Properties

Label 325.2.e.a.276.2
Level $325$
Weight $2$
Character 325.276
Analytic conductor $2.595$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(126,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 276.2
Root \(-0.651388 - 1.12824i\) of defining polynomial
Character \(\chi\) \(=\) 325.276
Dual form 325.2.e.a.126.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.651388 + 1.12824i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.151388 - 0.262211i) q^{4} +(-0.651388 + 1.12824i) q^{6} +(-0.500000 + 0.866025i) q^{7} +3.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +(2.80278 + 4.85455i) q^{11} +0.302776 q^{12} -3.60555 q^{13} -1.30278 q^{14} +(1.65139 + 2.86029i) q^{16} +(0.197224 - 0.341603i) q^{17} +2.60555 q^{18} +(-0.802776 + 1.39045i) q^{19} -1.00000 q^{21} +(-3.65139 + 6.32439i) q^{22} +(-1.50000 - 2.59808i) q^{23} +(1.50000 + 2.59808i) q^{24} +(-2.34861 - 4.06792i) q^{26} +5.00000 q^{27} +(0.151388 + 0.262211i) q^{28} +(-4.10555 - 7.11102i) q^{29} -4.00000 q^{31} +(0.848612 - 1.46984i) q^{32} +(-2.80278 + 4.85455i) q^{33} +0.513878 q^{34} +(-0.302776 - 0.524423i) q^{36} +(-1.80278 - 3.12250i) q^{37} -2.09167 q^{38} +(-1.80278 - 3.12250i) q^{39} +(-1.50000 - 2.59808i) q^{41} +(-0.651388 - 1.12824i) q^{42} +(2.10555 - 3.64692i) q^{43} +1.69722 q^{44} +(1.95416 - 3.38471i) q^{46} +5.21110 q^{47} +(-1.65139 + 2.86029i) q^{48} +(3.00000 + 5.19615i) q^{49} +0.394449 q^{51} +(-0.545837 + 0.945417i) q^{52} -11.2111 q^{53} +(3.25694 + 5.64118i) q^{54} +(-1.50000 + 2.59808i) q^{56} -1.60555 q^{57} +(5.34861 - 9.26407i) q^{58} +(-5.40833 + 9.36750i) q^{59} +(0.500000 - 0.866025i) q^{61} +(-2.60555 - 4.51295i) q^{62} +(1.00000 + 1.73205i) q^{63} +8.81665 q^{64} -7.30278 q^{66} +(-3.50000 - 6.06218i) q^{67} +(-0.0597147 - 0.103429i) q^{68} +(1.50000 - 2.59808i) q^{69} +(8.40833 - 14.5636i) q^{71} +(3.00000 - 5.19615i) q^{72} +15.2111 q^{73} +(2.34861 - 4.06792i) q^{74} +(0.243061 + 0.420994i) q^{76} -5.60555 q^{77} +(2.34861 - 4.06792i) q^{78} -9.21110 q^{79} +(-0.500000 - 0.866025i) q^{81} +(1.95416 - 3.38471i) q^{82} -5.21110 q^{83} +(-0.151388 + 0.262211i) q^{84} +5.48612 q^{86} +(4.10555 - 7.11102i) q^{87} +(8.40833 + 14.5636i) q^{88} +(-4.10555 - 7.11102i) q^{89} +(1.80278 - 3.12250i) q^{91} -0.908327 q^{92} +(-2.00000 - 3.46410i) q^{93} +(3.39445 + 5.87936i) q^{94} +1.69722 q^{96} +(-7.80278 + 13.5148i) q^{97} +(-3.90833 + 6.76942i) q^{98} +11.2111 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 2 q^{3} - 3 q^{4} + q^{6} - 2 q^{7} + 12 q^{8} + 4 q^{9} + 4 q^{11} - 6 q^{12} + 2 q^{14} + 3 q^{16} + 8 q^{17} - 4 q^{18} + 4 q^{19} - 4 q^{21} - 11 q^{22} - 6 q^{23} + 6 q^{24} - 13 q^{26}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.651388 + 1.12824i 0.460601 + 0.797784i 0.998991 0.0449118i \(-0.0143007\pi\)
−0.538390 + 0.842696i \(0.680967\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0.151388 0.262211i 0.0756939 0.131106i
\(5\) 0 0
\(6\) −0.651388 + 1.12824i −0.265928 + 0.460601i
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i −0.944911 0.327327i \(-0.893852\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) 2.80278 + 4.85455i 0.845069 + 1.46370i 0.885562 + 0.464522i \(0.153774\pi\)
−0.0404929 + 0.999180i \(0.512893\pi\)
\(12\) 0.302776 0.0874038
\(13\) −3.60555 −1.00000
\(14\) −1.30278 −0.348181
\(15\) 0 0
\(16\) 1.65139 + 2.86029i 0.412847 + 0.715072i
\(17\) 0.197224 0.341603i 0.0478339 0.0828508i −0.841117 0.540853i \(-0.818102\pi\)
0.888951 + 0.458002i \(0.151435\pi\)
\(18\) 2.60555 0.614134
\(19\) −0.802776 + 1.39045i −0.184169 + 0.318991i −0.943296 0.331952i \(-0.892293\pi\)
0.759127 + 0.650943i \(0.225626\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) −3.65139 + 6.32439i −0.778478 + 1.34836i
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 1.50000 + 2.59808i 0.306186 + 0.530330i
\(25\) 0 0
\(26\) −2.34861 4.06792i −0.460601 0.797784i
\(27\) 5.00000 0.962250
\(28\) 0.151388 + 0.262211i 0.0286096 + 0.0495533i
\(29\) −4.10555 7.11102i −0.762382 1.32048i −0.941620 0.336678i \(-0.890697\pi\)
0.179238 0.983806i \(-0.442637\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0.848612 1.46984i 0.150015 0.259833i
\(33\) −2.80278 + 4.85455i −0.487901 + 0.845069i
\(34\) 0.513878 0.0881294
\(35\) 0 0
\(36\) −0.302776 0.524423i −0.0504626 0.0874038i
\(37\) −1.80278 3.12250i −0.296374 0.513336i 0.678929 0.734204i \(-0.262444\pi\)
−0.975304 + 0.220868i \(0.929111\pi\)
\(38\) −2.09167 −0.339314
\(39\) −1.80278 3.12250i −0.288675 0.500000i
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) −0.651388 1.12824i −0.100511 0.174091i
\(43\) 2.10555 3.64692i 0.321094 0.556150i −0.659620 0.751599i \(-0.729283\pi\)
0.980714 + 0.195449i \(0.0626163\pi\)
\(44\) 1.69722 0.255866
\(45\) 0 0
\(46\) 1.95416 3.38471i 0.288126 0.499048i
\(47\) 5.21110 0.760117 0.380059 0.924962i \(-0.375904\pi\)
0.380059 + 0.924962i \(0.375904\pi\)
\(48\) −1.65139 + 2.86029i −0.238357 + 0.412847i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) 0.394449 0.0552339
\(52\) −0.545837 + 0.945417i −0.0756939 + 0.131106i
\(53\) −11.2111 −1.53996 −0.769982 0.638066i \(-0.779735\pi\)
−0.769982 + 0.638066i \(0.779735\pi\)
\(54\) 3.25694 + 5.64118i 0.443213 + 0.767668i
\(55\) 0 0
\(56\) −1.50000 + 2.59808i −0.200446 + 0.347183i
\(57\) −1.60555 −0.212660
\(58\) 5.34861 9.26407i 0.702307 1.21643i
\(59\) −5.40833 + 9.36750i −0.704104 + 1.21954i 0.262910 + 0.964820i \(0.415318\pi\)
−0.967014 + 0.254724i \(0.918015\pi\)
\(60\) 0 0
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) −2.60555 4.51295i −0.330905 0.573145i
\(63\) 1.00000 + 1.73205i 0.125988 + 0.218218i
\(64\) 8.81665 1.10208
\(65\) 0 0
\(66\) −7.30278 −0.898910
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) −0.0597147 0.103429i −0.00724147 0.0125426i
\(69\) 1.50000 2.59808i 0.180579 0.312772i
\(70\) 0 0
\(71\) 8.40833 14.5636i 0.997885 1.72839i 0.442645 0.896697i \(-0.354040\pi\)
0.555240 0.831690i \(-0.312626\pi\)
\(72\) 3.00000 5.19615i 0.353553 0.612372i
\(73\) 15.2111 1.78032 0.890162 0.455643i \(-0.150591\pi\)
0.890162 + 0.455643i \(0.150591\pi\)
\(74\) 2.34861 4.06792i 0.273021 0.472886i
\(75\) 0 0
\(76\) 0.243061 + 0.420994i 0.0278810 + 0.0482913i
\(77\) −5.60555 −0.638812
\(78\) 2.34861 4.06792i 0.265928 0.460601i
