Properties

Label 325.10.a.b.1.5
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-27.7188\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+24.7188 q^{2} -194.269 q^{3} +99.0182 q^{4} -4802.09 q^{6} -5359.02 q^{7} -10208.4 q^{8} +18057.4 q^{9} +O(q^{10})\) \(q+24.7188 q^{2} -194.269 q^{3} +99.0182 q^{4} -4802.09 q^{6} -5359.02 q^{7} -10208.4 q^{8} +18057.4 q^{9} +79284.0 q^{11} -19236.2 q^{12} -28561.0 q^{13} -132468. q^{14} -303037. q^{16} -452068. q^{17} +446357. q^{18} +212533. q^{19} +1.04109e6 q^{21} +1.95980e6 q^{22} +759566. q^{23} +1.98318e6 q^{24} -705993. q^{26} +315803. q^{27} -530640. q^{28} -900101. q^{29} +2.27141e6 q^{31} -2.26400e6 q^{32} -1.54024e7 q^{33} -1.11746e7 q^{34} +1.78801e6 q^{36} +4.70433e6 q^{37} +5.25355e6 q^{38} +5.54851e6 q^{39} +3.39775e7 q^{41} +2.57345e7 q^{42} +2.33244e7 q^{43} +7.85057e6 q^{44} +1.87755e7 q^{46} +5.14121e7 q^{47} +5.88706e7 q^{48} -1.16346e7 q^{49} +8.78228e7 q^{51} -2.82806e6 q^{52} -1.01005e8 q^{53} +7.80627e6 q^{54} +5.47070e7 q^{56} -4.12885e7 q^{57} -2.22494e7 q^{58} +1.32234e8 q^{59} -1.23648e8 q^{61} +5.61465e7 q^{62} -9.67699e7 q^{63} +9.91916e7 q^{64} -3.80729e8 q^{66} +2.15282e8 q^{67} -4.47630e7 q^{68} -1.47560e8 q^{69} -2.06198e8 q^{71} -1.84337e8 q^{72} -3.44444e8 q^{73} +1.16285e8 q^{74} +2.10446e7 q^{76} -4.24884e8 q^{77} +1.37153e8 q^{78} +5.03324e7 q^{79} -4.16775e8 q^{81} +8.39883e8 q^{82} -8.20266e7 q^{83} +1.03087e8 q^{84} +5.76552e8 q^{86} +1.74862e8 q^{87} -8.09364e8 q^{88} -6.17891e8 q^{89} +1.53059e8 q^{91} +7.52109e7 q^{92} -4.41265e8 q^{93} +1.27084e9 q^{94} +4.39824e8 q^{96} +9.91253e8 q^{97} -2.87592e8 q^{98} +1.43166e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{2} - 161 q^{3} + 361 q^{4} + 5693 q^{6} - 10099 q^{7} - 23151 q^{8} + 61060 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 15 q^{2} - 161 q^{3} + 361 q^{4} + 5693 q^{6} - 10099 q^{7} - 23151 q^{8} + 61060 q^{9} + 121746 q^{11} - 113389 q^{12} - 142805 q^{13} + 8475 q^{14} - 322463 q^{16} + 495669 q^{17} + 656228 q^{18} - 840738 q^{19} - 1599467 q^{21} + 2023594 q^{22} + 592152 q^{23} - 2295657 q^{24} + 428415 q^{26} - 6847883 q^{27} - 2587955 q^{28} + 10678182 q^{29} + 12885296 q^{31} - 3282927 q^{32} - 17278298 q^{33} - 9934079 q^{34} - 20483302 q^{36} - 7171823 q^{37} + 25568814 q^{38} + 4598321 q^{39} + 9294012 q^{41} + 69520457 q^{42} - 12831975 q^{43} - 41479074 q^{44} - 59319696 q^{46} - 43354215 q^{47} + 86874671 q^{48} + 25249488 q^{49} + 16905901 q^{51} - 10310521 q^{52} - 93231780 q^{53} + 58983719 q^{54} + 199599225 q^{56} - 90173382 q^{57} - 151020970 q^{58} + 246496182 q^{59} - 132232612 q^{61} - 158135724 q^{62} + 416955202 q^{63} + 91019105 q^{64} - 323733130 q^{66} + 369388534 q^{67} - 238172073 q^{68} - 579986760 q^{69} + 212150457 q^{71} + 415774278 q^{72} + 252729806 q^{73} + 192105957 q^{74} - 953775990 q^{76} - 449666118 q^{77} - 162597773 q^{78} - 1247271728 q^{79} - 317713115 q^{81} - 169559388 q^{82} - 1696894296 q^{83} + 1247983739 q^{84} + 3291621459 q^{86} + 614530466 q^{87} + 220227222 q^{88} - 753854382 q^{89} + 288437539 q^{91} - 13876128 q^{92} + 892784668 q^{93} + 272071215 q^{94} + 930612847 q^{96} - 3824606 q^{97} - 1570614816 q^{98} + 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 24.7188 1.09243 0.546213 0.837646i \(-0.316069\pi\)
0.546213 + 0.837646i \(0.316069\pi\)
\(3\) −194.269 −1.38471 −0.692353 0.721559i \(-0.743426\pi\)
−0.692353 + 0.721559i \(0.743426\pi\)
\(4\) 99.0182 0.193395
\(5\) 0 0
\(6\) −4802.09 −1.51269
\(7\) −5359.02 −0.843614 −0.421807 0.906686i \(-0.638604\pi\)
−0.421807 + 0.906686i \(0.638604\pi\)
\(8\) −10208.4 −0.881156
\(9\) 18057.4 0.917411
\(10\) 0 0
\(11\) 79284.0 1.63275 0.816373 0.577525i \(-0.195981\pi\)
0.816373 + 0.577525i \(0.195981\pi\)
\(12\) −19236.2 −0.267795
\(13\) −28561.0 −0.277350
\(14\) −132468. −0.921586
\(15\) 0 0
\(16\) −303037. −1.15599
\(17\) −452068. −1.31276 −0.656378 0.754432i \(-0.727912\pi\)
−0.656378 + 0.754432i \(0.727912\pi\)
