Properties

Label 325.2.b.c.274.1
Level $325$
Weight $2$
Character 325.274
Analytic conductor $2.595$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(274,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.274"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.2.b.c.274.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +2.00000 q^{4} -4.00000i q^{7} +2.00000 q^{9} -6.00000 q^{11} -2.00000i q^{12} -1.00000i q^{13} +4.00000 q^{16} +6.00000i q^{17} +4.00000 q^{19} -4.00000 q^{21} -3.00000i q^{23} -5.00000i q^{27} -8.00000i q^{28} +3.00000 q^{29} -4.00000 q^{31} +6.00000i q^{33} +4.00000 q^{36} +2.00000i q^{37} -1.00000 q^{39} +6.00000 q^{41} +7.00000i q^{43} -12.0000 q^{44} -4.00000i q^{48} -9.00000 q^{49} +6.00000 q^{51} -2.00000i q^{52} +9.00000i q^{53} -4.00000i q^{57} +6.00000 q^{59} -1.00000 q^{61} -8.00000i q^{63} +8.00000 q^{64} +14.0000i q^{67} +12.0000i q^{68} -3.00000 q^{69} -6.00000 q^{71} +4.00000i q^{73} +8.00000 q^{76} +24.0000i q^{77} -11.0000 q^{79} +1.00000 q^{81} +6.00000i q^{83} -8.00000 q^{84} -3.00000i q^{87} -4.00000 q^{91} -6.00000i q^{92} +4.00000i q^{93} -10.0000i q^{97} -12.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{4} + 4 q^{9} - 12 q^{11} + 8 q^{16} + 8 q^{19} - 8 q^{21} + 6 q^{29} - 8 q^{31} + 8 q^{36} - 2 q^{39} + 12 q^{41} - 24 q^{44} - 18 q^{49} + 12 q^{51} + 12 q^{59} - 2 q^{61} + 16 q^{64} - 6 q^{69}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(3\) − 1.00000i − 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) 2.00000 1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.00000i − 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) − 2.00000i − 0.577350i
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) − 3.00000i − 0.625543i −0.949828 0.312772i \(-0.898743\pi\)
0.949828 0.312772i \(-0.101257\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 5.00000i − 0.962250i
\(28\) − 8.00000i − 1.51186i
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 6.00000i 1.04447i
\(34\) 0 0
\(35\) 0 0
\(36\) 4.00000 0.666667
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 7.00000i 1.06749i 0.845645 + 0.533745i \(0.179216\pi\)
−0.845645 + 0.533745i \(0.820784\pi\)
\(44\) −12.0000 −1.80907
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) − 4.00000i − 0.577350i
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) − 2.00000i − 0.277350i
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 4.00000i − 0.529813i
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) − 8.00000i − 1.00791i
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 14.0000i 1.71037i 0.518321 + 0.855186i \(0.326557\pi\)
−0.518321 + 0.855186i \(0.673443\pi\)
\(68\) 12.0000i 1.45521i
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) 24.0000i 2.73505i
\(78\) 0 0
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) −8.00000 −0.872872
\(85\) 0 0
\(86\) 0 0
\(87\) − 3.00000i − 0.321634i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) − 6.00000i − 0.625543i
\(93\) 4.00000i 0.414781i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 10.0000i − 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) 0 0
\(99\) −12.0000 −1.20605
\(100\) 0 0
\(101\) −15.0000 −1.49256 −0.746278 0.665635i \(-0.768161\pi\)
−0.746278 + 0.665635i \(0.768161\pi\)
\(102\) 0 0
\(103\) − 11.0000i − 1.08386i −0.840423 0.541931i \(-0.817693\pi\)
0.840423 0.541931i \(-0.182307\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) − 10.0000i − 0.962250i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) − 16.0000i − 1.51186i