\(79\) −9.21110 −1.03633 −0.518165 0.855281i \(-0.673385\pi\)
−0.518165 + 0.855281i \(0.673385\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 1.95416 3.38471i 0.215801 0.373779i
\(83\) −5.21110 −0.571993 −0.285996 0.958231i \(-0.592325\pi\)
−0.285996 + 0.958231i \(0.592325\pi\)
\(84\) −0.151388 + 0.262211i −0.0165178 + 0.0286096i
\(85\) 0 0
\(86\) 5.48612 0.591584
\(87\) 4.10555 7.11102i 0.440161 0.762382i
\(88\) 8.40833 + 14.5636i 0.896331 + 1.55249i
\(89\) −4.10555 7.11102i −0.435188 0.753767i 0.562123 0.827053i \(-0.309985\pi\)
−0.997311 + 0.0732864i \(0.976651\pi\)
\(90\) 0 0
\(91\) 1.80278 3.12250i 0.188982 0.327327i
\(92\) −0.908327 −0.0946996
\(93\) −2.00000 3.46410i −0.207390 0.359211i
\(94\) 3.39445 + 5.87936i 0.350111 + 0.606409i
\(95\) 0 0
\(96\) 1.69722 0.173222
\(97\) −7.80278 + 13.5148i −0.792252 + 1.37222i 0.132318 + 0.991207i \(0.457758\pi\)
−0.924570 + 0.381013i \(0.875575\pi\)
\(98\) −3.90833 + 6.76942i −0.394801 + 0.683815i
\(99\) 11.2111 1.12676
\(100\) 0 0
\(101\) 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i \(-0.0188862\pi\)
−0.550474 + 0.834853i \(0.685553\pi\)
\(102\) 0.256939 + 0.445032i 0.0254408 + 0.0440647i
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) −10.8167 −1.06066
\(105\) 0 0
\(106\) −7.30278 12.6488i −0.709308 1.22856i
\(107\) −4.10555 7.11102i −0.396899 0.687449i 0.596443 0.802656i \(-0.296580\pi\)
−0.993342 + 0.115207i \(0.963247\pi\)
\(108\) 0.756939 1.31106i 0.0728365 0.126157i
\(109\) −4.78890 −0.458693 −0.229347 0.973345i \(-0.573659\pi\)
−0.229347 + 0.973345i \(0.573659\pi\)
\(110\) 0 0
\(111\) 1.80278 3.12250i 0.171112 0.296374i
\(112\) −3.30278 −0.312083
\(113\) 2.80278 4.85455i 0.263663 0.456678i −0.703550 0.710646i \(-0.748403\pi\)
0.967212 + 0.253969i \(0.0817360\pi\)
\(114\) −1.04584 1.81144i −0.0979516 0.169657i
\(115\) 0 0
\(116\) −2.48612 −0.230831
\(117\) −3.60555 + 6.24500i −0.333333 + 0.577350i
\(118\) −14.0917 −1.29724
\(119\) 0.197224 + 0.341603i 0.0180795 + 0.0313147i
\(120\) 0 0
\(121\) −10.2111 + 17.6861i −0.928282 + 1.60783i
\(122\) 1.30278 0.117948
\(123\) 1.50000 2.59808i 0.135250 0.234261i
\(124\) −0.605551 + 1.04885i −0.0543801 + 0.0941891i
\(125\) 0 0
\(126\) −1.30278 + 2.25647i −0.116060 + 0.201023i
\(127\) 5.10555 + 8.84307i 0.453044 + 0.784696i 0.998573 0.0533960i \(-0.0170046\pi\)
−0.545529 + 0.838092i \(0.683671\pi\)
\(128\) 4.04584 + 7.00759i 0.357605 + 0.619390i
\(129\) 4.21110 0.370767
\(130\) 0 0
\(131\) −6.78890 −0.593149 −0.296574 0.955010i \(-0.595844\pi\)
−0.296574 + 0.955010i \(0.595844\pi\)
\(132\) 0.848612 + 1.46984i 0.0738622 + 0.127933i
\(133\) −0.802776 1.39045i −0.0696095 0.120567i
\(134\) 4.55971 7.89766i 0.393899 0.682254i
\(135\) 0 0
\(136\) 0.591673 1.02481i 0.0507355 0.0878765i
\(137\) 2.80278 4.85455i 0.239457 0.414752i −0.721101 0.692830i \(-0.756364\pi\)
0.960559 + 0.278077i \(0.0896972\pi\)
\(138\) 3.90833 0.332699
\(139\) −6.80278 + 11.7828i −0.577004 + 0.999400i 0.418817 + 0.908071i \(0.362445\pi\)
−0.995821 + 0.0913293i \(0.970888\pi\)
\(140\) 0 0
\(141\) 2.60555 + 4.51295i 0.219427 + 0.380059i
\(142\) 21.9083 1.83851
\(143\) −10.1056 17.5033i −0.845069 1.46370i
\(144\) 6.60555 0.550463
\(145\) 0 0
\(146\) 9.90833 + 17.1617i 0.820019 + 1.42031i
\(147\) −3.00000 + 5.19615i −0.247436 + 0.428571i
\(148\) −1.09167 −0.0897350
\(149\) −1.50000 + 2.59808i −0.122885 + 0.212843i −0.920904 0.389789i \(-0.872548\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(150\) 0 0
\(151\) 13.2111 1.07510 0.537552 0.843231i \(-0.319349\pi\)
0.537552 + 0.843231i \(0.319349\pi\)
\(152\) −2.40833 + 4.17134i −0.195341 + 0.338341i
\(153\) −0.394449 0.683205i −0.0318893 0.0552339i
\(154\) −3.65139 6.32439i −0.294237 0.509634i
\(155\) 0 0
\(156\) −1.09167 −0.0874038
\(157\) 3.21110 0.256274 0.128137 0.991756i \(-0.459100\pi\)
0.128137 + 0.991756i \(0.459100\pi\)
\(158\) −6.00000 10.3923i −0.477334 0.826767i
\(159\) −5.60555 9.70910i −0.444549 0.769982i
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0.651388 1.12824i 0.0511779 0.0886427i
\(163\) −9.10555 + 15.7713i −0.713202 + 1.23530i 0.250447 + 0.968130i \(0.419422\pi\)
−0.963649 + 0.267172i \(0.913911\pi\)
\(164\) −0.908327 −0.0709284
\(165\) 0 0
\(166\) −3.39445 5.87936i −0.263460 0.456327i
\(167\) 4.50000 + 7.79423i 0.348220 + 0.603136i 0.985933 0.167139i \(-0.0534527\pi\)
−0.637713 + 0.770274i \(0.720119\pi\)
\(168\) −3.00000 −0.231455
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 1.60555 + 2.78090i 0.122780 + 0.212660i
\(172\) −0.637510 1.10420i −0.0486097 0.0841944i
\(173\) −8.40833 + 14.5636i −0.639273 + 1.10725i 0.346319 + 0.938117i \(0.387431\pi\)
−0.985593 + 0.169137i \(0.945902\pi\)
\(174\) 10.6972 0.810954
\(175\) 0 0
\(176\) −9.25694 + 16.0335i −0.697768 + 1.20857i
\(177\) −10.8167 −0.813029
\(178\) 5.34861 9.26407i 0.400895 0.694371i
\(179\) −0.591673 1.02481i −0.0442237 0.0765977i 0.843066 0.537810i \(-0.180748\pi\)
−0.887290 + 0.461212i \(0.847415\pi\)
\(180\) 0 0
\(181\) −25.6333 −1.90531 −0.952654 0.304055i \(-0.901659\pi\)
−0.952654 + 0.304055i \(0.901659\pi\)
\(182\) 4.69722 0.348181
\(183\) 1.00000 0.0739221
\(184\) −4.50000 7.79423i −0.331744 0.574598i
\(185\) 0 0
\(186\) 2.60555 4.51295i 0.191048 0.330905i
\(187\) 2.21110 0.161692
\(188\) 0.788897 1.36641i 0.0575363 0.0996557i
\(189\) −2.50000 + 4.33013i −0.181848 + 0.314970i
\(190\) 0 0
\(191\) 2.40833 4.17134i 0.174260 0.301828i −0.765645 0.643264i \(-0.777580\pi\)
0.939905 + 0.341436i \(0.110913\pi\)
\(192\) 4.40833 + 7.63545i 0.318144 + 0.551041i
\(193\) 4.19722 + 7.26981i 0.302123 + 0.523292i 0.976617 0.214988i \(-0.0689714\pi\)
−0.674494 + 0.738281i \(0.735638\pi\)
\(194\) −20.3305 −1.45965
\(195\) 0 0
\(196\) 1.81665 0.129761
\(197\) 11.4083 + 19.7598i 0.812810 + 1.40783i 0.910890 + 0.412649i \(0.135396\pi\)
−0.0980804 + 0.995178i \(0.531270\pi\)
\(198\) 7.30278 + 12.6488i 0.518986 + 0.898910i
\(199\) 4.40833 7.63545i 0.312498 0.541262i −0.666404 0.745590i \(-0.732168\pi\)
0.978902 + 0.204328i \(0.0655009\pi\)
\(200\) 0 0
\(201\) 3.50000 6.06218i 0.246871 0.427593i
\(202\) −5.86249 + 10.1541i −0.412483 + 0.714442i
\(203\) 8.21110 0.576306
\(204\) 0.0597147 0.103429i 0.00418087 0.00724147i
\(205\) 0 0
\(206\) 2.60555 + 4.51295i 0.181537 + 0.314432i
\(207\) −6.00000 −0.417029
\(208\) −5.95416 10.3129i −0.412847 0.715072i
