\(281\) 1.00000 + 1.00000i 0.0596550 + 0.0596550i 0.736305 0.676650i \(-0.236569\pi\)
−0.676650 + 0.736305i \(0.736569\pi\)
\(282\) −6.00000 + 6.00000i −0.357295 + 0.357295i
\(283\) −9.00000 + 9.00000i −0.534994 + 0.534994i −0.922055 0.387060i \(-0.873491\pi\)
0.387060 + 0.922055i \(0.373491\pi\)
\(284\) 1.00000 1.00000i 0.0593391 0.0593391i
\(285\) 0 0
\(286\) −1.00000 5.00000i −0.0591312 0.295656i
\(287\) −14.0000 + 14.0000i −0.826394 + 0.826394i
\(288\) 5.00000 0.294628
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 2.00000 2.00000i 0.117242 0.117242i
\(292\) 10.0000i 0.585206i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) −3.00000 + 3.00000i −0.174964 + 0.174964i
\(295\) 0 0
\(296\) 0 0
\(297\) 8.00000 0.464207
\(298\) −3.00000 + 3.00000i −0.173785 + 0.173785i
\(299\) −3.00000 15.0000i −0.173494 0.867472i
\(300\) 0 0
\(301\) −2.00000 + 2.00000i −0.115278 + 0.115278i
\(302\) −7.00000 + 7.00000i −0.402805 + 0.402805i
\(303\) 12.0000 12.0000i 0.689382 0.689382i
\(304\) −5.00000 5.00000i −0.286770 0.286770i
\(305\) 0 0
\(306\) 1.00000 + 1.00000i 0.0571662 + 0.0571662i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) −2.00000 2.00000i −0.113961 0.113961i
\(309\) −14.0000 −0.796432
\(310\) 0 0
\(311\) 6.00000i 0.340229i 0.985424 + 0.170114i \(0.0544137\pi\)
−0.985424 + 0.170114i \(0.945586\pi\)
\(312\) −3.00000 15.0000i −0.169842 0.849208i
\(313\) −9.00000 9.00000i −0.508710 0.508710i 0.405420 0.914130i \(-0.367125\pi\)
−0.914130 + 0.405420i \(0.867125\pi\)
\(314\) −13.0000 13.0000i −0.733632 0.733632i
\(315\) 0 0
\(316\) 2.00000i 0.112509i
\(317\) 14.0000i 0.786318i −0.919470 0.393159i \(-0.871382\pi\)
0.919470 0.393159i \(-0.128618\pi\)
\(318\) −10.0000 −0.560772
\(319\) 0 0
\(320\) 0 0
\(321\) 14.0000 0.781404
\(322\) 6.00000 + 6.00000i 0.334367 + 0.334367i
\(323\) 10.0000i 0.556415i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 18.0000i 0.995402i
\(328\) −21.0000 21.0000i −1.15953 1.15953i
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) −3.00000 + 3.00000i −0.164895 + 0.164895i −0.784731 0.619836i \(-0.787199\pi\)
0.619836 + 0.784731i \(0.287199\pi\)
\(332\) −6.00000 −0.329293
\(333\) 0 0
\(334\) 18.0000i 0.984916i
\(335\) 0 0
\(336\) 2.00000 + 2.00000i 0.109109 + 0.109109i
\(337\) 13.0000 + 13.0000i 0.708155 + 0.708155i 0.966147 0.257992i \(-0.0830608\pi\)
−0.257992 + 0.966147i \(0.583061\pi\)
\(338\) 12.0000 5.00000i 0.652714 0.271964i
\(339\) 10.0000i 0.543125i
\(340\) 0 0
\(341\) −10.0000 −0.541530
\(342\) 5.00000 + 5.00000i 0.270369 + 0.270369i
\(343\) −20.0000 −1.07990
\(344\) −3.00000 3.00000i −0.161749 0.161749i
\(345\) 0 0
\(346\) −11.0000 11.0000i −0.591364 0.591364i
\(347\) −3.00000 + 3.00000i −0.161048 + 0.161048i −0.783031 0.621983i \(-0.786327\pi\)
0.621983 + 0.783031i \(0.286327\pi\)
\(348\) 0 0
\(349\) −9.00000 + 9.00000i −0.481759 + 0.481759i −0.905693 0.423934i \(-0.860649\pi\)