\(113\) 3.00000i 0.282216i 0.989994 + 0.141108i \(0.0450665\pi\)
−0.989994 + 0.141108i \(0.954933\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) − 2.00000i − 0.184900i
\(118\) 0 0
\(119\) 24.0000 2.20008
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) − 6.00000i − 0.541002i
\(124\) −8.00000 −0.718421
\(125\) 0 0
\(126\) 0 0
\(127\) 11.0000i 0.976092i 0.872818 + 0.488046i \(0.162290\pi\)
−0.872818 + 0.488046i \(0.837710\pi\)
\(128\) 0 0
\(129\) 7.00000 0.616316
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 12.0000i 1.04447i
\(133\) − 16.0000i − 1.38738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 18.0000i − 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 0 0
\(139\) 1.00000 0.0848189 0.0424094 0.999100i \(-0.486497\pi\)
0.0424094 + 0.999100i \(0.486497\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000i 0.501745i
\(144\) 8.00000 0.666667
\(145\) 0 0
\(146\) 0 0
\(147\) 9.00000i 0.742307i
\(148\) 4.00000i 0.328798i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) 12.0000i 0.970143i
\(154\) 0 0
\(155\) 0 0
\(156\) −2.00000 −0.160128
\(157\) − 10.0000i − 0.798087i −0.916932 0.399043i \(-0.869342\pi\)
0.916932 0.399043i \(-0.130658\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) − 2.00000i − 0.156652i −0.996928 0.0783260i \(-0.975042\pi\)
0.996928 0.0783260i \(-0.0249575\pi\)
\(164\) 12.0000 0.937043
\(165\) 0 0
\(166\) 0 0
\(167\) − 18.0000i − 1.39288i −0.717614 0.696441i \(-0.754766\pi\)
0.717614 0.696441i \(-0.245234\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 8.00000 0.611775
\(172\) 14.0000i 1.06749i
\(173\) − 18.0000i − 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −24.0000 −1.80907
\(177\) − 6.00000i − 0.450988i
\(178\) 0 0
\(179\) 21.0000 1.56961 0.784807 0.619740i \(-0.212762\pi\)
0.784807 + 0.619740i \(0.212762\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 1.00000i 0.0739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 36.0000i − 2.63258i
\(188\) 0 0
\(189\) −20.0000 −1.45479
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) − 8.00000i − 0.577350i
\(193\) 16.0000i 1.15171i 0.817554 + 0.575853i \(0.195330\pi\)
−0.817554 + 0.575853i \(0.804670\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −18.0000 −1.28571
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) 25.0000 1.77220 0.886102 0.463491i \(-0.153403\pi\)
0.886102 + 0.463491i \(0.153403\pi\)
\(200\) 0 0
\(201\) 14.0000 0.987484
\(202\) 0 0
\(203\) − 12.0000i − 0.842235i
\(204\) 12.0000 0.840168
\(205\) 0 0
\(206\) 0 0
\(207\) − 6.00000i − 0.417029i
\(208\) − 4.00000i − 0.277350i
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 18.0000i 1.23625i
\(213\) 6.00000i 0.411113i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) 0 0
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) − 14.0000i − 0.937509i −0.883328 0.468755i \(-0.844703\pi\)
0.883328 0.468755i \(-0.155297\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) − 8.00000i − 0.529813i
\(229\) −20.0000 −1.32164 −0.660819 0.750546i \(-0.729791\pi\)
−0.660819 + 0.750546i \(0.729791\pi\)
\(230\) 0 0
\(231\) 24.0000 1.57908
\(232\) 0 0
\(233\) 3.00000i 0.196537i 0.995160 + 0.0982683i \(0.0313303\pi\)
−0.995160 + 0.0982683i \(0.968670\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 12.0000 0.781133
\(237\) 11.0000i 0.714527i
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) − 16.0000i − 1.02640i