\(18\) 446357. 1.00220
\(19\) 212533. 0.374141 0.187070 0.982347i \(-0.440101\pi\)
0.187070 + 0.982347i \(0.440101\pi\)
\(20\) 0 0
\(21\) 1.04109e6 1.16816
\(22\) 1.95980e6 1.78365
\(23\) 759566. 0.565966 0.282983 0.959125i \(-0.408676\pi\)
0.282983 + 0.959125i \(0.408676\pi\)
\(24\) 1.98318e6 1.22014
\(25\) 0 0
\(26\) −705993. −0.302985
\(27\) 315803. 0.114361
\(28\) −530640. −0.163151
\(29\) −900101. −0.236320 −0.118160 0.992995i \(-0.537700\pi\)
−0.118160 + 0.992995i \(0.537700\pi\)
\(30\) 0 0
\(31\) 2.27141e6 0.441742 0.220871 0.975303i \(-0.429110\pi\)
0.220871 + 0.975303i \(0.429110\pi\)
\(32\) −2.26400e6 −0.381681
\(33\) −1.54024e7 −2.26087
\(34\) −1.11746e7 −1.43409
\(35\) 0 0
\(36\) 1.78801e6 0.177423
\(37\) 4.70433e6 0.412658 0.206329 0.978483i \(-0.433848\pi\)
0.206329 + 0.978483i \(0.433848\pi\)
\(38\) 5.25355e6 0.408721
\(39\) 5.54851e6 0.384048
\(40\) 0 0
\(41\) 3.39775e7 1.87786 0.938932 0.344102i \(-0.111817\pi\)
0.938932 + 0.344102i \(0.111817\pi\)
\(42\) 2.57345e7 1.27613
\(43\) 2.33244e7 1.04041 0.520203 0.854042i \(-0.325856\pi\)
0.520203 + 0.854042i \(0.325856\pi\)
\(44\) 7.85057e6 0.315765
\(45\) 0 0
\(46\) 1.87755e7 0.618276
\(47\) 5.14121e7 1.53683 0.768413 0.639954i \(-0.221046\pi\)
0.768413 + 0.639954i \(0.221046\pi\)
\(48\) 5.88706e7 1.60071
\(49\) −1.16346e7 −0.288315
\(50\) 0 0
\(51\) 8.78228e7 1.81778
\(52\) −2.82806e6 −0.0536381
\(53\) −1.01005e8 −1.75834 −0.879170 0.476509i \(-0.841902\pi\)
−0.879170 + 0.476509i \(0.841902\pi\)
\(54\) 7.80627e6 0.124931
\(55\) 0 0
\(56\) 5.47070e7 0.743356
\(57\) −4.12885e7 −0.518075
\(58\) −2.22494e7 −0.258162
\(59\) 1.32234e8 1.42073 0.710363 0.703836i \(-0.248531\pi\)
0.710363 + 0.703836i \(0.248531\pi\)
\(60\) 0 0
\(61\) −1.23648e8 −1.14341 −0.571706 0.820459i \(-0.693718\pi\)
−0.571706 + 0.820459i \(0.693718\pi\)
\(62\) 5.61465e7 0.482570
\(63\) −9.67699e7 −0.773941
\(64\) 9.91916e7 0.739035
\(65\) 0 0
\(66\) −3.80729e8 −2.46984
\(67\) 2.15282e8 1.30518 0.652592 0.757710i \(-0.273682\pi\)
0.652592 + 0.757710i \(0.273682\pi\)
\(68\) −4.47630e7 −0.253880
\(69\) −1.47560e8 −0.783696
\(70\) 0 0
\(71\) −2.06198e8 −0.962992 −0.481496 0.876448i \(-0.659906\pi\)
−0.481496 + 0.876448i \(0.659906\pi\)
\(72\) −1.84337e8 −0.808383
\(73\) −3.44444e8 −1.41960 −0.709800 0.704403i \(-0.751215\pi\)
−0.709800 + 0.704403i \(0.751215\pi\)
\(74\) 1.16285e8 0.450799
\(75\) 0 0
\(76\) 2.10446e7 0.0723569
\(77\) −4.24884e8 −1.37741
\(78\) 1.37153e8 0.419545
\(79\) 5.03324e7 0.145387 0.0726935 0.997354i \(-0.476841\pi\)
0.0726935 + 0.997354i \(0.476841\pi\)
\(80\) 0 0
\(81\) −4.16775e8 −1.07577
\(82\) 8.39883e8 2.05143
\(83\) −8.20266e7 −0.189716 −0.0948579 0.995491i \(-0.530240\pi\)
−0.0948579 + 0.995491i \(0.530240\pi\)
\(84\) 1.03087e8 0.225916
\(85\) 0 0
\(86\) 5.76552e8 1.13657
\(87\) 1.74862e8 0.327233
\(88\) −8.09364e8 −1.43870
\(89\) −6.17891e8 −1.04390 −0.521948 0.852977i \(-0.674794\pi\)
−0.521948 + 0.852977i \(0.674794\pi\)
\(90\) 0 0
\(91\) 1.53059e8 0.233976
\(92\) 7.52109e7 0.109455
\(93\) −4.41265e8 −0.611682
\(94\) 1.27084e9 1.67887
\(95\) 0 0
\(96\) 4.39824e8 0.528516
\(97\) 9.91253e8 1.13687 0.568436 0.822727i \(-0.307549\pi\)
0.568436 + 0.822727i \(0.307549\pi\)
\(98\) −2.87592e8 −0.314963
\(99\) 1.43166e9 1.49790
\(100\) 0 0
\(101\) −1.15157e9 −1.10115 −0.550573 0.834787i \(-0.685591\pi\)
−0.550573 + 0.834787i \(0.685591\pi\)
\(102\) 2.17087e9 1.98579
\(103\) −1.28814e9 −1.12770 −0.563852 0.825876i \(-0.690681\pi\)
−0.563852 + 0.825876i \(0.690681\pi\)
\(104\) 2.91562e8 0.244389
\(105\) 0 0
\(106\) −2.49673e9 −1.92086
\(107\) −7.90577e8 −0.583065 −0.291533 0.956561i \(-0.594165\pi\)
−0.291533 + 0.956561i \(0.594165\pi\)
\(108\) 3.12703e7 0.0221169
\(109\) −4.40070e8 −0.298609 −0.149304 0.988791i \(-0.547703\pi\)
−0.149304 + 0.988791i \(0.547703\pi\)
\(110\) 0 0
\(111\) −9.13906e8 −0.571410
\(112\) 1.62398e9 0.975212
\(113\) 8.28687e8 0.478121 0.239060 0.971005i \(-0.423161\pi\)
0.239060 + 0.971005i \(0.423161\pi\)