\(209\) −9.00000 −0.622543
\(210\) 0 0
\(211\) 8.19722 + 14.1980i 0.564320 + 0.977431i 0.997113 + 0.0759376i \(0.0241950\pi\)
−0.432792 + 0.901494i \(0.642472\pi\)
\(212\) −1.69722 + 2.93968i −0.116566 + 0.201898i
\(213\) 16.8167 1.15226
\(214\) 5.34861 9.26407i 0.365624 0.633279i
\(215\) 0 0
\(216\) 15.0000 1.02062
\(217\) 2.00000 3.46410i 0.135769 0.235159i
\(218\) −3.11943 5.40301i −0.211274 0.365938i
\(219\) 7.60555 + 13.1732i 0.513936 + 0.890162i
\(220\) 0 0
\(221\) −0.711103 + 1.23167i −0.0478339 + 0.0828508i
\(222\) 4.69722 0.315257
\(223\) 5.10555 + 8.84307i 0.341893 + 0.592176i 0.984784 0.173781i \(-0.0555986\pi\)
−0.642891 + 0.765957i \(0.722265\pi\)
\(224\) 0.848612 + 1.46984i 0.0567003 + 0.0982078i
\(225\) 0 0
\(226\) 7.30278 0.485773
\(227\) 0.711103 1.23167i 0.0471975 0.0817485i −0.841462 0.540317i \(-0.818304\pi\)
0.888659 + 0.458569i \(0.151638\pi\)
\(228\) −0.243061 + 0.420994i −0.0160971 + 0.0278810i
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) −2.80278 4.85455i −0.184409 0.319406i
\(232\) −12.3167 21.3331i −0.808628 1.40058i
\(233\) −0.788897 −0.0516824 −0.0258412 0.999666i \(-0.508226\pi\)
−0.0258412 + 0.999666i \(0.508226\pi\)
\(234\) −9.39445 −0.614134
\(235\) 0 0
\(236\) 1.63751 + 2.83625i 0.106593 + 0.184624i
\(237\) −4.60555 7.97705i −0.299163 0.518165i
\(238\) −0.256939 + 0.445032i −0.0166549 + 0.0288471i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −8.10555 + 14.0392i −0.522124 + 0.904346i 0.477544 + 0.878608i \(0.341527\pi\)
−0.999669 + 0.0257384i \(0.991806\pi\)
\(242\) −26.6056 −1.71027
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) −0.151388 0.262211i −0.00969161 0.0167864i
\(245\) 0 0
\(246\) 3.90833 0.249186
\(247\) 2.89445 5.01333i 0.184169 0.318991i
\(248\) −12.0000 −0.762001
\(249\) −2.60555 4.51295i −0.165120 0.285996i
\(250\) 0 0
\(251\) 14.4083 24.9560i 0.909446 1.57521i 0.0946094 0.995514i \(-0.469840\pi\)
0.814836 0.579691i \(-0.196827\pi\)
\(252\) 0.605551 0.0381461
\(253\) 8.40833 14.5636i 0.528627 0.915609i
\(254\) −6.65139 + 11.5205i −0.417345 + 0.722863i
\(255\) 0 0
\(256\) 3.54584 6.14157i 0.221615 0.383848i
\(257\) −11.8028 20.4430i −0.736237 1.27520i −0.954179 0.299238i \(-0.903268\pi\)
0.217942 0.975962i \(-0.430066\pi\)
\(258\) 2.74306 + 4.75112i 0.170776 + 0.295792i
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) −16.4222 −1.01651
\(262\) −4.42221 7.65948i −0.273205 0.473204i
\(263\) 13.1056 + 22.6995i 0.808123 + 1.39971i 0.914162 + 0.405348i \(0.132850\pi\)
−0.106040 + 0.994362i \(0.533817\pi\)
\(264\) −8.40833 + 14.5636i −0.517497 + 0.896331i
\(265\) 0 0
\(266\) 1.04584 1.81144i 0.0641244 0.111067i
\(267\) 4.10555 7.11102i 0.251256 0.435188i
\(268\) −2.11943 −0.129465
\(269\) 4.50000 7.79423i 0.274370 0.475223i −0.695606 0.718423i \(-0.744864\pi\)
0.969976 + 0.243201i \(0.0781974\pi\)
\(270\) 0 0
\(271\) −0.408327 0.707243i −0.0248041 0.0429620i 0.853357 0.521327i \(-0.174563\pi\)
−0.878161 + 0.478365i \(0.841230\pi\)
\(272\) 1.30278 0.0789924
\(273\) 3.60555 0.218218
\(274\) 7.30278 0.441177
\(275\) 0 0
\(276\) −0.454163 0.786634i −0.0273374 0.0473498i
\(277\) 10.1972 17.6621i 0.612692 1.06121i −0.378093 0.925768i \(-0.623420\pi\)
0.990785 0.135446i \(-0.0432466\pi\)
\(278\) −17.7250 −1.06307
\(279\) −4.00000 + 6.92820i −0.239474 + 0.414781i
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) −3.39445 + 5.87936i −0.202136 + 0.350111i
\(283\) 2.50000 + 4.33013i 0.148610 + 0.257399i 0.930714 0.365748i \(-0.119187\pi\)
−0.782104 + 0.623148i \(0.785854\pi\)
\(284\) −2.54584 4.40952i −0.151068 0.261657i
\(285\) 0 0
\(286\) 13.1653 22.8029i 0.778478 1.34836i
\(287\) 3.00000 0.177084
\(288\) −1.69722 2.93968i −0.100010 0.173222i
\(289\) 8.42221 + 14.5877i 0.495424 + 0.858099i
\(290\) 0 0
\(291\) −15.6056 −0.914814
\(292\) 2.30278 3.98852i 0.134760 0.233411i
\(293\) 8.80278 15.2469i 0.514264 0.890731i −0.485599 0.874181i \(-0.661399\pi\)
0.999863 0.0165493i \(-0.00526805\pi\)
\(294\) −7.81665 −0.455877
\(295\) 0 0
\(296\) −5.40833 9.36750i −0.314353 0.544475i
\(297\) 14.0139 + 24.2727i 0.813168 + 1.40845i
\(298\) −3.90833 −0.226403
\(299\) 5.40833 + 9.36750i 0.312772 + 0.541736i
\(300\) 0 0
\(301\) 2.10555 + 3.64692i 0.121362 + 0.210205i
\(302\) 8.60555 + 14.9053i 0.495194 + 0.857701i
\(303\) −4.50000 + 7.79423i −0.258518 + 0.447767i
\(304\) −5.30278 −0.304135
\(305\) 0 0
\(306\) 0.513878 0.890063i 0.0293765 0.0508815i
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) −0.848612 + 1.46984i −0.0483542 + 0.0837519i
\(309\) 2.00000 + 3.46410i 0.113776 + 0.197066i
\(310\) 0 0
\(311\) 5.21110 0.295495 0.147747 0.989025i \(-0.452798\pi\)
0.147747 + 0.989025i \(0.452798\pi\)
\(312\) −5.40833 9.36750i −0.306186 0.530330i
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 2.09167 + 3.62288i 0.118040 + 0.204451i
\(315\) 0 0
\(316\) −1.39445 + 2.41526i −0.0784439 + 0.135869i
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 7.30278 12.6488i 0.409519 0.709308i
\(319\) 23.0139 39.8612i 1.28853 2.23180i
\(320\) 0 0
\(321\) 4.10555 7.11102i 0.229150 0.396899i
\(322\) 1.95416 + 3.38471i 0.108901 + 0.188623i
\(323\) 0.316654 + 0.548461i 0.0176191 + 0.0305172i
\(324\) −0.302776 −0.0168209
\(325\) 0 0
\(326\) −23.7250 −1.31401
\(327\) −2.39445 4.14731i −0.132413 0.229347i
\(328\) −4.50000 7.79423i −0.248471 0.430364i
\(329\) −2.60555 + 4.51295i −0.143649 + 0.248807i
\(330\) 0 0
\(331\) 13.0139 22.5407i 0.715307 1.23895i −0.247533 0.968879i \(-0.579620\pi\)
0.962841 0.270069i \(-0.0870467\pi\)
\(332\) −0.788897 + 1.36641i −0.0432964 + 0.0749915i
\(333\) −7.21110 −0.395166
\(334\) −5.86249 + 10.1541i −0.320781 + 0.555609i
\(335\) 0 0
\(336\) −1.65139 2.86029i −0.0900906 0.156041i
\(337\) −17.6333 −0.960547 −0.480274 0.877119i \(-0.659463\pi\)
−0.480274 + 0.877119i \(0.659463\pi\)
\(338\) 8.46804 + 14.6671i 0.460601 + 0.797784i
\(339\) 5.60555 0.304452
\(340\) 0 0
\(341\) −11.2111 19.4182i −0.607115 1.05155i
\(342\) −2.09167 + 3.62288i −0.113105 + 0.195903i
\(343\) −13.0000 −0.701934
\(344\) 6.31665 10.9408i 0.340571 0.589887i
\(345\) 0 0
\(346\) −21.9083 −1.17780
\(347\) 10.1056 17.5033i 0.542494 0.939628i −0.456266 0.889844i \(-0.650813\pi\)
0.998760 0.0497842i \(-0.0158534\pi\)
\(348\) −1.24306 2.15304i −0.0666351 0.115415i
\(349\) 9.10555 + 15.7713i 0.487409 + 0.844217i 0.999895 0.0144783i \(-0.00460876\pi\)