0.423934 + 0.905693i \(0.360649\pi\)
\(350\) 0 0
\(351\) 4.00000 + 20.0000i 0.213504 + 1.06752i
\(352\) 5.00000 5.00000i 0.266501 0.266501i
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 14.0000i 0.744092i
\(355\) 0 0
\(356\) −5.00000 + 5.00000i −0.264999 + 0.264999i
\(357\) 4.00000i 0.211702i
\(358\) 20.0000i 1.05703i
\(359\) −1.00000 + 1.00000i −0.0527780 + 0.0527780i −0.733003 0.680225i \(-0.761882\pi\)
0.680225 + 0.733003i \(0.261882\pi\)
\(360\) 0 0
\(361\) 31.0000i 1.63158i
\(362\) 8.00000 0.420471
\(363\) −9.00000 + 9.00000i −0.472377 + 0.472377i
\(364\) 4.00000 6.00000i 0.209657 0.314485i
\(365\) 0 0
\(366\) −14.0000 + 14.0000i −0.731792 + 0.731792i
\(367\) 1.00000 1.00000i 0.0521996 0.0521996i −0.680525 0.732725i \(-0.738248\pi\)
0.732725 + 0.680525i \(0.238248\pi\)
\(368\) −3.00000 + 3.00000i −0.156386 + 0.156386i
\(369\) 7.00000 + 7.00000i 0.364405 + 0.364405i
\(370\) 0 0
\(371\) −10.0000 10.0000i −0.519174 0.519174i
\(372\) −10.0000 −0.518476
\(373\) 15.0000 + 15.0000i 0.776671 + 0.776671i 0.979263 0.202593i \(-0.0649367\pi\)
−0.202593 + 0.979263i \(0.564937\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) −8.00000 8.00000i −0.411476 0.411476i
\(379\) 1.00000 + 1.00000i 0.0513665 + 0.0513665i 0.732323 0.680957i \(-0.238436\pi\)
−0.680957 + 0.732323i \(0.738436\pi\)
\(380\) 0 0
\(381\) 18.0000i 0.922168i
\(382\) 8.00000i 0.409316i
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) 3.00000 3.00000i 0.153093 0.153093i
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) 1.00000 + 1.00000i 0.0508329 + 0.0508329i
\(388\) 2.00000i 0.101535i
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 9.00000i 0.454569i
\(393\) 20.0000 + 20.0000i 1.00887 + 1.00887i
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) −1.00000 + 1.00000i −0.0502519 + 0.0502519i
\(397\) −16.0000 −0.803017 −0.401508 0.915855i \(-0.631514\pi\)
−0.401508 + 0.915855i \(0.631514\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 20.0000i 1.00125i
\(400\) 0 0
\(401\) −11.0000 11.0000i −0.549314 0.549314i 0.376929 0.926242i \(-0.376980\pi\)
−0.926242 + 0.376929i \(0.876980\pi\)
\(402\) −4.00000 4.00000i −0.199502 0.199502i
\(403\) −5.00000 25.0000i −0.249068 1.24534i
\(404\) 12.0000i 0.597022i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) 7.00000 + 7.00000i 0.346128 + 0.346128i 0.858665 0.512537i \(-0.171294\pi\)
−0.512537 + 0.858665i \(0.671294\pi\)
\(410\) 0 0
\(411\) −16.0000 16.0000i −0.789222 0.789222i
\(412\) 7.00000 7.00000i 0.344865 0.344865i
\(413\) 14.0000 14.0000i 0.688895 0.688895i
\(414\) 3.00000 3.00000i 0.147442 0.147442i
\(415\) 0 0
\(416\) 15.0000 + 10.0000i 0.735436 + 0.490290i
\(417\) 14.0000 14.0000i 0.685583 0.685583i
\(418\) 10.0000 0.489116
\(419\) 38.0000i 1.85642i 0.372055 + 0.928211i \(0.378653\pi\)
−0.372055 + 0.928211i \(0.621347\pi\)
\(420\) 0 0
\(421\) −11.0000 + 11.0000i −0.536107 + 0.536107i −0.922383 0.386276i \(-0.873761\pi\)