\(114\) −1.02060e9 −0.565958
\(115\) 0 0
\(116\) −8.91264e7 −0.0457031
\(117\) −5.15737e8 −0.254444
\(118\) 3.26867e9 1.55204
\(119\) 2.42264e9 1.10746
\(120\) 0 0
\(121\) 3.92801e9 1.66586
\(122\) −3.05643e9 −1.24909
\(123\) −6.60077e9 −2.60029
\(124\) 2.24911e8 0.0854306
\(125\) 0 0
\(126\) −2.39203e9 −0.845473
\(127\) 2.09036e9 0.713025 0.356513 0.934291i \(-0.383966\pi\)
0.356513 + 0.934291i \(0.383966\pi\)
\(128\) 3.61106e9 1.18902
\(129\) −4.53121e9 −1.44066
\(130\) 0 0
\(131\) 1.23787e8 0.0367243 0.0183621 0.999831i \(-0.494155\pi\)
0.0183621 + 0.999831i \(0.494155\pi\)
\(132\) −1.52512e9 −0.437242
\(133\) −1.13897e9 −0.315630
\(134\) 5.32152e9 1.42582
\(135\) 0 0
\(136\) 4.61490e9 1.15674
\(137\) 1.31278e9 0.318383 0.159192 0.987248i \(-0.449111\pi\)
0.159192 + 0.987248i \(0.449111\pi\)
\(138\) −3.64750e9 −0.856130
\(139\) −4.82994e9 −1.09743 −0.548713 0.836011i \(-0.684882\pi\)
−0.548713 + 0.836011i \(0.684882\pi\)
\(140\) 0 0
\(141\) −9.98777e9 −2.12805
\(142\) −5.09697e9 −1.05200
\(143\) −2.26443e9 −0.452842
\(144\) −5.47206e9 −1.06052
\(145\) 0 0
\(146\) −8.51424e9 −1.55081
\(147\) 2.26023e9 0.399232
\(148\) 4.65815e8 0.0798060
\(149\) −4.39244e9 −0.730075 −0.365037 0.930993i \(-0.618944\pi\)
−0.365037 + 0.930993i \(0.618944\pi\)
\(150\) 0 0
\(151\) −4.70301e9 −0.736172 −0.368086 0.929792i \(-0.619987\pi\)
−0.368086 + 0.929792i \(0.619987\pi\)
\(152\) −2.16962e9 −0.329676
\(153\) −8.16318e9 −1.20434
\(154\) −1.05026e10 −1.50472
\(155\) 0 0
\(156\) 5.49404e8 0.0742730
\(157\) 5.28793e9 0.694605 0.347302 0.937753i \(-0.387098\pi\)
0.347302 + 0.937753i \(0.387098\pi\)
\(158\) 1.24416e9 0.158825
\(159\) 1.96222e10 2.43478
\(160\) 0 0
\(161\) −4.07052e9 −0.477457
\(162\) −1.03022e10 −1.17520
\(163\) −6.72980e9 −0.746721 −0.373360 0.927686i \(-0.621794\pi\)
−0.373360 + 0.927686i \(0.621794\pi\)
\(164\) 3.36439e9 0.363170
\(165\) 0 0
\(166\) −2.02760e9 −0.207251
\(167\) −5.87782e9 −0.584780 −0.292390 0.956299i \(-0.594450\pi\)
−0.292390 + 0.956299i \(0.594450\pi\)
\(168\) −1.06279e10 −1.02933
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 3.83779e9 0.343241
\(172\) 2.30954e9 0.201209
\(173\) 1.40328e10 1.19107 0.595534 0.803330i \(-0.296941\pi\)
0.595534 + 0.803330i \(0.296941\pi\)
\(174\) 4.32236e9 0.357478
\(175\) 0 0
\(176\) −2.40260e10 −1.88744
\(177\) −2.56890e10 −1.96729
\(178\) −1.52735e10 −1.14038
\(179\) −2.48592e10 −1.80987 −0.904936 0.425548i \(-0.860081\pi\)
−0.904936 + 0.425548i \(0.860081\pi\)
\(180\) 0 0
\(181\) 1.35989e10 0.941784 0.470892 0.882191i \(-0.343932\pi\)
0.470892 + 0.882191i \(0.343932\pi\)
\(182\) 3.78343e9 0.255602
\(183\) 2.40209e10 1.58329
\(184\) −7.75396e9 −0.498704
\(185\) 0 0
\(186\) −1.09075e10 −0.668218
\(187\) −3.58418e10 −2.14340
\(188\) 5.09074e9 0.297215
\(189\) −1.69240e9 −0.0964770
\(190\) 0 0
\(191\) −1.65985e9 −0.0902440 −0.0451220 0.998981i \(-0.514368\pi\)
−0.0451220 + 0.998981i \(0.514368\pi\)
\(192\) −1.92698e10 −1.02335
\(193\) −3.09499e10 −1.60565 −0.802827 0.596212i \(-0.796672\pi\)
−0.802827 + 0.596212i \(0.796672\pi\)
\(194\) 2.45026e10 1.24195
\(195\) 0 0
\(196\) −1.15203e9 −0.0557587
\(197\) 3.04341e10 1.43967 0.719835 0.694145i \(-0.244217\pi\)
0.719835 + 0.694145i \(0.244217\pi\)
\(198\) 3.53890e10 1.63634
\(199\) 4.44812e8 0.0201066 0.0100533 0.999949i \(-0.496800\pi\)
0.0100533 + 0.999949i \(0.496800\pi\)
\(200\) 0 0
\(201\) −4.18227e10 −1.80730
\(202\) −2.84655e10 −1.20292
\(203\) 4.82365e9 0.199363
\(204\) 8.69606e9 0.351550
\(205\) 0 0
\(206\) −3.18412e10 −1.23193
\(207\) 1.37158e10 0.519223
\(208\) 8.65503e9 0.320615
\(209\) 1.68505e10 0.610877
\(210\) 0 0
\(211\) 4.88078e9 0.169519 0.0847595 0.996401i \(-0.472988\pi\)
0.0847595 + 0.996401i \(0.472988\pi\)
\(212\) −1.00014e10 −0.340054
\(213\) 4.00579e10 1.33346
\(214\) −1.95421e10 −0.636956
\(215\) 0 0
\(216\) −3.22385e9 −0.100770
\(217\) −1.21725e10 −0.372660
\(218\) −1.08780e10 −0.326208
\(219\) 6.69148e10 1.96573
\(220\) 0 0
\(221\) 1.29115e10 0.364093