−0.512486 + 0.858695i \(0.671275\pi\)
\(350\) 0 0
\(351\) −18.0278 −0.962250
\(352\) 9.51388 0.507091
\(353\) −2.40833 4.17134i −0.128182 0.222018i 0.794790 0.606884i \(-0.207581\pi\)
−0.922972 + 0.384866i \(0.874248\pi\)
\(354\) −7.04584 12.2037i −0.374482 0.648622i
\(355\) 0 0
\(356\) −2.48612 −0.131764
\(357\) −0.197224 + 0.341603i −0.0104382 + 0.0180795i
\(358\) 0.770817 1.33509i 0.0407390 0.0705619i
\(359\) −10.4222 −0.550063 −0.275031 0.961435i \(-0.588688\pi\)
−0.275031 + 0.961435i \(0.588688\pi\)
\(360\) 0 0
\(361\) 8.21110 + 14.2220i 0.432163 + 0.748529i
\(362\) −16.6972 28.9204i −0.877587 1.52002i
\(363\) −20.4222 −1.07189
\(364\) −0.545837 0.945417i −0.0286096 0.0495533i
\(365\) 0 0
\(366\) 0.651388 + 1.12824i 0.0340486 + 0.0589739i
\(367\) −8.71110 15.0881i −0.454716 0.787591i 0.543956 0.839114i \(-0.316926\pi\)
−0.998672 + 0.0515228i \(0.983593\pi\)
\(368\) 4.95416 8.58086i 0.258254 0.447308i
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 5.60555 9.70910i 0.291026 0.504071i
\(372\) −1.21110 −0.0627927
\(373\) −13.8028 + 23.9071i −0.714681 + 1.23786i 0.248402 + 0.968657i \(0.420095\pi\)
−0.963083 + 0.269206i \(0.913239\pi\)
\(374\) 1.44029 + 2.49465i 0.0744754 + 0.128995i
\(375\) 0 0
\(376\) 15.6333 0.806226
\(377\) 14.8028 + 25.6392i 0.762382 + 1.32048i
\(378\) −6.51388 −0.335038
\(379\) −1.19722 2.07365i −0.0614973 0.106516i 0.833638 0.552312i \(-0.186254\pi\)
−0.895135 + 0.445795i \(0.852921\pi\)
\(380\) 0 0
\(381\) −5.10555 + 8.84307i −0.261565 + 0.453044i
\(382\) 6.27502 0.321058
\(383\) 9.31665 16.1369i 0.476059 0.824558i −0.523565 0.851986i \(-0.675398\pi\)
0.999624 + 0.0274277i \(0.00873162\pi\)
\(384\) −4.04584 + 7.00759i −0.206463 + 0.357605i
\(385\) 0 0
\(386\) −5.46804 + 9.47093i −0.278316 + 0.482057i
\(387\) −4.21110 7.29384i −0.214062 0.370767i
\(388\) 2.36249 + 4.09195i 0.119937 + 0.207737i
\(389\) −0.788897 −0.0399987 −0.0199993 0.999800i \(-0.506366\pi\)
−0.0199993 + 0.999800i \(0.506366\pi\)
\(390\) 0 0
\(391\) −1.18335 −0.0598444
\(392\) 9.00000 + 15.5885i 0.454569 + 0.787336i
\(393\) −3.39445 5.87936i −0.171227 0.296574i
\(394\) −14.8625 + 25.7426i −0.748761 + 1.29689i
\(395\) 0 0
\(396\) 1.69722 2.93968i 0.0852887 0.147724i
\(397\) −7.01388 + 12.1484i −0.352016 + 0.609710i −0.986603 0.163142i \(-0.947837\pi\)
0.634586 + 0.772852i \(0.281171\pi\)
\(398\) 11.4861 0.575747
\(399\) 0.802776 1.39045i 0.0401890 0.0696095i
\(400\) 0 0
\(401\) 1.10555 + 1.91487i 0.0552086 + 0.0956241i 0.892309 0.451425i \(-0.149084\pi\)
−0.837100 + 0.547049i \(0.815751\pi\)
\(402\) 9.11943 0.454836
\(403\) 14.4222 0.718421
\(404\) 2.72498 0.135573
\(405\) 0 0
\(406\) 5.34861 + 9.26407i 0.265447 + 0.459768i
\(407\) 10.1056 17.5033i 0.500914 0.867608i
\(408\) 1.18335 0.0585844
\(409\) 3.10555 5.37897i 0.153560 0.265973i −0.778974 0.627056i \(-0.784260\pi\)
0.932534 + 0.361083i \(0.117593\pi\)
\(410\) 0 0
\(411\) 5.60555 0.276501
\(412\) 0.605551 1.04885i 0.0298334 0.0516729i
\(413\) −5.40833 9.36750i −0.266126 0.460944i
\(414\) −3.90833 6.76942i −0.192084 0.332699i
\(415\) 0 0
\(416\) −3.05971 + 5.29958i −0.150015 + 0.259833i
\(417\) −13.6056 −0.666267
\(418\) −5.86249 10.1541i −0.286744 0.496655i
\(419\) 16.6194 + 28.7857i 0.811912 + 1.40627i 0.911524 + 0.411247i \(0.134907\pi\)
−0.0996117 + 0.995026i \(0.531760\pi\)
\(420\) 0 0
\(421\) 3.57779 0.174371 0.0871855 0.996192i \(-0.472213\pi\)
0.0871855 + 0.996192i \(0.472213\pi\)
\(422\) −10.6791 + 18.4968i −0.519853 + 0.900411i
\(423\) 5.21110 9.02589i 0.253372 0.438854i
\(424\) −33.6333 −1.63338
\(425\) 0 0
\(426\) 10.9542 + 18.9732i 0.530731 + 0.919253i
\(427\) 0.500000 + 0.866025i 0.0241967 + 0.0419099i
\(428\) −2.48612 −0.120171
\(429\) 10.1056 17.5033i 0.487901 0.845069i
\(430\) 0 0
\(431\) 10.6194 + 18.3934i 0.511520 + 0.885978i 0.999911 + 0.0133535i \(0.00425069\pi\)
−0.488391 + 0.872625i \(0.662416\pi\)
\(432\) 8.25694 + 14.3014i 0.397262 + 0.688078i
\(433\) −1.80278 + 3.12250i −0.0866359 + 0.150058i −0.906087 0.423091i \(-0.860945\pi\)
0.819451 + 0.573149i \(0.194278\pi\)
\(434\) 5.21110 0.250141
\(435\) 0 0
\(436\) −0.724981 + 1.25570i −0.0347203 + 0.0601373i
\(437\) 4.81665 0.230412
\(438\) −9.90833 + 17.1617i −0.473438 + 0.820019i
\(439\) −11.6194 20.1254i −0.554565 0.960535i −0.997937 0.0641973i \(-0.979551\pi\)
0.443372 0.896338i \(-0.353782\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) −1.85281 −0.0881294
\(443\) 22.4222 1.06531 0.532656 0.846332i \(-0.321194\pi\)
0.532656 + 0.846332i \(0.321194\pi\)
\(444\) −0.545837 0.945417i −0.0259043 0.0448675i
\(445\) 0 0
\(446\) −6.65139 + 11.5205i −0.314952 + 0.545513i
\(447\) −3.00000 −0.141895
\(448\) −4.40833 + 7.63545i −0.208274 + 0.360741i
\(449\) 6.31665 10.9408i 0.298101 0.516327i −0.677600 0.735430i \(-0.736980\pi\)
0.975702 + 0.219104i \(0.0703133\pi\)
\(450\) 0 0
\(451\) 8.40833 14.5636i 0.395933 0.685775i
\(452\) −0.848612 1.46984i −0.0399154 0.0691354i
\(453\) 6.60555 + 11.4412i 0.310356 + 0.537552i
\(454\) 1.85281 0.0869569
\(455\) 0 0
\(456\) −4.81665 −0.225560
\(457\) −2.59167 4.48891i −0.121233 0.209982i 0.799021 0.601303i \(-0.205352\pi\)
−0.920254 + 0.391321i \(0.872018\pi\)
\(458\) 9.11943 + 15.7953i 0.426123 + 0.738067i
\(459\) 0.986122 1.70801i 0.0460282 0.0797232i
\(460\) 0 0
\(461\) −10.8944 + 18.8697i −0.507405 + 0.878851i 0.492558 + 0.870280i \(0.336062\pi\)
−0.999963 + 0.00857184i \(0.997271\pi\)
\(462\) 3.65139 6.32439i 0.169878 0.294237i
\(463\) 5.57779 0.259222 0.129611 0.991565i \(-0.458627\pi\)
0.129611 + 0.991565i \(0.458627\pi\)
\(464\) 13.5597 23.4861i 0.629494 1.09032i
\(465\) 0 0
\(466\) −0.513878 0.890063i −0.0238049 0.0412314i
\(467\) −17.2111 −0.796435 −0.398217 0.917291i \(-0.630371\pi\)
−0.398217 + 0.917291i \(0.630371\pi\)
\(468\) 1.09167 + 1.89083i 0.0504626 + 0.0874038i
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) 1.60555 + 2.78090i 0.0739799 + 0.128137i
\(472\) −16.2250 + 28.1025i −0.746815 + 1.29352i
\(473\) 23.6056 1.08538
\(474\) 6.00000 10.3923i 0.275589 0.477334i
\(475\) 0 0
\(476\) 0.119429 0.00547404
\(477\) −11.2111 + 19.4182i −0.513321 + 0.889098i
\(478\) 0 0
\(479\) 3.59167 + 6.22096i 0.164108 + 0.284243i 0.936338 0.351100i \(-0.114192\pi\)
−0.772230 + 0.635343i \(0.780859\pi\)
\(480\) 0 0
\(481\) 6.50000 + 11.2583i 0.296374 + 0.513336i