0.386276 + 0.922383i \(0.373761\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 6.00000i 0.291730i
\(424\) 15.0000 15.0000i 0.728464 0.728464i
\(425\) 0 0
\(426\) 2.00000i 0.0969003i
\(427\) −28.0000 −1.35501
\(428\) −7.00000 + 7.00000i −0.338358 + 0.338358i
\(429\) 6.00000 + 4.00000i 0.289683 + 0.193122i
\(430\) 0 0
\(431\) 13.0000 13.0000i 0.626188 0.626188i −0.320919 0.947107i \(-0.603992\pi\)
0.947107 + 0.320919i \(0.103992\pi\)
\(432\) 4.00000 4.00000i 0.192450 0.192450i
\(433\) 17.0000 17.0000i 0.816968 0.816968i −0.168700 0.985668i \(-0.553957\pi\)
0.985668 + 0.168700i \(0.0539568\pi\)
\(434\) 10.0000 + 10.0000i 0.480015 + 0.480015i
\(435\) 0 0
\(436\) −9.00000 9.00000i −0.431022 0.431022i
\(437\) 30.0000 1.43509
\(438\) 10.0000 + 10.0000i 0.477818 + 0.477818i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 3.00000i 0.142857i
\(442\) 1.00000 + 5.00000i 0.0475651 + 0.237826i
\(443\) −25.0000 25.0000i −1.18779 1.18779i −0.977678 0.210108i \(-0.932619\pi\)
−0.210108 0.977678i \(-0.567381\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.00000i 0.0947027i
\(447\) 6.00000i 0.283790i
\(448\) −14.0000 −0.661438
\(449\) 3.00000 3.00000i 0.141579 0.141579i −0.632765 0.774344i \(-0.718080\pi\)
0.774344 + 0.632765i \(0.218080\pi\)
\(450\) 0 0
\(451\) 14.0000 0.659234
\(452\) −5.00000 5.00000i −0.235180 0.235180i
\(453\) 14.0000i 0.657777i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) 2.00000i 0.0935561i 0.998905 + 0.0467780i \(0.0148953\pi\)
−0.998905 + 0.0467780i \(0.985105\pi\)
\(458\) 3.00000 + 3.00000i 0.140181 + 0.140181i
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) 17.0000 17.0000i 0.791769 0.791769i −0.190013 0.981782i \(-0.560853\pi\)
0.981782 + 0.190013i \(0.0608529\pi\)
\(462\) −4.00000 −0.186097
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.00000 + 1.00000i 0.0463241 + 0.0463241i
\(467\) 9.00000 + 9.00000i 0.416470 + 0.416470i 0.883985 0.467515i \(-0.154851\pi\)
−0.467515 + 0.883985i \(0.654851\pi\)
\(468\) −3.00000 2.00000i −0.138675 0.0924500i
\(469\) 8.00000i 0.369406i
\(470\) 0 0
\(471\) 26.0000 1.19802
\(472\) 21.0000 + 21.0000i 0.966603 + 0.966603i
\(473\) 2.00000 0.0919601
\(474\) 2.00000 + 2.00000i 0.0918630 + 0.0918630i
\(475\) 0 0
\(476\) 2.00000 + 2.00000i 0.0916698 + 0.0916698i
\(477\) −5.00000 + 5.00000i −0.228934 + 0.228934i
\(478\) 3.00000 3.00000i 0.137217 0.137217i
\(479\) 7.00000 7.00000i 0.319838 0.319838i −0.528867 0.848705i \(-0.677383\pi\)
0.848705 + 0.528867i \(0.177383\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −17.0000 + 17.0000i −0.774329 + 0.774329i
\(483\) −12.0000 −0.546019
\(484\) 9.00000i 0.409091i
\(485\) 0 0
\(486\) −7.00000 + 7.00000i −0.317526 + 0.317526i
\(487\) 16.0000i 0.725029i 0.931978 + 0.362515i \(0.118082\pi\)
−0.931978 + 0.362515i \(0.881918\pi\)
\(488\) 42.0000i 1.90125i
\(489\) −4.00000 + 4.00000i −0.180886 + 0.180886i
\(490\) 0 0