\(222\) −2.25906e10 −0.624223
\(223\) −2.47486e10 −0.670162 −0.335081 0.942189i \(-0.608764\pi\)
−0.335081 + 0.942189i \(0.608764\pi\)
\(224\) 1.21328e10 0.321992
\(225\) 0 0
\(226\) 2.04841e10 0.522312
\(227\) −2.62443e10 −0.656022 −0.328011 0.944674i \(-0.606378\pi\)
−0.328011 + 0.944674i \(0.606378\pi\)
\(228\) −4.08832e9 −0.100193
\(229\) −4.15262e10 −0.997844 −0.498922 0.866647i \(-0.666271\pi\)
−0.498922 + 0.866647i \(0.666271\pi\)
\(230\) 0 0
\(231\) 8.25418e10 1.90731
\(232\) 9.18859e9 0.208235
\(233\) −3.67402e10 −0.816657 −0.408329 0.912835i \(-0.633888\pi\)
−0.408329 + 0.912835i \(0.633888\pi\)
\(234\) −1.27484e10 −0.277961
\(235\) 0 0
\(236\) 1.30936e10 0.274761
\(237\) −9.77802e9 −0.201318
\(238\) 5.98847e10 1.20982
\(239\) −4.35921e10 −0.864206 −0.432103 0.901824i \(-0.642228\pi\)
−0.432103 + 0.901824i \(0.642228\pi\)
\(240\) 0 0
\(241\) −1.04473e10 −0.199493 −0.0997464 0.995013i \(-0.531803\pi\)
−0.0997464 + 0.995013i \(0.531803\pi\)
\(242\) 9.70956e10 1.81983
\(243\) 7.47504e10 1.37526
\(244\) −1.22434e10 −0.221130
\(245\) 0 0
\(246\) −1.63163e11 −2.84063
\(247\) −6.07015e9 −0.103768
\(248\) −2.31875e10 −0.389243
\(249\) 1.59352e10 0.262701
\(250\) 0 0
\(251\) 8.69402e10 1.38258 0.691288 0.722580i \(-0.257044\pi\)
0.691288 + 0.722580i \(0.257044\pi\)
\(252\) −9.58199e9 −0.149676
\(253\) 6.02214e10 0.924078
\(254\) 5.16712e10 0.778927
\(255\) 0 0
\(256\) 3.84749e10 0.559884
\(257\) −4.05492e10 −0.579807 −0.289903 0.957056i \(-0.593623\pi\)
−0.289903 + 0.957056i \(0.593623\pi\)
\(258\) −1.12006e11 −1.57381
\(259\) −2.52106e10 −0.348124
\(260\) 0 0
\(261\) −1.62535e10 −0.216802
\(262\) 3.05986e9 0.0401185
\(263\) −1.55920e10 −0.200956 −0.100478 0.994939i \(-0.532037\pi\)
−0.100478 + 0.994939i \(0.532037\pi\)
\(264\) 1.57234e11 1.99218
\(265\) 0 0
\(266\) −2.81539e10 −0.344803
\(267\) 1.20037e11 1.44549
\(268\) 2.13169e10 0.252416
\(269\) 1.34814e11 1.56982 0.784911 0.619608i \(-0.212708\pi\)
0.784911 + 0.619608i \(0.212708\pi\)
\(270\) 0 0
\(271\) 1.08155e10 0.121810 0.0609052 0.998144i \(-0.480601\pi\)
0.0609052 + 0.998144i \(0.480601\pi\)
\(272\) 1.36993e11 1.51754
\(273\) −2.97346e10 −0.323989
\(274\) 3.24504e10 0.347810
\(275\) 0 0
\(276\) −1.46111e10 −0.151563
\(277\) −1.05265e11 −1.07429 −0.537147 0.843488i \(-0.680498\pi\)
−0.537147 + 0.843488i \(0.680498\pi\)
\(278\) −1.19390e11 −1.19886
\(279\) 4.10158e10 0.405259
\(280\) 0 0
\(281\) 5.90656e10 0.565140 0.282570 0.959247i \(-0.408813\pi\)
0.282570 + 0.959247i \(0.408813\pi\)
\(282\) −2.46886e11 −2.32474
\(283\) 1.45893e11 1.35206 0.676030 0.736875i \(-0.263699\pi\)
0.676030 + 0.736875i \(0.263699\pi\)
\(284\) −2.04174e10 −0.186238
\(285\) 0 0
\(286\) −5.59740e10 −0.494697
\(287\) −1.82086e11 −1.58419
\(288\) −4.08819e10 −0.350158
\(289\) 8.57779e10 0.723328
\(290\) 0 0
\(291\) −1.92570e11 −1.57423
\(292\) −3.41063e10 −0.274544
\(293\) 7.69633e9 0.0610070 0.0305035 0.999535i \(-0.490289\pi\)
0.0305035 + 0.999535i \(0.490289\pi\)
\(294\) 5.58702e10 0.436131
\(295\) 0 0
\(296\) −4.80238e10 −0.363616
\(297\) 2.50382e10 0.186723
\(298\) −1.08576e11 −0.797553
\(299\) −2.16940e10 −0.156971
\(300\) 0 0
\(301\) −1.24996e11 −0.877702
\(302\) −1.16253e11 −0.804214
\(303\) 2.23715e11 1.52476
\(304\) −6.44053e10 −0.432504
\(305\) 0 0
\(306\) −2.01784e11 −1.31565
\(307\) −7.83929e10 −0.503679 −0.251839 0.967769i \(-0.581035\pi\)
−0.251839 + 0.967769i \(0.581035\pi\)
\(308\) −4.20713e10 −0.266384
\(309\) 2.50245e11 1.56154
\(310\) 0 0
\(311\) −2.02455e11 −1.22717 −0.613587 0.789627i \(-0.710274\pi\)
−0.613587 + 0.789627i \(0.710274\pi\)
\(312\) −5.66415e10 −0.338407
\(313\) −4.65893e10 −0.274370 −0.137185 0.990545i \(-0.543805\pi\)
−0.137185 + 0.990545i \(0.543805\pi\)
\(314\) 1.30711e11 0.758804
\(315\) 0 0
\(316\) 4.98383e9 0.0281171
\(317\) 1.19232e10 0.0663170 0.0331585 0.999450i \(-0.489443\pi\)
0.0331585 + 0.999450i \(0.489443\pi\)
\(318\) 4.85036e11 2.65982
\(319\) −7.13636e10 −0.385850
\(320\) 0 0
\(321\) 1.53585e11 0.807374