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) − 4.00000i − 0.254514i
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) − 16.0000i − 1.00791i
\(253\) 18.0000i 1.13165i
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) − 27.0000i − 1.68421i −0.539311 0.842107i \(-0.681315\pi\)
0.539311 0.842107i \(-0.318685\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) − 24.0000i − 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 28.0000i 1.71037i
\(269\) −21.0000 −1.28039 −0.640196 0.768211i \(-0.721147\pi\)
−0.640196 + 0.768211i \(0.721147\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 24.0000i 1.45521i
\(273\) 4.00000i 0.242091i
\(274\) 0 0
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) 5.00000i 0.300421i 0.988654 + 0.150210i \(0.0479951\pi\)
−0.988654 + 0.150210i \(0.952005\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) 0 0
\(287\) − 24.0000i − 1.41668i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 8.00000i 0.468165i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 30.0000i 1.74078i
\(298\) 0 0
\(299\) −3.00000 −0.173494
\(300\) 0 0
\(301\) 28.0000 1.61389
\(302\) 0 0
\(303\) 15.0000i 0.861727i
\(304\) 16.0000 0.917663
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 48.0000i 2.73505i
\(309\) −11.0000 −0.625768
\(310\) 0 0
\(311\) 27.0000 1.53103 0.765515 0.643418i \(-0.222484\pi\)
0.765515 + 0.643418i \(0.222484\pi\)
\(312\) 0 0
\(313\) − 17.0000i − 0.960897i −0.877023 0.480448i \(-0.840474\pi\)
0.877023 0.480448i \(-0.159526\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −22.0000 −1.23760
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 0 0
\(323\) 24.0000i 1.33540i
\(324\) 2.00000 0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) 2.00000i 0.110600i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −16.0000 −0.879440 −0.439720 0.898135i \(-0.644922\pi\)
−0.439720 + 0.898135i \(0.644922\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 4.00000i 0.219199i
\(334\) 0 0
\(335\) 0 0
\(336\) −16.0000 −0.872872
\(337\) 23.0000i 1.25289i 0.779466 + 0.626445i \(0.215491\pi\)
−0.779466 + 0.626445i \(0.784509\pi\)
\(338\) 0 0
\(339\) 3.00000 0.162938
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 3.00000i − 0.161048i −0.996753 0.0805242i \(-0.974341\pi\)
0.996753 0.0805242i \(-0.0256594\pi\)
\(348\) − 6.00000i − 0.321634i
\(349\) 16.0000 0.856460 0.428230 0.903670i \(-0.359137\pi\)
0.428230 + 0.903670i \(0.359137\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 24.0000i − 1.27021i
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) − 25.0000i − 1.31216i
\(364\) −8.00000 −0.419314
\(365\) 0 0
\(366\) 0 0
\(367\) − 19.0000i − 0.991792i −0.868382 0.495896i \(-0.834840\pi\)
0.868382 0.495896i \(-0.165160\pi\)
\(368\) − 12.0000i − 0.625543i
\(369\) 12.0000 0.624695
\(370\) 0 0
\(371\) 36.0000 1.86903
\(372\) 8.00000i 0.414781i
\(373\) − 29.0000i − 1.50156i −0.660551 0.750782i \(-0.729677\pi\)
0.660551 0.750782i \(-0.270323\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 3.00000i − 0.154508i
\(378\) 0 0
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 11.0000 0.563547
\(382\) 0 0
\(383\) 24.0000i 1.22634i 0.789950 + 0.613171i \(0.210106\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 14.0000i 0.711660i
\(388\) − 20.0000i − 1.01535i
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 0 0
\(393\) 15.0000i 0.756650i
\(394\) 0 0
\(395\) 0 0
\(396\) −24.0000 −1.20605
\(397\) − 4.00000i − 0.200754i −0.994949 0.100377i \(-0.967995\pi\)