\(491\) 22.0000i 0.992846i −0.868081 0.496423i \(-0.834646\pi\)
0.868081 0.496423i \(-0.165354\pi\)
\(492\) 14.0000 0.631169
\(493\) 0 0
\(494\) 5.00000 + 25.0000i 0.224961 + 1.12480i
\(495\) 0 0
\(496\) −5.00000 + 5.00000i −0.224507 + 0.224507i
\(497\) 2.00000 2.00000i 0.0897123 0.0897123i
\(498\) −6.00000 + 6.00000i −0.268866 + 0.268866i
\(499\) −3.00000 3.00000i −0.134298 0.134298i 0.636762 0.771060i \(-0.280273\pi\)
−0.771060 + 0.636762i \(0.780273\pi\)
\(500\) 0 0
\(501\) −18.0000 18.0000i −0.804181 0.804181i
\(502\) −2.00000 −0.0892644
\(503\) 3.00000 + 3.00000i 0.133763 + 0.133763i 0.770818 0.637055i \(-0.219848\pi\)
−0.637055 + 0.770818i \(0.719848\pi\)
\(504\) 6.00000 0.267261
\(505\) 0 0
\(506\) 6.00000i 0.266733i
\(507\) −7.00000 + 17.0000i −0.310881 + 0.754997i
\(508\) 9.00000 + 9.00000i 0.399310 + 0.399310i
\(509\) −13.0000 13.0000i −0.576215 0.576215i 0.357643 0.933858i \(-0.383580\pi\)
−0.933858 + 0.357643i \(0.883580\pi\)
\(510\) 0 0
\(511\) 20.0000i 0.884748i
\(512\) 11.0000i 0.486136i
\(513\) −40.0000 −1.76604
\(514\) 11.0000 11.0000i 0.485189 0.485189i
\(515\) 0 0
\(516\) 2.00000 0.0880451
\(517\) 6.00000 + 6.00000i 0.263880 + 0.263880i
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −9.00000 9.00000i −0.393543 0.393543i 0.482405 0.875948i \(-0.339763\pi\)
−0.875948 + 0.482405i \(0.839763\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) 1.00000 1.00000i 0.0436021 0.0436021i
\(527\) 10.0000 0.435607
\(528\) 2.00000i 0.0870388i
\(529\) 5.00000i 0.217391i
\(530\) 0 0
\(531\) −7.00000 7.00000i −0.303774 0.303774i
\(532\) 10.0000 + 10.0000i 0.433555 + 0.433555i
\(533\) 7.00000 + 35.0000i 0.303204 + 1.51602i
\(534\) 10.0000i 0.432742i
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) −20.0000 20.0000i −0.863064 0.863064i
\(538\) 12.0000 0.517357
\(539\) 3.00000 + 3.00000i 0.129219 + 0.129219i
\(540\) 0 0
\(541\) 9.00000 + 9.00000i 0.386940 + 0.386940i 0.873595 0.486654i \(-0.161783\pi\)
−0.486654 + 0.873595i \(0.661783\pi\)
\(542\) 9.00000 9.00000i 0.386583 0.386583i
\(543\) −8.00000 + 8.00000i −0.343313 + 0.343313i
\(544\) −5.00000 + 5.00000i −0.214373 + 0.214373i
\(545\) 0 0
\(546\) −2.00000 10.0000i −0.0855921 0.427960i
\(547\) 9.00000 9.00000i 0.384812 0.384812i −0.488020 0.872832i \(-0.662281\pi\)
0.872832 + 0.488020i \(0.162281\pi\)
\(548\) 16.0000 0.683486
\(549\) 14.0000i 0.597505i
\(550\) 0 0
\(551\) 0 0
\(552\) 18.0000i 0.766131i
\(553\) 4.00000i 0.170097i
\(554\) 15.0000 15.0000i 0.637289 0.637289i
\(555\) 0 0
\(556\) 14.0000i 0.593732i
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 5.00000 5.00000i 0.211667 0.211667i
\(559\) 1.00000 + 5.00000i 0.0422955 + 0.211477i
\(560\) 0 0
\(561\) −2.00000 + 2.00000i −0.0844401 + 0.0844401i
\(562\) −1.00000 + 1.00000i −0.0421825 + 0.0421825i
\(563\) 15.0000 15.0000i 0.632175 0.632175i −0.316438 0.948613i \(-0.602487\pi\)
0.948613 + 0.316438i \(0.102487\pi\)