\(322\) −1.00618e11 −0.521586
\(323\) −9.60794e10 −0.491155
\(324\) −4.12683e10 −0.208048
\(325\) 0 0
\(326\) −1.66353e11 −0.815737
\(327\) 8.54918e10 0.413485
\(328\) −3.46856e11 −1.65469
\(329\) −2.75518e11 −1.29649
\(330\) 0 0
\(331\) 1.99404e11 0.913076 0.456538 0.889704i \(-0.349089\pi\)
0.456538 + 0.889704i \(0.349089\pi\)
\(332\) −8.12213e9 −0.0366901
\(333\) 8.49480e10 0.378577
\(334\) −1.45293e11 −0.638829
\(335\) 0 0
\(336\) −3.15489e11 −1.35038
\(337\) −3.29370e11 −1.39107 −0.695536 0.718491i \(-0.744833\pi\)
−0.695536 + 0.718491i \(0.744833\pi\)
\(338\) 2.01639e10 0.0840328
\(339\) −1.60988e11 −0.662057
\(340\) 0 0
\(341\) 1.80087e11 0.721252
\(342\) 9.48655e10 0.374965
\(343\) 2.78605e11 1.08684
\(344\) −2.38105e11 −0.916761
\(345\) 0 0
\(346\) 3.46873e11 1.30115
\(347\) 2.16834e10 0.0802868 0.0401434 0.999194i \(-0.487219\pi\)
0.0401434 + 0.999194i \(0.487219\pi\)
\(348\) 1.73145e10 0.0632853
\(349\) 1.43336e11 0.517178 0.258589 0.965987i \(-0.416742\pi\)
0.258589 + 0.965987i \(0.416742\pi\)
\(350\) 0 0
\(351\) −9.01966e9 −0.0317182
\(352\) −1.79499e11 −0.623188
\(353\) 8.38423e10 0.287393 0.143697 0.989622i \(-0.454101\pi\)
0.143697 + 0.989622i \(0.454101\pi\)
\(354\) −6.35001e11 −2.14912
\(355\) 0 0
\(356\) −6.11825e10 −0.201884
\(357\) −4.70644e11 −1.53351
\(358\) −6.14488e11 −1.97715
\(359\) 1.26213e11 0.401033 0.200516 0.979690i \(-0.435738\pi\)
0.200516 + 0.979690i \(0.435738\pi\)
\(360\) 0 0
\(361\) −2.77517e11 −0.860019
\(362\) 3.36149e11 1.02883
\(363\) −7.63090e11 −2.30673
\(364\) 1.51556e10 0.0452499
\(365\) 0 0
\(366\) 5.93768e11 1.72963
\(367\) 6.56218e11 1.88821 0.944106 0.329642i \(-0.106928\pi\)
0.944106 + 0.329642i \(0.106928\pi\)
\(368\) −2.30176e11 −0.654253
\(369\) 6.13546e11 1.72277
\(370\) 0 0
\(371\) 5.41289e11 1.48336
\(372\) −4.36933e10 −0.118296
\(373\) 5.52730e11 1.47851 0.739253 0.673428i \(-0.235179\pi\)
0.739253 + 0.673428i \(0.235179\pi\)
\(374\) −8.85966e11 −2.34150
\(375\) 0 0
\(376\) −5.24836e11 −1.35418
\(377\) 2.57078e10 0.0655433
\(378\) −4.18340e10 −0.105394
\(379\) −3.07664e11 −0.765950 −0.382975 0.923759i \(-0.625100\pi\)
−0.382975 + 0.923759i \(0.625100\pi\)
\(380\) 0 0
\(381\) −4.06092e11 −0.987330
\(382\) −4.10295e10 −0.0985849
\(383\) −1.31812e11 −0.313012 −0.156506 0.987677i \(-0.550023\pi\)
−0.156506 + 0.987677i \(0.550023\pi\)
\(384\) −7.01517e11 −1.64645
\(385\) 0 0
\(386\) −7.65045e11 −1.75406
\(387\) 4.21179e11 0.954480
\(388\) 9.81521e10 0.219865
\(389\) 1.31742e11 0.291709 0.145855 0.989306i \(-0.453407\pi\)
0.145855 + 0.989306i \(0.453407\pi\)
\(390\) 0 0
\(391\) −3.43376e11 −0.742975
\(392\) 1.18770e11 0.254051
\(393\) −2.40479e10 −0.0508523
\(394\) 7.52295e11 1.57273
\(395\) 0 0
\(396\) 1.41761e11 0.289686
\(397\) −4.44767e11 −0.898619 −0.449309 0.893376i \(-0.648330\pi\)
−0.449309 + 0.893376i \(0.648330\pi\)
\(398\) 1.09952e10 0.0219649
\(399\) 2.21266e11 0.437055
\(400\) 0 0
\(401\) −8.36539e11 −1.61561 −0.807805 0.589450i \(-0.799345\pi\)
−0.807805 + 0.589450i \(0.799345\pi\)
\(402\) −1.03381e12 −1.97434
\(403\) −6.48738e10 −0.122517
\(404\) −1.14027e11 −0.212956
\(405\) 0 0
\(406\) 1.19235e11 0.217789
\(407\) 3.72979e11 0.673766
\(408\) −8.96531e11 −1.60175
\(409\) 2.11826e11 0.374304 0.187152 0.982331i \(-0.440074\pi\)
0.187152 + 0.982331i \(0.440074\pi\)
\(410\) 0 0
\(411\) −2.55033e11 −0.440867
\(412\) −1.27549e11 −0.218092
\(413\) −7.08646e11 −1.19854
\(414\) 3.39037e11 0.567213
\(415\) 0 0
\(416\) 6.46620e10 0.105859
\(417\) 9.38307e11 1.51961
\(418\) 4.16523e11 0.667338
\(419\) 5.30153e11 0.840308 0.420154 0.907453i \(-0.361976\pi\)
0.420154 + 0.907453i \(0.361976\pi\)
\(420\) 0 0
\(421\) 3.41563e10 0.0529909 0.0264955 0.999649i \(-0.491565\pi\)
0.0264955 + 0.999649i \(0.491565\pi\)
\(422\) 1.20647e11 0.185187
\(423\) 9.28369e11 1.40990
\(424\) 1.03110e12 1.54937
\(425\) 0 0
\(426\) 9.90183e11 1.45671
\(427\) 6.62631e11 0.964598
\(428\) −7.82815e10 −0.112762
\(429\) 4.39909e11 0.627054
\(430\) 0 0