0.994949 0.100377i \(-0.0320049\pi\)
\(398\) 0 0
\(399\) −16.0000 −0.801002
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 4.00000i 0.199254i
\(404\) −30.0000 −1.49256
\(405\) 0 0
\(406\) 0 0
\(407\) − 12.0000i − 0.594818i
\(408\) 0 0
\(409\) −32.0000 −1.58230 −0.791149 0.611623i \(-0.790517\pi\)
−0.791149 + 0.611623i \(0.790517\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) − 22.0000i − 1.08386i
\(413\) − 24.0000i − 1.18096i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 1.00000i − 0.0489702i
\(418\) 0 0
\(419\) −3.00000 −0.146560 −0.0732798 0.997311i \(-0.523347\pi\)
−0.0732798 + 0.997311i \(0.523347\pi\)
\(420\) 0 0
\(421\) −4.00000 −0.194948 −0.0974740 0.995238i \(-0.531076\pi\)
−0.0974740 + 0.995238i \(0.531076\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 6.00000i 0.290021i
\(429\) 6.00000 0.289683
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) − 20.0000i − 0.962250i
\(433\) 7.00000i 0.336399i 0.985753 + 0.168199i \(0.0537952\pi\)
−0.985753 + 0.168199i \(0.946205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.00000 −0.191565
\(437\) − 12.0000i − 0.574038i
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) −18.0000 −0.857143
\(442\) 0 0
\(443\) 12.0000i 0.570137i 0.958507 + 0.285069i \(0.0920164\pi\)
−0.958507 + 0.285069i \(0.907984\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) 0 0
\(447\) − 6.00000i − 0.283790i
\(448\) − 32.0000i − 1.51186i
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) −36.0000 −1.69517
\(452\) 6.00000i 0.282216i
\(453\) − 2.00000i − 0.0939682i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.00000i 0.374224i 0.982339 + 0.187112i \(0.0599128\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(458\) 0 0
\(459\) 30.0000 1.40028
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) − 26.0000i − 1.20832i −0.796862 0.604161i \(-0.793508\pi\)
0.796862 0.604161i \(-0.206492\pi\)
\(464\) 12.0000 0.557086
\(465\) 0 0
\(466\) 0 0
\(467\) − 15.0000i − 0.694117i −0.937843 0.347059i \(-0.887180\pi\)
0.937843 0.347059i \(-0.112820\pi\)
\(468\) − 4.00000i − 0.184900i
\(469\) 56.0000 2.58584
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) − 42.0000i − 1.93116i
\(474\) 0 0
\(475\) 0 0
\(476\) 48.0000 2.20008
\(477\) 18.0000i 0.824163i
\(478\) 0 0
\(479\) −18.0000 −0.822441 −0.411220 0.911536i \(-0.634897\pi\)
−0.411220 + 0.911536i \(0.634897\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 0 0
\(483\) 12.0000i 0.546019i
\(484\) 50.0000 2.27273
\(485\) 0 0
\(486\) 0 0
\(487\) 20.0000i 0.906287i 0.891438 + 0.453143i \(0.149697\pi\)
−0.891438 + 0.453143i \(0.850303\pi\)
\(488\) 0 0
\(489\) −2.00000 −0.0904431
\(490\) 0 0
\(491\) −33.0000 −1.48927 −0.744635 0.667472i \(-0.767376\pi\)
−0.744635 + 0.667472i \(0.767376\pi\)
\(492\) − 12.0000i − 0.541002i
\(493\) 18.0000i 0.810679i
\(494\) 0 0
\(495\) 0 0
\(496\) −16.0000 −0.718421
\(497\) 24.0000i 1.07655i
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) −18.0000 −0.804181
\(502\) 0 0
\(503\) − 9.00000i − 0.401290i −0.979664 0.200645i \(-0.935696\pi\)
0.979664 0.200645i \(-0.0643038\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 22.0000i 0.976092i
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 16.0000 0.707798
\(512\) 0 0
\(513\) − 20.0000i − 0.883022i
\(514\) 0 0
\(515\) 0 0
\(516\) 14.0000 0.616316
\(517\) 0 0
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) 40.0000i 1.74908i 0.484955 + 0.874539i \(0.338836\pi\)
−0.484955 + 0.874539i \(0.661164\pi\)