\(482\) −21.1194 −0.961964
\(483\) 1.50000 + 2.59808i 0.0682524 + 0.118217i
\(484\) 3.09167 + 5.35493i 0.140531 + 0.243406i
\(485\) 0 0
\(486\) 20.8444 0.945522
\(487\) −0.500000 + 0.866025i −0.0226572 + 0.0392434i −0.877132 0.480250i \(-0.840546\pi\)
0.854475 + 0.519493i \(0.173879\pi\)
\(488\) 1.50000 2.59808i 0.0679018 0.117609i
\(489\) −18.2111 −0.823535
\(490\) 0 0
\(491\) −2.40833 4.17134i −0.108686 0.188250i 0.806552 0.591163i \(-0.201331\pi\)
−0.915238 + 0.402913i \(0.867998\pi\)
\(492\) −0.454163 0.786634i −0.0204753 0.0354642i
\(493\) −3.23886 −0.145871
\(494\) 7.54163 0.339314
\(495\) 0 0
\(496\) −6.60555 11.4412i −0.296598 0.513723i
\(497\) 8.40833 + 14.5636i 0.377165 + 0.653269i
\(498\) 3.39445 5.87936i 0.152109 0.263460i
\(499\) −26.4222 −1.18282 −0.591410 0.806371i \(-0.701429\pi\)
−0.591410 + 0.806371i \(0.701429\pi\)
\(500\) 0 0
\(501\) −4.50000 + 7.79423i −0.201045 + 0.348220i
\(502\) 37.5416 1.67557
\(503\) 1.50000 2.59808i 0.0668817 0.115842i −0.830645 0.556802i \(-0.812028\pi\)
0.897527 + 0.440959i \(0.145362\pi\)
\(504\) 3.00000 + 5.19615i 0.133631 + 0.231455i
\(505\) 0 0
\(506\) 21.9083 0.973944
\(507\) 6.50000 + 11.2583i 0.288675 + 0.500000i
\(508\) 3.09167 0.137171
\(509\) −1.50000 2.59808i −0.0664863 0.115158i 0.830866 0.556473i \(-0.187846\pi\)
−0.897352 + 0.441315i \(0.854512\pi\)
\(510\) 0 0
\(511\) −7.60555 + 13.1732i −0.336450 + 0.582748i
\(512\) 25.4222 1.12351
\(513\) −4.01388 + 6.95224i −0.177217 + 0.306949i
\(514\) 15.3764 26.6327i 0.678223 1.17472i
\(515\) 0 0
\(516\) 0.637510 1.10420i 0.0280648 0.0486097i
\(517\) 14.6056 + 25.2976i 0.642351 + 1.11259i
\(518\) 2.34861 + 4.06792i 0.103192 + 0.178734i
\(519\) −16.8167 −0.738169
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) −10.6972 18.5281i −0.468205 0.810954i
\(523\) 13.7111 + 23.7483i 0.599545 + 1.03844i 0.992888 + 0.119050i \(0.0379850\pi\)
−0.393344 + 0.919392i \(0.628682\pi\)
\(524\) −1.02776 + 1.78013i −0.0448977 + 0.0777652i
\(525\) 0 0
\(526\) −17.0736 + 29.5723i −0.744444 + 1.28941i
\(527\) −0.788897 + 1.36641i −0.0343649 + 0.0595218i
\(528\) −18.5139 −0.805713
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) 10.8167 + 18.7350i 0.469403 + 0.813029i
\(532\) −0.486122 −0.0210761
\(533\) 5.40833 + 9.36750i 0.234261 + 0.405751i
\(534\) 10.6972 0.462914
\(535\) 0 0
\(536\) −10.5000 18.1865i −0.453531 0.785539i
\(537\) 0.591673 1.02481i 0.0255326 0.0442237i
\(538\) 11.7250 0.505500
\(539\) −16.8167 + 29.1273i −0.724345 + 1.25460i
\(540\) 0 0
\(541\) 17.6333 0.758115 0.379058 0.925373i \(-0.376248\pi\)
0.379058 + 0.925373i \(0.376248\pi\)
\(542\) 0.531958 0.921379i 0.0228496 0.0395766i
\(543\) −12.8167 22.1991i −0.550015 0.952654i
\(544\) −0.334734 0.579776i −0.0143516 0.0248577i
\(545\) 0 0
\(546\) 2.34861 + 4.06792i 0.100511 + 0.174091i
\(547\) 24.8444 1.06227 0.531135 0.847287i \(-0.321766\pi\)
0.531135 + 0.847287i \(0.321766\pi\)
\(548\) −0.848612 1.46984i −0.0362509 0.0627884i
\(549\) −1.00000 1.73205i −0.0426790 0.0739221i
\(550\) 0 0
\(551\) 13.1833 0.561629
\(552\) 4.50000 7.79423i 0.191533 0.331744i
\(553\) 4.60555 7.97705i 0.195848 0.339219i
\(554\) 26.5694 1.12883
\(555\) 0 0
\(556\) 2.05971 + 3.56753i 0.0873514 + 0.151297i
\(557\) 2.80278 + 4.85455i 0.118757 + 0.205694i 0.919276 0.393615i \(-0.128776\pi\)
−0.800518 + 0.599309i \(0.795442\pi\)
\(558\) −10.4222 −0.441207
\(559\) −7.59167 + 13.1492i −0.321094 + 0.556150i
\(560\) 0 0
\(561\) 1.10555 + 1.91487i 0.0466764 + 0.0808459i
\(562\) −3.90833 6.76942i −0.164863 0.285551i
\(563\) −9.71110 + 16.8201i −0.409274 + 0.708884i −0.994809 0.101764i \(-0.967551\pi\)
0.585534 + 0.810648i \(0.300885\pi\)
\(564\) 1.57779 0.0664372
\(565\) 0 0
\(566\) −3.25694 + 5.64118i −0.136899 + 0.237117i
\(567\) 1.00000 0.0419961
\(568\) 25.2250 43.6909i 1.05842 1.83323i
\(569\) −0.711103 1.23167i −0.0298110 0.0516341i 0.850735 0.525595i \(-0.176157\pi\)
−0.880546 + 0.473961i \(0.842824\pi\)
\(570\) 0 0
\(571\) −36.8444 −1.54189 −0.770945 0.636901i \(-0.780216\pi\)
−0.770945 + 0.636901i \(0.780216\pi\)
\(572\) −6.11943 −0.255866
\(573\) 4.81665 0.201219
\(574\) 1.95416 + 3.38471i 0.0815652 + 0.141275i
\(575\) 0 0
\(576\) 8.81665 15.2709i 0.367361 0.636287i
\(577\) −29.6333 −1.23365 −0.616825 0.787100i \(-0.711582\pi\)
−0.616825 + 0.787100i \(0.711582\pi\)
\(578\) −10.9722 + 19.0045i −0.456385 + 0.790482i
\(579\) −4.19722 + 7.26981i −0.174431 + 0.302123i
\(580\) 0 0
\(581\) 2.60555 4.51295i 0.108096 0.187229i
\(582\) −10.1653 17.6068i −0.421364 0.729824i
\(583\) −31.4222 54.4249i −1.30137 2.25405i
\(584\) 45.6333 1.88832
\(585\) 0 0
\(586\) 22.9361 0.947481
\(587\) −2.28890 3.96449i −0.0944729 0.163632i 0.814916 0.579580i \(-0.196783\pi\)
−0.909389 + 0.415948i \(0.863450\pi\)
\(588\) 0.908327 + 1.57327i 0.0374588 + 0.0648805i
\(589\) 3.21110 5.56179i 0.132311 0.229170i
\(590\) 0 0
\(591\) −11.4083 + 19.7598i −0.469276 + 0.812810i
\(592\) 5.95416 10.3129i 0.244715 0.423858i
\(593\) −35.2111 −1.44595 −0.722973 0.690876i \(-0.757225\pi\)
−0.722973 + 0.690876i \(0.757225\pi\)
\(594\) −18.2569 + 31.6219i −0.749091 + 1.29746i
\(595\) 0 0
\(596\) 0.454163 + 0.786634i 0.0186033 + 0.0322218i
\(597\) 8.81665 0.360842
\(598\) −7.04584 + 12.2037i −0.288126 + 0.499048i
\(599\) −6.78890 −0.277387 −0.138693 0.990335i \(-0.544290\pi\)
−0.138693 + 0.990335i \(0.544290\pi\)
\(600\) 0 0
\(601\) −14.1056 24.4315i −0.575377 0.996583i −0.996001 0.0893475i \(-0.971522\pi\)
0.420623 0.907235i \(-0.361811\pi\)
\(602\) −2.74306 + 4.75112i −0.111799 + 0.193641i
\(603\) −14.0000 −0.570124
\(604\) 2.00000 3.46410i 0.0813788 0.140952i
\(605\) 0 0
\(606\) −11.7250 −0.476295
\(607\) −9.89445 + 17.1377i −0.401603 + 0.695597i −0.993920 0.110108i \(-0.964880\pi\)
0.592316 + 0.805706i \(0.298214\pi\)
\(608\) 1.36249 + 2.35990i 0.0552563 + 0.0957067i
\(609\) 4.10555 + 7.11102i 0.166365 + 0.288153i
\(610\) 0 0
\(611\) −18.7889 −0.760117
\(612\) −0.238859 −0.00965530
\(613\) 0.802776 + 1.39045i 0.0324238 + 0.0561597i 0.881782 0.471657i \(-0.156344\pi\)
−0.849358 + 0.527817i \(0.823011\pi\)
\(614\) 10.4222 + 18.0518i 0.420606 + 0.728511i
\(615\) 0 0
\(616\) −16.8167 −0.677562
\(617\) 13.2250 22.9063i 0.532418 0.922174i −0.466866 0.884328i \(-0.654617\pi\)
0.999284 0.0378463i \(-0.0120497\pi\)
\(618\) −2.60555 + 4.51295i −0.104811 + 0.181537i