\(564\) 6.00000 + 6.00000i 0.252646 + 0.252646i
\(565\) 0 0
\(566\) −9.00000 9.00000i −0.378298 0.378298i
\(567\) 10.0000 0.419961
\(568\) 3.00000 + 3.00000i 0.125877 + 0.125877i
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 6.00000i 0.251092i −0.992088 0.125546i \(-0.959932\pi\)
0.992088 0.125546i \(-0.0400683\pi\)
\(572\) −5.00000 + 1.00000i −0.209061 + 0.0418121i
\(573\) −8.00000 8.00000i −0.334205 0.334205i
\(574\) −14.0000 14.0000i −0.584349 0.584349i
\(575\) 0 0
\(576\) 7.00000i 0.291667i
\(577\) 46.0000i 1.91501i 0.288425 + 0.957503i \(0.406868\pi\)
−0.288425 + 0.957503i \(0.593132\pi\)
\(578\) 15.0000 0.623918
\(579\) −18.0000 + 18.0000i −0.748054 + 0.748054i
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 2.00000 + 2.00000i 0.0829027 + 0.0829027i
\(583\) 10.0000i 0.414158i
\(584\) −30.0000 −1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 4.00000i 0.165098i −0.996587 0.0825488i \(-0.973694\pi\)
0.996587 0.0825488i \(-0.0263060\pi\)
\(588\) 3.00000 + 3.00000i 0.123718 + 0.123718i
\(589\) 50.0000 2.06021
\(590\) 0 0
\(591\) 6.00000 6.00000i 0.246807 0.246807i
\(592\) 0 0
\(593\) 10.0000i 0.410651i −0.978694 0.205325i \(-0.934175\pi\)
0.978694 0.205325i \(-0.0658253\pi\)
\(594\) 8.00000i 0.328244i
\(595\) 0 0
\(596\) 3.00000 + 3.00000i 0.122885 + 0.122885i
\(597\) −8.00000 8.00000i −0.327418 0.327418i
\(598\) 15.0000 3.00000i 0.613396 0.122679i
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) −2.00000 2.00000i −0.0815139 0.0815139i
\(603\) −4.00000 −0.162893
\(604\) 7.00000 + 7.00000i 0.284826 + 0.284826i
\(605\) 0 0
\(606\) 12.0000 + 12.0000i 0.487467 + 0.487467i
\(607\) 13.0000 13.0000i 0.527654 0.527654i −0.392218 0.919872i \(-0.628292\pi\)
0.919872 + 0.392218i \(0.128292\pi\)
\(608\) −25.0000 + 25.0000i −1.01388 + 1.01388i
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 + 18.0000i −0.485468 + 0.728202i
\(612\) 1.00000 1.00000i 0.0404226 0.0404226i
\(613\) 20.0000 0.807792 0.403896 0.914805i \(-0.367656\pi\)
0.403896 + 0.914805i \(0.367656\pi\)
\(614\) 18.0000i 0.726421i
\(615\) 0 0
\(616\) 6.00000 6.00000i 0.241747 0.241747i
\(617\) 22.0000i 0.885687i −0.896599 0.442843i \(-0.853970\pi\)
0.896599 0.442843i \(-0.146030\pi\)
\(618\) 14.0000i 0.563163i
\(619\) −25.0000 + 25.0000i −1.00483 + 1.00483i −0.00484658 + 0.999988i \(0.501543\pi\)
−0.999988 + 0.00484658i \(0.998457\pi\)
\(620\) 0 0
\(621\) 24.0000i 0.963087i
\(622\) −6.00000 −0.240578
\(623\) −10.0000 + 10.0000i −0.400642 + 0.400642i
\(624\) 5.00000 1.00000i 0.200160 0.0400320i
\(625\) 0 0
\(626\) 9.00000 9.00000i 0.359712 0.359712i
\(627\) −10.0000 + 10.0000i −0.399362 + 0.399362i
\(628\) −13.0000 + 13.0000i −0.518756 + 0.518756i
\(629\) 0 0
\(630\) 0 0
\(631\) 11.0000 + 11.0000i 0.437903 + 0.437903i 0.891306 0.453403i \(-0.149790\pi\)
−0.453403 + 0.891306i \(0.649790\pi\)
\(632\) −6.00000 −0.238667
\(633\) −4.00000 4.00000i −0.158986 0.158986i
\(634\) 14.0000 0.556011
