Properties

Label 325.2.d.c
Level $325$
Weight $2$
Character orbit 325.d
Analytic conductor $2.595$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(324,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + 2 i q^{3} - q^{4} + 2 i q^{6} - 5 q^{7} - 3 q^{8} - q^{9} + 3 i q^{11} - 2 i q^{12} + (3 i + 2) q^{13} - 5 q^{14} - q^{16} + 5 i q^{17} - q^{18} - 4 i q^{19} - 10 i q^{21} + 3 i q^{22} + \cdots - 3 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} - 10 q^{7} - 6 q^{8} - 2 q^{9} + 4 q^{13} - 10 q^{14} - 2 q^{16} - 2 q^{18} + 4 q^{26} + 10 q^{28} + 2 q^{29} + 10 q^{32} - 12 q^{33} + 2 q^{36} + 8 q^{37} - 12 q^{39} - 14 q^{47}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
324.1
1.00000i
1.00000i
1.00000 2.00000i −1.00000 0 2.00000i −5.00000 −3.00000 −1.00000 0
324.2 1.00000 2.00000i −1.00000 0 2.00000i −5.00000 −3.00000 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.2.d.c 2
5.b even 2 1 325.2.d.b 2
5.c odd 4 1 325.2.c.a 2
5.c odd 4 1 325.2.c.f yes 2
13.b even 2 1 325.2.d.b 2
65.d even 2 1 inner 325.2.d.c 2
65.f even 4 1 4225.2.a.d 1
65.f even 4 1 4225.2.a.f 1
65.h odd 4 1 325.2.c.a 2
65.h odd 4 1 325.2.c.f yes 2
65.k even 4 1 4225.2.a.l 1
65.k even 4 1 4225.2.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
325.2.c.a 2 5.c odd 4 1
325.2.c.a 2 65.h odd 4 1
325.2.c.f yes 2 5.c odd 4 1
325.2.c.f yes 2 65.h odd 4 1
325.2.d.b 2 5.b even 2 1
325.2.d.b 2 13.b even 2 1
325.2.d.c 2 1.a even 1 1 trivial
325.2.d.c 2 65.d even 2 1 inner
4225.2.a.d 1 65.f even 4 1
4225.2.a.f 1 65.f even 4 1
4225.2.a.l 1 65.k even 4 1
4225.2.a.n 1 65.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(325, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 5)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 9 \) Copy content Toggle raw display
$13$ \( T^{2} - 4T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} + 25 \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 16 \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 1 \) Copy content Toggle raw display
$37$ \( (T - 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 64 \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T + 7)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 9 \) Copy content Toggle raw display
$59$ \( T^{2} + 9 \) Copy content Toggle raw display
$61$ \( (T - 1)^{2} \) Copy content Toggle raw display
$67$ \( (T - 3)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 64 \) Copy content Toggle raw display
$73$ \( (T + 4)^{2} \) Copy content Toggle raw display
$79$ \( (T + 10)^{2} \) Copy content Toggle raw display
$83$ \( (T - 9)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 324 \) Copy content Toggle raw display
$97$ \( (T + 14)^{2} \) Copy content Toggle raw display
show more
show less