\(619\) −14.4222 −0.579677 −0.289839 0.957076i \(-0.593602\pi\)
−0.289839 + 0.957076i \(0.593602\pi\)
\(620\) 0 0
\(621\) −7.50000 12.9904i −0.300965 0.521286i
\(622\) 3.39445 + 5.87936i 0.136105 + 0.235741i
\(623\) 8.21110 0.328971
\(624\) 5.95416 10.3129i 0.238357 0.412847i
\(625\) 0 0
\(626\) −9.11943 15.7953i −0.364486 0.631308i
\(627\) −4.50000 7.79423i −0.179713 0.311272i
\(628\) 0.486122 0.841988i 0.0193984 0.0335990i
\(629\) −1.42221 −0.0567070
\(630\) 0 0
\(631\) −0.0138782 + 0.0240377i −0.000552482 + 0.000956927i −0.866302 0.499521i \(-0.833509\pi\)
0.865749 + 0.500478i \(0.166843\pi\)
\(632\) −27.6333 −1.09919
\(633\) −8.19722 + 14.1980i −0.325810 + 0.564320i
\(634\) −3.90833 6.76942i −0.155219 0.268848i
\(635\) 0 0
\(636\) −3.39445 −0.134599
\(637\) −10.8167 18.7350i −0.428571 0.742307i
\(638\) 59.9638 2.37399
\(639\) −16.8167 29.1273i −0.665257 1.15226i
\(640\) 0 0
\(641\) 9.71110 16.8201i 0.383565 0.664355i −0.608004 0.793934i \(-0.708029\pi\)
0.991569 + 0.129579i \(0.0413627\pi\)
\(642\) 10.6972 0.422186
\(643\) −20.3167 + 35.1895i −0.801211 + 1.38774i 0.117609 + 0.993060i \(0.462477\pi\)
−0.918820 + 0.394678i \(0.870856\pi\)
\(644\) 0.454163 0.786634i 0.0178965 0.0309977i
\(645\) 0 0
\(646\) −0.412529 + 0.714521i −0.0162307 + 0.0281125i
\(647\) 5.28890 + 9.16064i 0.207928 + 0.360142i 0.951062 0.309001i \(-0.0999947\pi\)
−0.743134 + 0.669143i \(0.766661\pi\)
\(648\) −1.50000 2.59808i −0.0589256 0.102062i
\(649\) −60.6333 −2.38007
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 2.75694 + 4.77516i 0.107970 + 0.187010i
\(653\) −14.4083 24.9560i −0.563841 0.976602i −0.997156 0.0753594i \(-0.975990\pi\)
0.433315 0.901243i \(-0.357344\pi\)
\(654\) 3.11943 5.40301i 0.121979 0.211274i
\(655\) 0 0
\(656\) 4.95416 8.58086i 0.193428 0.335026i
\(657\) 15.2111 26.3464i 0.593442 1.02787i
\(658\) −6.78890 −0.264659
\(659\) 6.59167 11.4171i 0.256775 0.444748i −0.708601 0.705609i \(-0.750673\pi\)
0.965376 + 0.260862i \(0.0840067\pi\)
\(660\) 0 0
\(661\) −19.3167 33.4574i −0.751331 1.30134i −0.947178 0.320709i \(-0.896079\pi\)
0.195847 0.980634i \(-0.437254\pi\)
\(662\) 33.9083 1.31788
\(663\) −1.42221 −0.0552339
\(664\) −15.6333 −0.606690
\(665\) 0 0
\(666\) −4.69722 8.13583i −0.182014 0.315257i
\(667\) −12.3167 + 21.3331i −0.476903 + 0.826020i
\(668\) 2.72498 0.105433
\(669\) −5.10555 + 8.84307i −0.197392 + 0.341893i
\(670\) 0 0
\(671\) 5.60555 0.216400
\(672\) −0.848612 + 1.46984i −0.0327359 + 0.0567003i
\(673\) −5.19722 9.00186i −0.200338 0.346996i 0.748299 0.663361i \(-0.230871\pi\)
−0.948637 + 0.316365i \(0.897537\pi\)
\(674\) −11.4861 19.8945i −0.442429 0.766309i
\(675\) 0 0
\(676\) 1.96804 3.40875i 0.0756939 0.131106i
\(677\) −33.6333 −1.29263 −0.646317 0.763069i \(-0.723691\pi\)
−0.646317 + 0.763069i \(0.723691\pi\)
\(678\) 3.65139 + 6.32439i 0.140231 + 0.242887i
\(679\) −7.80278 13.5148i −0.299443 0.518651i
\(680\) 0 0
\(681\) 1.42221 0.0544990
\(682\) 14.6056 25.2976i 0.559275 0.968694i
\(683\) 10.8944 18.8697i 0.416864 0.722030i −0.578758 0.815500i \(-0.696462\pi\)
0.995622 + 0.0934691i \(0.0297956\pi\)
\(684\) 0.972244 0.0371747
\(685\) 0 0
\(686\) −8.46804 14.6671i −0.323311 0.559992i
\(687\) 7.00000 + 12.1244i 0.267067 + 0.462573i
\(688\) 13.9083 0.530250
\(689\) 40.4222 1.53996
\(690\) 0 0
\(691\) −3.01388 5.22019i −0.114653 0.198585i 0.802988 0.595995i \(-0.203242\pi\)
−0.917641 + 0.397410i \(0.869909\pi\)
\(692\) 2.54584 + 4.40952i 0.0967782 + 0.167625i
\(693\) −5.60555 + 9.70910i −0.212937 + 0.368818i
\(694\) 26.3305 0.999493
\(695\) 0 0
\(696\) 12.3167 21.3331i 0.466862 0.808628i
\(697\) −1.18335 −0.0448224
\(698\) −11.8625 + 20.5464i −0.449002 + 0.777694i
\(699\) −0.394449 0.683205i −0.0149194 0.0258412i
\(700\) 0 0
\(701\) −7.57779 −0.286209 −0.143105 0.989708i \(-0.545709\pi\)
−0.143105 + 0.989708i \(0.545709\pi\)
\(702\) −11.7431 20.3396i −0.443213 0.767668i
\(703\) 5.78890 0.218332
\(704\) 24.7111 + 42.8009i 0.931335 + 1.61312i
\(705\) 0 0
\(706\) 3.13751 5.43433i 0.118082 0.204524i
\(707\) −9.00000 −0.338480
\(708\) −1.63751 + 2.83625i −0.0615414 + 0.106593i
\(709\) −21.9222 + 37.9704i −0.823306 + 1.42601i 0.0799016 + 0.996803i \(0.474539\pi\)
−0.903207 + 0.429205i \(0.858794\pi\)
\(710\) 0 0
\(711\) −9.21110 + 15.9541i −0.345443 + 0.598325i
\(712\) −12.3167 21.3331i −0.461586 0.799491i
\(713\) 6.00000 + 10.3923i 0.224702 + 0.389195i
\(714\) −0.513878 −0.0192314
\(715\) 0 0
\(716\) −0.358288 −0.0133899
\(717\) 0 0
\(718\) −6.78890 11.7587i −0.253359 0.438831i
\(719\) 9.19722 15.9301i 0.342999 0.594091i −0.641989 0.766713i \(-0.721891\pi\)
0.984988 + 0.172622i \(0.0552241\pi\)
\(720\) 0 0
\(721\) −2.00000 + 3.46410i −0.0744839 + 0.129010i
\(722\) −10.6972 + 18.5281i −0.398109 + 0.689546i
\(723\) −16.2111 −0.602897
\(724\) −3.88057 + 6.72135i −0.144220 + 0.249797i
\(725\) 0 0
\(726\) −13.3028 23.0411i −0.493712 0.855135i
\(727\) −42.4222 −1.57335 −0.786676 0.617366i \(-0.788200\pi\)
−0.786676 + 0.617366i \(0.788200\pi\)
\(728\) 5.40833 9.36750i 0.200446 0.347183i
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −0.830532 1.43852i −0.0307183 0.0532057i
\(732\) 0.151388 0.262211i 0.00559545 0.00969161i
\(733\) −10.8444 −0.400547 −0.200274 0.979740i \(-0.564183\pi\)
−0.200274 + 0.979740i \(0.564183\pi\)
\(734\) 11.3486 19.6564i 0.418885 0.725530i
\(735\) 0 0
\(736\) −5.09167 −0.187682
\(737\) 19.6194 33.9818i 0.722691 1.25174i
\(738\) −3.90833 6.76942i −0.143868 0.249186i
\(739\) 14.1972 + 24.5903i 0.522253 + 0.904569i 0.999665 + 0.0258895i \(0.00824179\pi\)
−0.477411 + 0.878680i \(0.658425\pi\)
\(740\) 0 0
\(741\) 5.78890 0.212660
\(742\) 14.6056 0.536187
\(743\) −3.31665 5.74461i −0.121676 0.210749i 0.798753 0.601660i \(-0.205494\pi\)
−0.920429 + 0.390910i \(0.872160\pi\)
\(744\) −6.00000 10.3923i −0.219971 0.381000i
\(745\) 0 0
\(746\) −35.9638 −1.31673
\(747\) −5.21110 + 9.02589i −0.190664 + 0.330240i
\(748\) 0.334734 0.579776i 0.0122391 0.0211987i
\(749\) 8.21110 0.300027
\(750\) 0 0
\(751\) 9.22498 + 15.9781i 0.336624 + 0.583050i 0.983795 0.179294i \(-0.0573814\pi\)
−0.647171 + 0.762345i \(0.724048\pi\)
\(752\) 8.60555 + 14.9053i 0.313812 + 0.543539i
\(753\) 28.8167 1.05014
\(754\) −19.2847 + 33.4021i −0.702307 + 1.21643i
\(755\) 0 0
\(756\) 0.756939 + 1.31106i 0.0275296 + 0.0476827i