\(431\) 8.63019e11 1.20468 0.602342 0.798238i \(-0.294235\pi\)
0.602342 + 0.798238i \(0.294235\pi\)
\(432\) −9.57000e10 −0.132201
\(433\) 3.23681e11 0.442509 0.221254 0.975216i \(-0.428985\pi\)
0.221254 + 0.975216i \(0.428985\pi\)
\(434\) −3.00890e11 −0.407103
\(435\) 0 0
\(436\) −4.35749e10 −0.0577494
\(437\) 1.61433e11 0.211751
\(438\) 1.65405e12 2.14741
\(439\) −1.45809e12 −1.87368 −0.936838 0.349763i \(-0.886262\pi\)
−0.936838 + 0.349763i \(0.886262\pi\)
\(440\) 0 0
\(441\) −2.10090e11 −0.264503
\(442\) 3.19157e11 0.397745
\(443\) −1.49027e12 −1.83844 −0.919219 0.393748i \(-0.871178\pi\)
−0.919219 + 0.393748i \(0.871178\pi\)
\(444\) −9.04933e10 −0.110508
\(445\) 0 0
\(446\) −6.11756e11 −0.732102
\(447\) 8.53314e11 1.01094
\(448\) −5.31569e11 −0.623460
\(449\) 3.04750e11 0.353862 0.176931 0.984223i \(-0.443383\pi\)
0.176931 + 0.984223i \(0.443383\pi\)
\(450\) 0 0
\(451\) 2.69387e12 3.06608
\(452\) 8.20551e10 0.0924661
\(453\) 9.13648e11 1.01938
\(454\) −6.48727e11 −0.716656
\(455\) 0 0
\(456\) 4.21490e11 0.456505
\(457\) 1.23809e11 0.132779 0.0663896 0.997794i \(-0.478852\pi\)
0.0663896 + 0.997794i \(0.478852\pi\)
\(458\) −1.02648e12 −1.09007
\(459\) −1.42765e11 −0.150129
\(460\) 0 0
\(461\) 3.16152e11 0.326018 0.163009 0.986625i \(-0.447880\pi\)
0.163009 + 0.986625i \(0.447880\pi\)
\(462\) 2.04033e12 2.08359
\(463\) −1.73371e12 −1.75332 −0.876659 0.481112i \(-0.840233\pi\)
−0.876659 + 0.481112i \(0.840233\pi\)
\(464\) 2.72764e11 0.273184
\(465\) 0 0
\(466\) −9.08173e11 −0.892138
\(467\) 5.67889e11 0.552506 0.276253 0.961085i \(-0.410907\pi\)
0.276253 + 0.961085i \(0.410907\pi\)
\(468\) −5.10674e10 −0.0492082
\(469\) −1.15370e12 −1.10107
\(470\) 0 0
\(471\) −1.02728e12 −0.961823
\(472\) −1.34990e12 −1.25188
\(473\) 1.84926e12 1.69872
\(474\) −2.41701e11 −0.219925
\(475\) 0 0
\(476\) 2.39886e11 0.214177
\(477\) −1.82389e12 −1.61312
\(478\) −1.07754e12 −0.944081
\(479\) 9.31010e11 0.808062 0.404031 0.914745i \(-0.367609\pi\)
0.404031 + 0.914745i \(0.367609\pi\)
\(480\) 0 0
\(481\) −1.34360e11 −0.114451
\(482\) −2.58244e11 −0.217931
\(483\) 7.90776e11 0.661137
\(484\) 3.88945e11 0.322169
\(485\) 0 0
\(486\) 1.84774e12 1.50237
\(487\) 4.49592e10 0.0362192 0.0181096 0.999836i \(-0.494235\pi\)
0.0181096 + 0.999836i \(0.494235\pi\)
\(488\) 1.26225e12 1.00752
\(489\) 1.30739e12 1.03399
\(490\) 0 0
\(491\) 4.47956e11 0.347831 0.173916 0.984761i \(-0.444358\pi\)
0.173916 + 0.984761i \(0.444358\pi\)
\(492\) −6.53597e11 −0.502883
\(493\) 4.06907e11 0.310230
\(494\) −1.50047e11 −0.113359
\(495\) 0 0
\(496\) −6.88321e11 −0.510650
\(497\) 1.10502e12 0.812394
\(498\) 3.93899e11 0.286981
\(499\) 7.27774e11 0.525465 0.262733 0.964869i \(-0.415376\pi\)
0.262733 + 0.964869i \(0.415376\pi\)
\(500\) 0 0
\(501\) 1.14188e12 0.809748
\(502\) 2.14906e12 1.51036
\(503\) −6.23613e11 −0.434369 −0.217185 0.976131i \(-0.569687\pi\)
−0.217185 + 0.976131i \(0.569687\pi\)
\(504\) 9.87866e11 0.681963
\(505\) 0 0
\(506\) 1.48860e12 1.00949
\(507\) −1.58471e11 −0.106516
\(508\) 2.06984e11 0.137896
\(509\) 1.18958e12 0.785534 0.392767 0.919638i \(-0.371518\pi\)
0.392767 + 0.919638i \(0.371518\pi\)
\(510\) 0 0
\(511\) 1.84588e12 1.19760
\(512\) −8.97810e11 −0.577390
\(513\) 6.71186e10 0.0427873
\(514\) −1.00233e12 −0.633396
\(515\) 0 0
\(516\) −4.48673e11 −0.278616
\(517\) 4.07616e12 2.50925
\(518\) −6.23175e11 −0.380300
\(519\) −2.72613e12 −1.64928
\(520\) 0 0
\(521\) 2.26245e12 1.34527 0.672635 0.739974i \(-0.265162\pi\)
0.672635 + 0.739974i \(0.265162\pi\)
\(522\) −4.01766e11 −0.236841
\(523\) −1.15246e12 −0.673549 −0.336775 0.941585i \(-0.609336\pi\)
−0.336775 + 0.941585i \(0.609336\pi\)
\(524\) 1.22571e10 0.00710229
\(525\) 0 0
\(526\) −3.85415e11 −0.219530
\(527\) −1.02683e12 −0.579899
\(528\) 4.66750e12 2.61355
\(529\) −1.22421e12 −0.679683
\(530\) 0 0
\(531\) 2.38781e12 1.30339
\(532\) −1.12778e11 −0.0610413
\(533\) −9.70432e11 −0.520826
\(534\) 2.96717e12 1.57909
\(535\) 0 0
\(536\) −2.19769e12 −1.15007