\(635\) 0 0
\(636\) 10.0000i 0.396526i
\(637\) −6.00000 + 9.00000i −0.237729 + 0.356593i
\(638\) 0 0
\(639\) −1.00000 1.00000i −0.0395594 0.0395594i
\(640\) 0 0
\(641\) 24.0000i 0.947943i −0.880540 0.473972i \(-0.842820\pi\)
0.880540 0.473972i \(-0.157180\pi\)
\(642\) 14.0000i 0.552536i
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 6.00000 6.00000i 0.236433 0.236433i
\(645\) 0 0
\(646\) −10.0000 −0.393445
\(647\) 1.00000 + 1.00000i 0.0393141 + 0.0393141i 0.726491 0.687176i \(-0.241150\pi\)
−0.687176 + 0.726491i \(0.741150\pi\)
\(648\) 15.0000i 0.589256i
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 4.00000i 0.156652i
\(653\) −13.0000 13.0000i −0.508729 0.508729i 0.405407 0.914136i \(-0.367130\pi\)
−0.914136 + 0.405407i \(0.867130\pi\)
\(654\) −18.0000 −0.703856
\(655\) 0 0
\(656\) 7.00000 7.00000i 0.273304 0.273304i
\(657\) 10.0000 0.390137
\(658\) 12.0000i 0.467809i
\(659\) 26.0000i 1.01282i −0.862294 0.506408i \(-0.830973\pi\)
0.862294 0.506408i \(-0.169027\pi\)
\(660\) 0 0
\(661\) 17.0000 + 17.0000i 0.661223 + 0.661223i 0.955668 0.294445i \(-0.0951348\pi\)
−0.294445 + 0.955668i \(0.595135\pi\)
\(662\) −3.00000 3.00000i −0.116598 0.116598i
\(663\) −6.00000 4.00000i −0.233021 0.155347i
\(664\) 18.0000i 0.698535i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000 0.696441
\(669\) 2.00000 + 2.00000i 0.0773245 + 0.0773245i
\(670\) 0 0
\(671\) 14.0000 + 14.0000i 0.540464 + 0.540464i
\(672\) 10.0000 10.0000i 0.385758 0.385758i
\(673\) −15.0000 + 15.0000i −0.578208 + 0.578208i −0.934409 0.356202i \(-0.884072\pi\)
0.356202 + 0.934409i \(0.384072\pi\)
\(674\) −13.0000 + 13.0000i −0.500741 + 0.500741i
\(675\) 0 0
\(676\) −5.00000 12.0000i −0.192308 0.461538i
\(677\) 23.0000 23.0000i 0.883962 0.883962i −0.109973 0.993935i \(-0.535076\pi\)
0.993935 + 0.109973i \(0.0350764\pi\)
\(678\) −10.0000 −0.384048
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) −12.0000 + 12.0000i −0.459841 + 0.459841i
\(682\) 10.0000i 0.382920i
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 5.00000 5.00000i 0.191180 0.191180i
\(685\) 0 0
\(686\) 20.0000i 0.763604i
\(687\) −6.00000 −0.228914
\(688\) 1.00000 1.00000i 0.0381246 0.0381246i
\(689\) −25.0000 + 5.00000i −0.952424 + 0.190485i
\(690\) 0 0
\(691\) −3.00000 + 3.00000i −0.114125 + 0.114125i −0.761863 0.647738i \(-0.775715\pi\)
0.647738 + 0.761863i \(0.275715\pi\)
\(692\) −11.0000 + 11.0000i −0.418157 + 0.418157i
\(693\) −2.00000 + 2.00000i −0.0759737 + 0.0759737i
\(694\) −3.00000 3.00000i −0.113878 0.113878i
\(695\) 0 0
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) −9.00000 9.00000i −0.340655 0.340655i
\(699\) −2.00000 −0.0756469
\(700\) 0 0
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) −20.0000 + 4.00000i −0.754851 + 0.150970i
\(703\) 0 0
\(704\) 7.00000 + 7.00000i 0.263822 + 0.263822i
\(705\) 0 0
\(706\) 12.0000i 0.451626i
\(707\) 24.0000i 0.902613i
\(708\) −14.0000 −0.526152
