Properties

Label 325.2.c.a
Level $325$
Weight $2$
Character orbit 325.c
Analytic conductor $2.595$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(51,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-4,2,0,0,0,0,2,0,0,-4,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - 2 q^{3} + q^{4} - 2 i q^{6} - 5 i q^{7} + 3 i q^{8} + q^{9} - 3 i q^{11} - 2 q^{12} + ( - 2 i - 3) q^{13} + 5 q^{14} - q^{16} + 5 q^{17} + i q^{18} - 4 i q^{19} + 10 i q^{21} + 3 q^{22} + \cdots - 3 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 2 q^{4} + 2 q^{9} - 4 q^{12} - 6 q^{13} + 10 q^{14} - 2 q^{16} + 10 q^{17} + 6 q^{22} + 8 q^{23} + 4 q^{26} + 8 q^{27} - 2 q^{29} + 2 q^{36} + 8 q^{38} + 12 q^{39} - 20 q^{42} - 8 q^{43}+ \cdots + 14 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
1.00000i
1.00000i
1.00000i −2.00000 1.00000 0 2.00000i 5.00000i 3.00000i 1.00000 0
51.2 1.00000i −2.00000 1.00000 0 2.00000i 5.00000i 3.00000i 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.2.c.a 2
5.b even 2 1 325.2.c.f yes 2
5.c odd 4 1 325.2.d.b 2
5.c odd 4 1 325.2.d.c 2
13.b even 2 1 inner 325.2.c.a 2
13.d odd 4 1 4225.2.a.d 1
13.d odd 4 1 4225.2.a.l 1
65.d even 2 1 325.2.c.f yes 2
65.g odd 4 1 4225.2.a.f 1
65.g odd 4 1 4225.2.a.n 1
65.h odd 4 1 325.2.d.b 2
65.h odd 4 1 325.2.d.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
325.2.c.a 2 1.a even 1 1 trivial
325.2.c.a 2 13.b even 2 1 inner
325.2.c.f yes 2 5.b even 2 1
325.2.c.f yes 2 65.d even 2 1
325.2.d.b 2 5.c odd 4 1
325.2.d.b 2 65.h odd 4 1
325.2.d.c 2 5.c odd 4 1
325.2.d.c 2 65.h odd 4 1
4225.2.a.d 1 13.d odd 4 1
4225.2.a.f 1 65.g odd 4 1
4225.2.a.l 1 13.d odd 4 1
4225.2.a.n 1 65.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(325, [\chi])\):

\( T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{3} + 2 \) Copy content Toggle raw display
\( T_{7}^{2} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T + 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 25 \) Copy content Toggle raw display
$11$ \( T^{2} + 9 \) Copy content Toggle raw display
$13$ \( T^{2} + 6T + 13 \) Copy content Toggle raw display
$17$ \( (T - 5)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 1 \) Copy content Toggle raw display
$37$ \( T^{2} + 16 \) Copy content Toggle raw display
$41$ \( T^{2} + 64 \) Copy content Toggle raw display
$43$ \( (T + 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 49 \) Copy content Toggle raw display
$53$ \( (T + 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 9 \) Copy content Toggle raw display
$61$ \( (T - 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 9 \) Copy content Toggle raw display
$71$ \( T^{2} + 64 \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T - 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 81 \) Copy content Toggle raw display
$89$ \( T^{2} + 324 \) Copy content Toggle raw display
$97$ \( T^{2} + 196 \) Copy content Toggle raw display
show more
show less