\(537\) 4.82936e12 2.50614
\(538\) 3.33244e12 1.71492
\(539\) −9.22434e11 −0.470745
\(540\) 0 0
\(541\) 1.31455e12 0.659766 0.329883 0.944022i \(-0.392991\pi\)
0.329883 + 0.944022i \(0.392991\pi\)
\(542\) 2.67346e11 0.133069
\(543\) −2.64185e12 −1.30409
\(544\) 1.02348e12 0.501054
\(545\) 0 0
\(546\) −7.35002e11 −0.353934
\(547\) −1.63148e12 −0.779182 −0.389591 0.920988i \(-0.627384\pi\)
−0.389591 + 0.920988i \(0.627384\pi\)
\(548\) 1.29989e11 0.0615738
\(549\) −2.23276e12 −1.04898
\(550\) 0 0
\(551\) −1.91301e11 −0.0884168
\(552\) 1.50635e12 0.690559
\(553\) −2.69732e11 −0.122651
\(554\) −2.60201e12 −1.17359
\(555\) 0 0
\(556\) −4.78252e11 −0.212237
\(557\) 2.20811e12 0.972013 0.486007 0.873955i \(-0.338453\pi\)
0.486007 + 0.873955i \(0.338453\pi\)
\(558\) 1.01386e12 0.442715
\(559\) −6.66169e11 −0.288557
\(560\) 0 0
\(561\) 6.96295e12 2.96797
\(562\) 1.46003e12 0.617374
\(563\) 1.16602e12 0.489125 0.244563 0.969634i \(-0.421356\pi\)
0.244563 + 0.969634i \(0.421356\pi\)
\(564\) −9.88972e11 −0.411555
\(565\) 0 0
\(566\) 3.60630e12 1.47702
\(567\) 2.23350e12 0.907533
\(568\) 2.10496e12 0.848547
\(569\) −2.63455e12 −1.05366 −0.526831 0.849970i \(-0.676620\pi\)
−0.526831 + 0.849970i \(0.676620\pi\)
\(570\) 0 0
\(571\) −1.65379e12 −0.651055 −0.325527 0.945533i \(-0.605542\pi\)
−0.325527 + 0.945533i \(0.605542\pi\)
\(572\) −2.24220e11 −0.0875774
\(573\) 3.22457e11 0.124961
\(574\) −4.50094e12 −1.73061
\(575\) 0 0
\(576\) 1.79114e12 0.677999
\(577\) −1.77685e12 −0.667358 −0.333679 0.942687i \(-0.608290\pi\)
−0.333679 + 0.942687i \(0.608290\pi\)
\(578\) 2.12033e12 0.790182
\(579\) 6.01261e12 2.22336
\(580\) 0 0
\(581\) 4.39582e11 0.160047
\(582\) −4.76009e12 −1.71973
\(583\) −8.00811e12 −2.87092
\(584\) 3.51623e12 1.25089
\(585\) 0 0
\(586\) 1.90244e11 0.0666456
\(587\) −4.61417e12 −1.60406 −0.802032 0.597281i \(-0.796248\pi\)
−0.802032 + 0.597281i \(0.796248\pi\)
\(588\) 2.23804e11 0.0772094
\(589\) 4.82750e11 0.165273
\(590\) 0 0
\(591\) −5.91241e12 −1.99352
\(592\) −1.42559e12 −0.477030
\(593\) 1.60396e12 0.532655 0.266328 0.963883i \(-0.414190\pi\)
0.266328 + 0.963883i \(0.414190\pi\)
\(594\) 6.18913e11 0.203981
\(595\) 0 0
\(596\) −4.34931e11 −0.141193
\(597\) −8.64132e10 −0.0278417
\(598\) −5.36248e11 −0.171479
\(599\) −3.56445e12 −1.13128 −0.565642 0.824651i \(-0.691372\pi\)
−0.565642 + 0.824651i \(0.691372\pi\)
\(600\) 0 0
\(601\) −4.23106e12 −1.32286 −0.661431 0.750006i \(-0.730051\pi\)
−0.661431 + 0.750006i \(0.730051\pi\)
\(602\) −3.08975e12 −0.958824
\(603\) 3.88744e12 1.19739
\(604\) −4.65683e11 −0.142372
\(605\) 0 0
\(606\) 5.52995e12 1.66569
\(607\) −2.69700e12 −0.806366 −0.403183 0.915119i \(-0.632096\pi\)
−0.403183 + 0.915119i \(0.632096\pi\)
\(608\) −4.81173e11 −0.142802
\(609\) −9.37086e11 −0.276059
\(610\) 0 0
\(611\) −1.46838e12 −0.426239
\(612\) −8.08304e11 −0.232913
\(613\) 4.29368e12 1.22817 0.614084 0.789240i \(-0.289525\pi\)
0.614084 + 0.789240i \(0.289525\pi\)
\(614\) −1.93778e12 −0.550232
\(615\) 0 0
\(616\) 4.33739e12 1.21371
\(617\) −2.63888e12 −0.733054 −0.366527 0.930407i \(-0.619453\pi\)
−0.366527 + 0.930407i \(0.619453\pi\)
\(618\) 6.18576e12 1.70587
\(619\) −2.36449e12 −0.647335 −0.323667 0.946171i \(-0.604916\pi\)
−0.323667 + 0.946171i \(0.604916\pi\)
\(620\) 0 0
\(621\) 2.39873e11 0.0647247
\(622\) −5.00444e12 −1.34060
\(623\) 3.31129e12 0.880645
\(624\) −1.68140e12 −0.443957
\(625\) 0 0
\(626\) −1.15163e12 −0.299729
\(627\) −3.27352e12 −0.845885
\(628\) 5.23602e11 0.134333
\(629\) −2.12668e12 −0.541719
\(630\) 0 0
\(631\) −4.08896e12 −1.02679 −0.513393 0.858153i \(-0.671612\pi\)
−0.513393 + 0.858153i \(0.671612\pi\)
\(632\) −5.13814e11 −0.128109
\(633\) −9.48184e11 −0.234734
\(634\) 2.94726e11 0.0724464
\(635\) 0 0
\(636\) 1.94295e12 0.470875
\(637\) 3.32295e11 0.0799642
\(638\) −1.76402e12 −0.421513
\(639\) −3.72341e12 −0.883459
\(640\) 0 0
\(641\) −3.55153e12 −0.830911 −0.415456 0.909613i \(-0.636378\pi\)
−0.415456 + 0.909613i \(0.636378\pi\)
\(642\) 3.79642e12 0.881997