\(709\) −29.0000 + 29.0000i −1.08912 + 1.08912i −0.0934984 + 0.995619i \(0.529805\pi\)
−0.995619 + 0.0934984i \(0.970195\pi\)
\(710\) 0 0
\(711\) 2.00000 0.0750059
\(712\) −15.0000 15.0000i −0.562149 0.562149i
\(713\) 30.0000i 1.12351i
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) 6.00000i 0.224074i
\(718\) −1.00000 1.00000i −0.0373197 0.0373197i
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) 14.0000 14.0000i 0.521387 0.521387i
\(722\) −31.0000 −1.15370
\(723\) 34.0000i 1.26447i
\(724\) 8.00000i 0.297318i
\(725\) 0 0
\(726\) −9.00000 9.00000i −0.334021 0.334021i
\(727\) −35.0000 35.0000i −1.29808 1.29808i −0.929660 0.368418i \(-0.879900\pi\)
−0.368418 0.929660i \(-0.620100\pi\)
\(728\) 18.0000 + 12.0000i 0.667124 + 0.444750i
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) −2.00000 −0.0739727
\(732\) 14.0000 + 14.0000i 0.517455 + 0.517455i
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 1.00000 + 1.00000i 0.0369107 + 0.0369107i
\(735\) 0 0
\(736\) 15.0000 + 15.0000i 0.552907 + 0.552907i
\(737\) −4.00000 + 4.00000i −0.147342 + 0.147342i
\(738\) −7.00000 + 7.00000i −0.257674 + 0.257674i
\(739\) 3.00000 3.00000i 0.110357 0.110357i −0.649772 0.760129i \(-0.725136\pi\)
0.760129 + 0.649772i \(0.225136\pi\)
\(740\) 0 0
\(741\) −30.0000 20.0000i −1.10208 0.734718i
\(742\) 10.0000 10.0000i 0.367112 0.367112i
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 30.0000i 1.09985i
\(745\) 0 0
\(746\) −15.0000 + 15.0000i −0.549189 + 0.549189i
\(747\) 6.00000i 0.219529i
\(748\) 2.00000i 0.0731272i
\(749\) −14.0000 + 14.0000i −0.511549 + 0.511549i
\(750\) 0 0
\(751\) 50.0000i 1.82453i −0.409605 0.912263i \(-0.634333\pi\)
0.409605 0.912263i \(-0.365667\pi\)
\(752\) 6.00000 0.218797
\(753\) 2.00000 2.00000i 0.0728841 0.0728841i
\(754\) 0 0
\(755\) 0 0
\(756\) −8.00000 + 8.00000i −0.290957 + 0.290957i
\(757\) 35.0000 35.0000i 1.27210 1.27210i 0.327111 0.944986i \(-0.393925\pi\)
0.944986 0.327111i \(-0.106075\pi\)
\(758\) −1.00000 + 1.00000i −0.0363216 + 0.0363216i
\(759\) 6.00000 + 6.00000i 0.217786 + 0.217786i
\(760\) 0 0
\(761\) −7.00000 7.00000i −0.253750 0.253750i 0.568756 0.822506i \(-0.307425\pi\)
−0.822506 + 0.568756i \(0.807425\pi\)
\(762\) 18.0000 0.652071
\(763\) −18.0000 18.0000i −0.651644 0.651644i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 30.0000i 1.08394i
\(767\) −7.00000 35.0000i −0.252755 1.26378i
\(768\) 17.0000 + 17.0000i 0.613435 + 0.613435i
\(769\) 15.0000 + 15.0000i 0.540914 + 0.540914i 0.923797 0.382883i \(-0.125069\pi\)
−0.382883 + 0.923797i \(0.625069\pi\)
\(770\) 0 0
\(771\) 22.0000i 0.792311i
\(772\) 18.0000i 0.647834i
\(773\) 32.0000 1.15096 0.575480 0.817816i \(-0.304815\pi\)
0.575480 + 0.817816i \(0.304815\pi\)
\(774\) −1.00000 + 1.00000i −0.0359443 + 0.0359443i
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 18.0000i 0.645331i
\(779\) −70.0000 −2.50801
\(780\) 0 0
\(781\) &minu