\(524\) −30.0000 −1.31056
\(525\) 0 0
\(526\) 0 0
\(527\) − 24.0000i − 1.04546i
\(528\) 24.0000i 1.04447i
\(529\) 14.0000 0.608696
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) − 32.0000i − 1.38738i
\(533\) − 6.00000i − 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 21.0000i − 0.906217i
\(538\) 0 0
\(539\) 54.0000 2.32594
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) − 2.00000i − 0.0858282i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 20.0000i 0.855138i 0.903983 + 0.427569i \(0.140630\pi\)
−0.903983 + 0.427569i \(0.859370\pi\)
\(548\) − 36.0000i − 1.53784i
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) 44.0000i 1.87107i
\(554\) 0 0
\(555\) 0 0
\(556\) 2.00000 0.0848189
\(557\) − 30.0000i − 1.27114i −0.772043 0.635570i \(-0.780765\pi\)
0.772043 0.635570i \(-0.219235\pi\)
\(558\) 0 0
\(559\) 7.00000 0.296068
\(560\) 0 0
\(561\) −36.0000 −1.51992
\(562\) 0 0
\(563\) − 3.00000i − 0.126435i −0.998000 0.0632175i \(-0.979864\pi\)
0.998000 0.0632175i \(-0.0201362\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 4.00000i − 0.167984i
\(568\) 0 0
\(569\) −33.0000 −1.38343 −0.691716 0.722170i \(-0.743145\pi\)
−0.691716 + 0.722170i \(0.743145\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 12.0000i 0.501745i
\(573\) 3.00000i 0.125327i
\(574\) 0 0
\(575\) 0 0
\(576\) 16.0000 0.666667
\(577\) 14.0000i 0.582828i 0.956597 + 0.291414i \(0.0941257\pi\)
−0.956597 + 0.291414i \(0.905874\pi\)
\(578\) 0 0
\(579\) 16.0000 0.664937
\(580\) 0 0
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) − 54.0000i − 2.23645i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 42.0000i − 1.73353i −0.498721 0.866763i \(-0.666197\pi\)
0.498721 0.866763i \(-0.333803\pi\)
\(588\) 18.0000i 0.742307i
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 8.00000i 0.328798i
\(593\) − 48.0000i − 1.97112i −0.169316 0.985562i \(-0.554156\pi\)
0.169316 0.985562i \(-0.445844\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.0000 0.491539
\(597\) − 25.0000i − 1.02318i
\(598\) 0 0
\(599\) 15.0000 0.612883 0.306442 0.951889i \(-0.400862\pi\)
0.306442 + 0.951889i \(0.400862\pi\)
\(600\) 0 0
\(601\) 5.00000 0.203954 0.101977 0.994787i \(-0.467483\pi\)
0.101977 + 0.994787i \(0.467483\pi\)
\(602\) 0 0
\(603\) 28.0000i 1.14025i
\(604\) 4.00000 0.162758
\(605\) 0 0
\(606\) 0 0
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 0 0
\(609\) −12.0000 −0.486265
\(610\) 0 0
\(611\) 0 0
\(612\) 24.0000i 0.970143i
\(613\) 40.0000i 1.61558i 0.589467 + 0.807792i \(0.299338\pi\)
−0.589467 + 0.807792i \(0.700662\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 6.00000i − 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) 0 0
\(619\) −14.0000 −0.562708 −0.281354 0.959604i \(-0.590783\pi\)
−0.281354 + 0.959604i \(0.590783\pi\)
\(620\) 0 0
\(621\) −15.0000 −0.601929
\(622\) 0 0
\(623\) 0 0
\(624\) −4.00000 −0.160128
\(625\) 0 0
\(626\) 0 0
\(627\) 24.0000i 0.958468i
\(628\) − 20.0000i − 0.798087i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) 4.00000i 0.158986i
\(634\) 0 0
\(635\) 0 0
\(636\) 18.0000 0.713746
\(637\) 9.00000i 0.356593i
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) 15.0000 0.592464 0.296232 0.955116i \(-0.404270\pi\)
0.296232 + 0.955116i \(0.404270\pi\)
\(642\) 0 0
\(643\) 4.00000i 0.157745i 0.996885 + 0.0788723i \(0.0251319\pi\)
−0.996885 + 0.0788723i \(0.974868\pi\)
\(644\) −24.0000 −0.945732
\(645\) 0 0
\(646\) 0 0