\(757\) −10.4083 18.0278i −0.378297 0.655230i 0.612518 0.790457i \(-0.290157\pi\)
−0.990815 + 0.135227i \(0.956824\pi\)
\(758\) 1.55971 2.70151i 0.0566514 0.0981231i
\(759\) 16.8167 0.610406
\(760\) 0 0
\(761\) 12.3167 21.3331i 0.446478 0.773323i −0.551676 0.834059i \(-0.686011\pi\)
0.998154 + 0.0607356i \(0.0193447\pi\)
\(762\) −13.3028 −0.481909
\(763\) 2.39445 4.14731i 0.0866849 0.150143i
\(764\) −0.729183 1.26298i −0.0263809 0.0456931i
\(765\) 0 0
\(766\) 24.2750 0.877092
\(767\) 19.5000 33.7750i 0.704104 1.21954i
\(768\) 7.09167 0.255899
\(769\) −5.50000 9.52628i −0.198335 0.343526i 0.749654 0.661830i \(-0.230220\pi\)
−0.947989 + 0.318304i \(0.896887\pi\)
\(770\) 0 0
\(771\) 11.8028 20.4430i 0.425067 0.736237i
\(772\) 2.54163 0.0914754
\(773\) 14.8028 25.6392i 0.532419 0.922176i −0.466865 0.884329i \(-0.654616\pi\)
0.999284 0.0378477i \(-0.0120502\pi\)
\(774\) 5.48612 9.50224i 0.197195 0.341551i
\(775\) 0 0
\(776\) −23.4083 + 40.5444i −0.840310 + 1.45546i
\(777\) 1.80278 + 3.12250i 0.0646742 + 0.112019i
\(778\) −0.513878 0.890063i −0.0184234 0.0319103i
\(779\) 4.81665 0.172575
\(780\) 0 0
\(781\) 94.2666 3.37312
\(782\) −0.770817 1.33509i −0.0275644 0.0477429i
\(783\) −20.5278 35.5551i −0.733602 1.27064i
\(784\) −9.90833 + 17.1617i −0.353869 + 0.612919i
\(785\) 0 0
\(786\) 4.42221 7.65948i 0.157735 0.273205i
\(787\) −14.3167 + 24.7972i −0.510334 + 0.883924i 0.489595 + 0.871950i \(0.337145\pi\)
−0.999928 + 0.0119736i \(0.996189\pi\)
\(788\) 6.90833 0.246099
\(789\) −13.1056 + 22.6995i −0.466570 + 0.808123i
\(790\) 0 0
\(791\) 2.80278 + 4.85455i 0.0996552 + 0.172608i
\(792\) 33.6333 1.19511
\(793\) −1.80278 + 3.12250i −0.0640184 + 0.110883i
\(794\) −18.2750 −0.648556
\(795\) 0 0
\(796\) −1.33473 2.31183i −0.0473084 0.0819405i
\(797\) 25.2250 43.6909i 0.893515 1.54761i 0.0578825 0.998323i \(-0.481565\pi\)
0.835632 0.549289i \(-0.185102\pi\)
\(798\) 2.09167 0.0740444
\(799\) 1.02776 1.78013i 0.0363594 0.0629763i
\(800\) 0 0
\(801\) −16.4222 −0.580250
\(802\) −1.44029 + 2.49465i −0.0508582 + 0.0880891i
\(803\) 42.6333 + 73.8431i 1.50450 + 2.60586i
\(804\) −1.05971 1.83548i −0.0373733 0.0647324i
\(805\) 0 0
\(806\) 9.39445 + 16.2717i 0.330905 + 0.573145i
\(807\) 9.00000 0.316815
\(808\) 13.5000 + 23.3827i 0.474928 + 0.822600i
\(809\) −8.52776 14.7705i −0.299820 0.519303i 0.676275 0.736650i \(-0.263593\pi\)
−0.976095 + 0.217346i \(0.930260\pi\)
\(810\) 0 0
\(811\) −17.5778 −0.617240 −0.308620 0.951185i \(-0.599867\pi\)
−0.308620 + 0.951185i \(0.599867\pi\)
\(812\) 1.24306 2.15304i 0.0436229 0.0755571i
\(813\) 0.408327 0.707243i 0.0143207 0.0248041i
\(814\) 26.3305 0.922885
\(815\) 0 0
\(816\) 0.651388 + 1.12824i 0.0228031 + 0.0394962i
\(817\) 3.38057 + 5.85532i 0.118271 + 0.204852i
\(818\) 8.09167 0.282919
\(819\) −3.60555 6.24500i −0.125988 0.218218i
\(820\) 0 0
\(821\) 3.71110 + 6.42782i 0.129518 + 0.224332i 0.923490 0.383622i \(-0.125324\pi\)
−0.793972 + 0.607955i \(0.791990\pi\)
\(822\) 3.65139 + 6.32439i 0.127357 + 0.220588i
\(823\) 13.3167 23.0651i 0.464189 0.804000i −0.534975 0.844868i \(-0.679679\pi\)
0.999165 + 0.0408682i \(0.0130124\pi\)
\(824\) 12.0000 0.418040
\(825\) 0 0
\(826\) 7.04584 12.2037i 0.245156 0.424623i
\(827\) 13.5778 0.472146 0.236073 0.971735i \(-0.424140\pi\)
0.236073 + 0.971735i \(0.424140\pi\)
\(828\) −0.908327 + 1.57327i −0.0315665 + 0.0546749i
\(829\) −0.288897 0.500385i −0.0100338 0.0173791i 0.860965 0.508664i \(-0.169861\pi\)
−0.870999 + 0.491285i \(0.836527\pi\)
\(830\) 0 0
\(831\) 20.3944 0.707476
\(832\) −31.7889 −1.10208
\(833\) 2.36669 0.0820010
\(834\) −8.86249 15.3503i −0.306883 0.531537i
\(835\) 0 0
\(836\) −1.36249 + 2.35990i −0.0471227 + 0.0816189i
\(837\) −20.0000 −0.691301
\(838\) −21.6514 + 37.5013i −0.747935 + 1.29546i
\(839\) −8.01388 + 13.8804i −0.276670 + 0.479206i −0.970555 0.240879i \(-0.922564\pi\)
0.693885 + 0.720086i \(0.255897\pi\)
\(840\) 0 0
\(841\) −19.2111 + 33.2746i −0.662452 + 1.14740i
\(842\) 2.33053 + 4.03660i 0.0803154 + 0.139110i
\(843\) −3.00000 5.19615i −0.103325 0.178965i
\(844\) 4.96384 0.170862
\(845\) 0 0
\(846\) 13.5778 0.466814
\(847\) −10.2111 17.6861i −0.350858 0.607703i
\(848\) −18.5139 32.0670i −0.635769 1.10118i
\(849\) −2.50000 + 4.33013i −0.0857998 + 0.148610i
\(850\) 0 0
\(851\) −5.40833 + 9.36750i −0.185395 + 0.321114i
\(852\) 2.54584 4.40952i 0.0872189 0.151068i
\(853\) −32.7889 −1.12267 −0.561335 0.827589i \(-0.689712\pi\)
−0.561335 + 0.827589i \(0.689712\pi\)
\(854\) −0.651388 + 1.12824i −0.0222900 + 0.0386075i
\(855\) 0 0
\(856\) −12.3167 21.3331i −0.420975 0.729149i
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 26.3305 0.898910
\(859\) 25.2111 0.860192 0.430096 0.902783i \(-0.358480\pi\)
0.430096 + 0.902783i \(0.358480\pi\)
\(860\) 0 0
\(861\) 1.50000 + 2.59808i 0.0511199 + 0.0885422i
\(862\) −13.8347 + 23.9625i −0.471213 + 0.816165i
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 4.24306 7.34920i 0.144352 0.250025i
\(865\) 0 0
\(866\) −4.69722 −0.159618
\(867\) −8.42221 + 14.5877i −0.286033 + 0.495424i
\(868\) −0.605551 1.04885i −0.0205537 0.0356001i
\(869\) −25.8167 44.7158i −0.875770 1.51688i
\(870\) 0 0
\(871\) 12.6194 + 21.8575i 0.427593 + 0.740613i
\(872\) −14.3667 −0.486518
\(873\) 15.6056 + 27.0296i 0.528168 + 0.914814i
\(874\) 3.13751 + 5.43433i 0.106128 + 0.183819i
\(875\) 0 0
\(876\) 4.60555 0.155607
\(877\) −19.0139 + 32.9330i −0.642053 + 1.11207i 0.342921 + 0.939364i \(0.388584\pi\)
−0.984974 + 0.172704i \(0.944750\pi\)
\(878\) 15.1375 26.2189i 0.510866 0.884846i
\(879\) 17.6056 0.593821
\(880\) 0 0
\(881\) −17.9222 31.0422i −0.603814 1.04584i −0.992238 0.124356i \(-0.960313\pi\)
0.388423 0.921481i \(-0.373020\pi\)
\(882\) 7.81665 + 13.5388i 0.263200 + 0.455877i
\(883\) 31.6333 1.06455 0.532273 0.846573i \(-0.321338\pi\)
0.532273 + 0.846573i \(0.321338\pi\)
\(884\) 0.215305 + 0.372918i 0.00724147 + 0.0125426i
\(885\) 0 0
\(886\) 14.6056 + 25.2976i 0.490683 + 0.849888i
\(887\) 17.5278 + 30.3590i 0.588524 + 1.01935i 0.994426 + 0.105437i \(0.0336243\pi\)
−0.405901 + 0.913917i \(0.633042\pi\)
\(888\) 5.40833 9.36750i 0.181492 0.314353i
\(889\) −10.2111 −0.342469
\(890\) 0 0
\(891\) 2.80278 4.85455i 0.0938965 0.162634i
\(892\) 3.09167 0.103517
\(893\) −4.18335 + 7.24577i −0.139990 + 0.242470i
\(894\) −1.95416 3.38471i −0.0653570 0.113202i