\(647\) 36.0000i 1.41531i 0.706560 + 0.707653i \(0.250246\pi\)
−0.706560 + 0.707653i \(0.749754\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) − 4.00000i − 0.156652i
\(653\) − 30.0000i − 1.17399i −0.809590 0.586995i \(-0.800311\pi\)
0.809590 0.586995i \(-0.199689\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 24.0000 0.937043
\(657\) 8.00000i 0.312110i
\(658\) 0 0
\(659\) 15.0000 0.584317 0.292159 0.956370i \(-0.405627\pi\)
0.292159 + 0.956370i \(0.405627\pi\)
\(660\) 0 0
\(661\) −34.0000 −1.32245 −0.661223 0.750189i \(-0.729962\pi\)
−0.661223 + 0.750189i \(0.729962\pi\)
\(662\) 0 0
\(663\) − 6.00000i − 0.233021i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 9.00000i − 0.348481i
\(668\) − 36.0000i − 1.39288i
\(669\) −14.0000 −0.541271
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) 34.0000i 1.31060i 0.755367 + 0.655302i \(0.227459\pi\)
−0.755367 + 0.655302i \(0.772541\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −2.00000 −0.0769231
\(677\) 15.0000i 0.576497i 0.957556 + 0.288248i \(0.0930729\pi\)
−0.957556 + 0.288248i \(0.906927\pi\)
\(678\) 0 0
\(679\) −40.0000 −1.53506
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 16.0000 0.611775
\(685\) 0 0
\(686\) 0 0
\(687\) 20.0000i 0.763048i
\(688\) 28.0000i 1.06749i
\(689\) 9.00000 0.342873
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) − 36.0000i − 1.36851i
\(693\) 48.0000i 1.82337i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 36.0000i 1.36360i
\(698\) 0 0
\(699\) 3.00000 0.113470
\(700\) 0 0
\(701\) −33.0000 −1.24639 −0.623196 0.782065i \(-0.714166\pi\)
−0.623196 + 0.782065i \(0.714166\pi\)
\(702\) 0 0
\(703\) 8.00000i 0.301726i
\(704\) −48.0000 −1.80907
\(705\) 0 0
\(706\) 0 0
\(707\) 60.0000i 2.25653i
\(708\) − 12.0000i − 0.450988i
\(709\) 40.0000 1.50223 0.751116 0.660171i \(-0.229516\pi\)
0.751116 + 0.660171i \(0.229516\pi\)
\(710\) 0 0
\(711\) −22.0000 −0.825064
\(712\) 0 0
\(713\) 12.0000i 0.449404i
\(714\) 0 0
\(715\) 0 0
\(716\) 42.0000 1.56961
\(717\) 12.0000i 0.448148i
\(718\) 0 0
\(719\) −27.0000 −1.00693 −0.503465 0.864016i \(-0.667942\pi\)
−0.503465 + 0.864016i \(0.667942\pi\)
\(720\) 0 0
\(721\) −44.0000 −1.63865
\(722\) 0 0
\(723\) 10.0000i 0.371904i
\(724\) 4.00000 0.148659
\(725\) 0 0
\(726\) 0 0
\(727\) − 7.00000i − 0.259616i −0.991539 0.129808i \(-0.958564\pi\)
0.991539 0.129808i \(-0.0414360\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −42.0000 −1.55343
\(732\) 2.00000i 0.0739221i
\(733\) 40.0000i 1.47743i 0.674016 + 0.738717i \(0.264568\pi\)
−0.674016 + 0.738717i \(0.735432\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 84.0000i − 3.09418i
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) −4.00000 −0.146944
\(742\) 0 0
\(743\) 18.0000i 0.660356i 0.943919 + 0.330178i \(0.107109\pi\)
−0.943919 + 0.330178i \(0.892891\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) − 72.0000i − 2.63258i
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 23.0000 0.839282 0.419641 0.907690i \(-0.362156\pi\)
0.419641 + 0.907690i \(0.362156\pi\)
\(752\) 0 0
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) 0 0
\(756\) −40.0000 −1.45479
\(757\) − 22.0000i − 0.799604i −0.916602 0.399802i \(-0.869079\pi\)
0.916602 0.399802i \(-0.130921\pi\)
\(758\) 0 0
\(759\) 18.0000 0.653359
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) 0 0
\(767\) − 6.00000i − 0.216647i
\(768\) − 16.0000i − 0.577350i
\(769\) 4.00000 0.144244 0.0721218 0.997396i \(-0.477023\pi\)
0.0721218 + 0.997396i \(0.477023\pi\)