\(895\) 0 0
\(896\) −8.09167 −0.270324
\(897\) −5.40833 + 9.36750i −0.180579 + 0.312772i
\(898\) 16.4584 0.549223
\(899\) 16.4222 + 28.4441i 0.547711 + 0.948664i
\(900\) 0 0
\(901\) −2.21110 + 3.82974i −0.0736625 + 0.127587i
\(902\) 21.9083 0.729467
\(903\) −2.10555 + 3.64692i −0.0700684 + 0.121362i
\(904\) 8.40833 14.5636i 0.279657 0.484380i
\(905\) 0 0
\(906\) −8.60555 + 14.9053i −0.285900 + 0.495194i
\(907\) 24.1333 + 41.8001i 0.801333 + 1.38795i 0.918739 + 0.394866i \(0.129209\pi\)
−0.117405 + 0.993084i \(0.537458\pi\)
\(908\) −0.215305 0.372918i −0.00714513 0.0123757i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) −2.65139 4.59234i −0.0877962 0.152068i
\(913\) −14.6056 25.2976i −0.483373 0.837227i
\(914\) 3.37637 5.84804i 0.111680 0.193436i
\(915\) 0 0
\(916\) 2.11943 3.67096i 0.0700279 0.121292i
\(917\) 3.39445 5.87936i 0.112095 0.194153i
\(918\) 2.56939 0.0848025
\(919\) 8.59167 14.8812i 0.283413 0.490886i −0.688810 0.724942i \(-0.741867\pi\)
0.972223 + 0.234056i \(0.0751999\pi\)
\(920\) 0 0
\(921\) 8.00000 + 13.8564i 0.263609 + 0.456584i
\(922\) −28.3860 −0.934845
\(923\) −30.3167 + 52.5100i −0.997885 + 1.72839i
\(924\) −1.69722 −0.0558346
\(925\) 0 0
\(926\) 3.63331 + 6.29307i 0.119398 + 0.206803i
\(927\) 4.00000 6.92820i 0.131377 0.227552i
\(928\) −13.9361 −0.457474
\(929\) −6.71110 + 11.6240i −0.220184 + 0.381370i −0.954864 0.297044i \(-0.903999\pi\)
0.734680 + 0.678414i \(0.237332\pi\)
\(930\) 0 0
\(931\) −9.63331 −0.315719
\(932\) −0.119429 + 0.206858i −0.00391204 + 0.00677586i
\(933\) 2.60555 + 4.51295i 0.0853019 + 0.147747i
\(934\) −11.2111 19.4182i −0.366838 0.635383i
\(935\) 0 0
\(936\) −10.8167 + 18.7350i −0.353553 + 0.612372i
\(937\) 46.4777 1.51836 0.759180 0.650880i \(-0.225600\pi\)
0.759180 + 0.650880i \(0.225600\pi\)
\(938\) 4.55971 + 7.89766i 0.148880 + 0.257868i
\(939\) −7.00000 12.1244i −0.228436 0.395663i
\(940\) 0 0
\(941\) 33.6333 1.09641 0.548207 0.836343i \(-0.315311\pi\)
0.548207 + 0.836343i \(0.315311\pi\)
\(942\) −2.09167 + 3.62288i −0.0681504 + 0.118040i
\(943\) −4.50000 + 7.79423i −0.146540 + 0.253815i
\(944\) −35.7250 −1.16275
\(945\) 0 0
\(946\) 15.3764 + 26.6327i 0.499929 + 0.865902i
\(947\) 12.3167 + 21.3331i 0.400237 + 0.693232i 0.993754 0.111590i \(-0.0355943\pi\)
−0.593517 + 0.804822i \(0.702261\pi\)
\(948\) −2.78890 −0.0905792
\(949\) −54.8444 −1.78032
\(950\) 0 0
\(951\) −3.00000 5.19615i −0.0972817 0.168497i
\(952\) 0.591673 + 1.02481i 0.0191762 + 0.0332142i
\(953\) 25.2250 43.6909i 0.817117 1.41529i −0.0906803 0.995880i \(-0.528904\pi\)
0.907798 0.419409i \(-0.137763\pi\)
\(954\) −29.2111 −0.945744
\(955\) 0 0
\(956\) 0 0
\(957\) 46.0278 1.48787
\(958\) −4.67914 + 8.10452i −0.151176 + 0.261845i
\(959\) 2.80278 + 4.85455i 0.0905063 + 0.156762i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −8.46804 + 14.6671i −0.273021 + 0.472886i
\(963\) −16.4222 −0.529198
\(964\) 2.45416 + 4.25074i 0.0790433 + 0.136907i
\(965\) 0 0
\(966\) −1.95416 + 3.38471i −0.0628742 + 0.108901i
\(967\) −56.4777 −1.81620 −0.908100 0.418752i \(-0.862468\pi\)
−0.908100 + 0.418752i \(0.862468\pi\)
\(968\) −30.6333 + 53.0584i −0.984592 + 1.70536i
\(969\) −0.316654 + 0.548461i −0.0101724 + 0.0176191i
\(970\) 0 0
\(971\) 3.98612 6.90417i 0.127921 0.221565i −0.794950 0.606675i \(-0.792503\pi\)
0.922871 + 0.385110i \(0.125836\pi\)
\(972\) −2.42221 4.19538i −0.0776923 0.134567i
\(973\) −6.80278 11.7828i −0.218087 0.377738i
\(974\) −1.30278 −0.0417436
\(975\) 0 0
\(976\) 3.30278 0.105719
\(977\) 3.59167 + 6.22096i 0.114908 + 0.199026i 0.917743 0.397175i \(-0.130009\pi\)
−0.802835 + 0.596201i \(0.796676\pi\)
\(978\) −11.8625 20.5464i −0.379321 0.657003i
\(979\) 23.0139 39.8612i 0.735527 1.27397i
\(980\) 0 0
\(981\) −4.78890 + 8.29461i −0.152898 + 0.264827i
\(982\) 3.13751 5.43433i 0.100122 0.173416i
\(983\) 10.4222 0.332417 0.166208 0.986091i \(-0.446848\pi\)
0.166208 + 0.986091i \(0.446848\pi\)
\(984\) 4.50000 7.79423i 0.143455 0.248471i
\(985\) 0 0
\(986\) −2.10975 3.65420i −0.0671882 0.116373i
\(987\) −5.21110 −0.165871
\(988\) −0.876369 1.51791i −0.0278810 0.0482913i
\(989\) −12.6333 −0.401716
\(990\) 0 0
\(991\) −1.98612 3.44006i −0.0630912 0.109277i 0.832754 0.553642i \(-0.186763\pi\)
−0.895846 + 0.444365i \(0.853429\pi\)
\(992\) −3.39445 + 5.87936i −0.107774 + 0.186670i
\(993\) 26.0278 0.825966
\(994\) −10.9542 + 18.9732i −0.347445 + 0.601792i
\(995\) 0 0
\(996\) −1.57779 −0.0499943
\(997\) 23.2250 40.2268i 0.735543 1.27400i −0.218942 0.975738i \(-0.570261\pi\)
0.954485 0.298259i \(-0.0964060\pi\)
\(998\) −17.2111 29.8105i −0.544808 0.943635i
\(999\) −9.01388 15.6125i −0.285186 0.493957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.e.a.276.2 4
5.2 odd 4 325.2.o.b.224.2 8
5.3 odd 4 325.2.o.b.224.3 8
5.4 even 2 65.2.e.b.16.1 4
13.3 even 3 4225.2.a.x.1.1 2
13.9 even 3 inner 325.2.e.a.126.2 4
13.10 even 6 4225.2.a.t.1.2 2
15.14 odd 2 585.2.j.d.406.2 4
20.19 odd 2 1040.2.q.o.81.1 4
65.4 even 6 845.2.e.d.191.2 4
65.9 even 6 65.2.e.b.61.1 yes 4
65.19 odd 12 845.2.m.d.316.3 8
65.22 odd 12 325.2.o.b.74.3 8
65.24 odd 12 845.2.c.d.506.3 4
65.29 even 6 845.2.a.c.1.2 2
65.34 odd 4 845.2.m.d.361.3 8
65.44 odd 4 845.2.m.d.361.2 8
65.48 odd 12 325.2.o.b.74.2 8
65.49 even 6 845.2.a.f.1.1 2
65.54 odd 12 845.2.c.d.506.2 4
65.59 odd 12 845.2.m.d.316.2 8
65.64 even 2 845.2.e.d.146.2 4
195.29 odd 6 7605.2.a.bg.1.1 2
195.74 odd 6 585.2.j.d.451.2 4
195.179 odd 6 7605.2.a.bb.1.2 2
260.139 odd 6 1040.2.q.o.321.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.1 4 5.4 even 2
65.2.e.b.61.1 yes 4 65.9 even 6
325.2.e.a.126.2 4 13.9 even 3 inner
325.2.e.a.276.2 4 1.1 even 1 trivial
325.2.o.b.74.2 8 65.48 odd 12
325.2.o.b.74.3 8 65.22 odd 12
325.2.o.b.224.2 8 5.2 odd 4
325.2.o.b.224.3 8 5.3 odd 4
585.2.j.d.406.2 4 15.14 odd 2
585.2.j.d.451.2 4 195.74 odd 6
845.2.a.c.1.2 2 65.29 even 6
845.2.a.f.1.1 2 65.49 even 6
845.2.c.d.506.2 4 65.54 odd 12
845.2.c.d.506.3 4 65.24 odd 12
845.2.e.d.146.2 4 65.64 even 2
845.2.e.d.191.2 4 65.4 even 6
845.2.m.d.316.2 8 65.59 odd 12
845.2.m.d.316.3 8 65.19 odd 12
845.2.m.d.361.2 8 65.44 odd 4
845.2.m.d.361.3 8 65.34 odd 4
1040.2.q.o.81.1 4 20.19 odd 2
1040.2.q.o.321.1 4 260.139 odd 6
4225.2.a.t.1.2 2 13.10 even 6
4225.2.a.x.1.1 2 13.3 even 3
7605.2.a.bb.1.2 2 195.179 odd 6
7605.2.a.bg.1.1 2 195.29 odd 6