\(770\) 0 0
\(771\) −27.0000 −0.972381
\(772\) 32.0000i 1.15171i
\(773\) 48.0000i 1.72644i 0.504828 + 0.863220i \(0.331556\pi\)
−0.504828 + 0.863220i \(0.668444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 8.00000i − 0.286998i
\(778\) 0 0
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) − 15.0000i − 0.536056i
\(784\) −36.0000 −1.28571
\(785\) 0 0
\(786\) 0 0
\(787\) 32.0000i 1.14068i 0.821410 + 0.570338i \(0.193188\pi\)
−0.821410 + 0.570338i \(0.806812\pi\)
\(788\) 36.0000i 1.28245i
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 1.00000i 0.0355110i
\(794\) 0 0
\(795\) 0 0
\(796\) 50.0000 1.77220
\(797\) − 21.0000i − 0.743858i −0.928261 0.371929i \(-0.878696\pi\)
0.928261 0.371929i \(-0.121304\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 24.0000i − 0.846942i
\(804\) 28.0000 0.987484
\(805\) 0 0
\(806\) 0 0
\(807\) 21.0000i 0.739235i
\(808\) 0 0
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 50.0000 1.75574 0.877869 0.478901i \(-0.158965\pi\)
0.877869 + 0.478901i \(0.158965\pi\)
\(812\) − 24.0000i − 0.842235i
\(813\) − 8.00000i − 0.280572i
\(814\) 0 0
\(815\) 0 0
\(816\) 24.0000 0.840168
\(817\) 28.0000i 0.979596i
\(818\) 0 0
\(819\) −8.00000 −0.279543
\(820\) 0 0
\(821\) 24.0000 0.837606 0.418803 0.908077i \(-0.362450\pi\)
0.418803 + 0.908077i \(0.362450\pi\)
\(822\) 0 0
\(823\) 31.0000i 1.08059i 0.841475 + 0.540296i \(0.181688\pi\)
−0.841475 + 0.540296i \(0.818312\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 54.0000i 1.87776i 0.344239 + 0.938882i \(0.388137\pi\)
−0.344239 + 0.938882i \(0.611863\pi\)
\(828\) − 12.0000i − 0.417029i
\(829\) 31.0000 1.07667 0.538337 0.842729i \(-0.319053\pi\)
0.538337 + 0.842729i \(0.319053\pi\)
\(830\) 0 0
\(831\) 5.00000 0.173448
\(832\) − 8.00000i − 0.277350i
\(833\) − 54.0000i − 1.87099i
\(834\) 0 0
\(835\) 0 0
\(836\) −48.0000 −1.66011
\(837\) 20.0000i 0.691301i
\(838\) 0 0
\(839\) 6.00000 0.207143 0.103572 0.994622i \(-0.466973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 24.0000i 0.826604i
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) 0 0
\(847\) − 100.000i − 3.43604i
\(848\) 36.0000i 1.23625i
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 12.0000i 0.411113i
\(853\) − 44.0000i − 1.50653i −0.657716 0.753266i \(-0.728477\pi\)
0.657716 0.753266i \(-0.271523\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 27.0000i − 0.922302i −0.887322 0.461151i \(-0.847437\pi\)
0.887322 0.461151i \(-0.152563\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) 0 0
\(863\) − 36.0000i − 1.22545i −0.790295 0.612727i \(-0.790072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 19.0000i 0.645274i
\(868\) 32.0000i 1.08615i
\(869\) 66.0000 2.23890
\(870\) 0 0
\(871\) 14.0000 0.474372
\(872\) 0 0
\(873\) − 20.0000i − 0.676897i
\(874\) 0 0
\(875\) 0 0
\(876\) 8.00000 0.270295
\(877\) − 28.0000i − 0.945493i −0.881199 0.472746i \(-0.843263\pi\)
0.881199 0.472746i \(-0.156737\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) 0 0
\(883\) − 29.0000i − 0.975928i −0.872864 0.487964i \(-0.837740\pi\)
0.872864 0.487964i \(-0.162260\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) 0 0
\(887\) − 24.0000i − 0.805841i −0.915235 0.402921i \(-0.867995\pi\)
0.915235 0.402921i \(-0.132005\pi\)
\(888\) 0 0
\(889\) 44.0000 1.47571
\(890\) 0 0
\(891\) −6.00000 −0.201008
\(892\) − 28.0000i − 0.937509i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3.00000i 0.100167i
\(898\) 0 0
\(899\) −12.0000 −0.400222
\(900\) 0 0
\(901\) −54.0000 −1.79900
\(902\) 0 0
\(903\) − 28.0000i − 0.931782i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 19.0000i − 0.630885i −0.948945 0.315442i \(-0.897847\pi\)
0.948945 0.315442i \(-0.102153\pi\)
\(908\) 24.0000i 0.796468i
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) −21.0000 −0.695761 −0.347881 0.937539i \(-0.613099\pi\)
−0.347881 + 0.937539i \(0.613099\pi\)
\(912\) − 16.0000i − 0.529813i
\(913\) − 36.0000i − 1.19143i
\(914\) 0 0
\(915\) 0 0
\(916\) −40.0000 −1.32164
\(917\) 60.0000i 1.98137i
\(918\) 0 0
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 2.00000 0.0659022
\(922\) 0 0
\(923\) 6.00000i 0.197492i
\(924\) 48.0000 1.57908
\(925\) 0 0
\(926\) 0 0
\(927\) − 22.0000i − 0.722575i
\(928\) 0 0
\(929\) 36.0000 1.18112 0.590561 0.806993i \(-0.298907\pi\)
0.590561 + 0.806993i \(0.298907\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) 6.00000i 0.196537i
\(933\) − 27.0000i − 0.883940i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 23.0000i 0.751377i 0.926746 + 0.375689i \(0.122594\pi\)
−0.926746 + 0.375689i \(0.877406\pi\)
\(938\) 0 0
\(939\) −17.0000 −0.554774
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) − 18.0000i − 0.586161i
\(944\) 24.0000 0.781133
\(945\) 0 0
\(946\) 0 0
\(947\) − 42.0000i − 1.36482i −0.730971 0.682408i \(-0.760933\pi\)
0.730971 0.682408i \(-0.239067\pi\)
\(948\) 22.0000i 0.714527i
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) 6.00000i 0.194359i 0.995267 + 0.0971795i \(0.0309821\pi\)
−0.995267 + 0.0971795i \(0.969018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −24.0000 −0.776215
\(957\) 18.0000i 0.581857i
\(958\) 0 0
\(959\) −72.0000 −2.32500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 6.00000i 0.193347i
\(964\) −20.0000 −0.644157
\(965\) 0 0
\(966\) 0 0
\(967\) 14.0000i 0.450210i 0.974335 + 0.225105i \(0.0722725\pi\)
−0.974335 + 0.225105i \(0.927728\pi\)
\(968\) 0 0
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) − 32.0000i − 1.02640i
\(973\) − 4.00000i − 0.128234i
\(974\) 0 0
\(975\) 0 0
\(976\) −4.00000 −0.128037
\(977\) − 42.0000i − 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 0 0
\(983\) 42.0000i 1.33959i 0.742545 + 0.669796i \(0.233618\pi\)
−0.742545 + 0.669796i \(0.766382\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) − 8.00000i − 0.254514i
\(989\) 21.0000 0.667761
\(990\) 0 0
\(991\) −49.0000 −1.55654 −0.778268 0.627932i \(-0.783902\pi\)
−0.778268 + 0.627932i \(0.783902\pi\)
\(992\) 0 0
\(993\) 16.0000i 0.507745i
\(994\) 0 0
\(995\) 0 0
\(996\) 12.0000 0.380235
\(997\) − 1.00000i − 0.0316703i −0.999875 0.0158352i \(-0.994959\pi\)
0.999875 0.0158352i \(-0.00504070\pi\)
\(998\) 0 0
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.b.c.274.1 2
3.2 odd 2 2925.2.c.n.2224.1 2
5.2 odd 4 325.2.a.b.1.1 1
5.3 odd 4 325.2.a.c.1.1 yes 1
5.4 even 2 inner 325.2.b.c.274.2 2
15.2 even 4 2925.2.a.l.1.1 1
15.8 even 4 2925.2.a.g.1.1 1
15.14 odd 2 2925.2.c.n.2224.2 2
20.3 even 4 5200.2.a.n.1.1 1
20.7 even 4 5200.2.a.v.1.1 1
65.12 odd 4 4225.2.a.i.1.1 1
65.38 odd 4 4225.2.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.a.b.1.1 1 5.2 odd 4
325.2.a.c.1.1 yes 1 5.3 odd 4
325.2.b.c.274.1 2 1.1 even 1 trivial
325.2.b.c.274.2 2 5.4 even 2 inner
2925.2.a.g.1.1 1 15.8 even 4
2925.2.a.l.1.1 1 15.2 even 4
2925.2.c.n.2224.1 2 3.2 odd 2
2925.2.c.n.2224.2 2 15.14 odd 2
4225.2.a.i.1.1 1 65.12 odd 4
4225.2.a.j.1.1 1 65.38 odd 4
5200.2.a.n.1.1 1 20.3 even 4
5200.2.a.v.1.1 1 20.7 even 4