\(643\) −6.85000e12 −1.58031 −0.790153 0.612910i \(-0.789999\pi\)
−0.790153 + 0.612910i \(0.789999\pi\)
\(644\) −4.03056e11 −0.0923377
\(645\) 0 0
\(646\) −2.37496e12 −0.536551
\(647\) 4.28931e12 0.962317 0.481159 0.876634i \(-0.340216\pi\)
0.481159 + 0.876634i \(0.340216\pi\)
\(648\) 4.25460e12 0.947920
\(649\) 1.04841e13 2.31968
\(650\) 0 0
\(651\) 2.36474e12 0.516024
\(652\) −6.66373e11 −0.144412
\(653\) −8.81913e12 −1.89809 −0.949045 0.315142i \(-0.897948\pi\)
−0.949045 + 0.315142i \(0.897948\pi\)
\(654\) 2.11325e12 0.451702
\(655\) 0 0
\(656\) −1.02964e13 −2.17080
\(657\) −6.21977e12 −1.30236
\(658\) −6.81048e12 −1.41632
\(659\) 5.76538e12 1.19081 0.595406 0.803425i \(-0.296991\pi\)
0.595406 + 0.803425i \(0.296991\pi\)
\(660\) 0 0
\(661\) −4.77184e12 −0.972254 −0.486127 0.873888i \(-0.661591\pi\)
−0.486127 + 0.873888i \(0.661591\pi\)
\(662\) 4.92901e12 0.997468
\(663\) −2.50831e12 −0.504162
\(664\) 8.37361e11 0.167169
\(665\) 0 0
\(666\) 2.09981e12 0.413568
\(667\) −6.83686e11 −0.133749
\(668\) −5.82012e11 −0.113093
\(669\) 4.80789e12 0.927977
\(670\) 0 0
\(671\) −9.80330e12 −1.86690
\(672\) −2.35702e12 −0.445864
\(673\) −1.38206e10 −0.00259692 −0.00129846 0.999999i \(-0.500413\pi\)
−0.00129846 + 0.999999i \(0.500413\pi\)
\(674\) −8.14163e12 −1.51964
\(675\) 0 0
\(676\) 8.07722e10 0.0148765
\(677\) 2.70699e12 0.495265 0.247633 0.968854i \(-0.420347\pi\)
0.247633 + 0.968854i \(0.420347\pi\)
\(678\) −3.97943e12 −0.723248
\(679\) −5.31214e12 −0.959082
\(680\) 0 0
\(681\) 5.09845e12 0.908398
\(682\) 4.45152e12 0.787915
\(683\) 3.77305e12 0.663436 0.331718 0.943379i \(-0.392372\pi\)
0.331718 + 0.943379i \(0.392372\pi\)
\(684\) 3.80011e11 0.0663810
\(685\) 0 0
\(686\) 6.88679e12 1.18729
\(687\) 8.06725e12 1.38172
\(688\) −7.06816e12 −1.20270
\(689\) 2.88481e12 0.487676
\(690\) 0 0
\(691\) −1.42326e12 −0.237484 −0.118742 0.992925i \(-0.537886\pi\)
−0.118742 + 0.992925i \(0.537886\pi\)
\(692\) 1.38950e12 0.230346
\(693\) −7.67231e12 −1.26365
\(694\) 5.35986e11 0.0877074
\(695\) 0 0
\(696\) −1.78506e12 −0.288344
\(697\) −1.53602e13 −2.46518
\(698\) 3.54309e12 0.564979
\(699\) 7.13748e12 1.13083
\(700\) 0 0
\(701\) −4.18953e12 −0.655291 −0.327645 0.944801i \(-0.606255\pi\)
−0.327645 + 0.944801i \(0.606255\pi\)
\(702\) −2.22955e11 −0.0346498
\(703\) 9.99825e11 0.154392
\(704\) 7.86431e12 1.20666
\(705\) 0 0
\(706\) 2.07248e12 0.313956
\(707\) 6.17129e12 0.928942
\(708\) −2.54368e12 −0.380463
\(709\) −5.30584e12 −0.788580 −0.394290 0.918986i \(-0.629009\pi\)
−0.394290 + 0.918986i \(0.629009\pi\)
\(710\) 0 0
\(711\) 9.08872e11 0.133380
\(712\) 6.30769e12 0.919836
\(713\) 1.72529e12 0.250011
\(714\) −1.16337e13 −1.67524
\(715\) 0 0
\(716\) −2.46151e12 −0.350020
\(717\) 8.46859e12 1.19667
\(718\) 3.11984e12 0.438099
\(719\) 2.67496e12 0.373282 0.186641 0.982428i \(-0.440240\pi\)
0.186641 + 0.982428i \(0.440240\pi\)
\(720\) 0 0
\(721\) 6.90316e12 0.951347
\(722\) −6.85989e12 −0.939507
\(723\) 2.02958e12 0.276239
\(724\) 1.34654e12 0.182136
\(725\) 0 0
\(726\) −1.88627e13 −2.51993
\(727\) 8.33355e12 1.10643 0.553217 0.833037i \(-0.313400\pi\)
0.553217 + 0.833037i \(0.313400\pi\)
\(728\) −1.56249e12 −0.206170
\(729\) −6.31830e12 −0.828564
\(730\) 0 0
\(731\) −1.05442e13 −1.36580
\(732\) 2.37851e12 0.306200
\(733\) −1.11038e11 −0.0142071 −0.00710355 0.999975i \(-0.502261\pi\)
−0.00710355 + 0.999975i \(0.502261\pi\)
\(734\) 1.62209e13 2.06273
\(735\) 0 0
\(736\) −1.71965e12 −0.216018
\(737\) 1.70684e13 2.13103
\(738\) 1.51661e13 1.88200
\(739\) 1.02565e13 1.26502 0.632511 0.774551i \(-0.282024\pi\)
0.632511 + 0.774551i \(0.282024\pi\)
\(740\) 0 0
\(741\) 1.17924e12 0.143688
\(742\) 1.33800e13 1.62046
\(743\) −3.90792e12 −0.470431 −0.235215 0.971943i \(-0.575580\pi\)
−0.235215 + 0.971943i \(0.575580\pi\)
\(744\) 4.50461e12 0.538988
\(745\) 0 0
\(746\) 1.36628e13 1.61516
\(747\) −1.48119e12 −0.174047
\(748\) −3.54899e12 −0.414522
\(749\) 4.23671e12 0.491882
\(750\) 0 0
\(751\) −2.63552e12 −0.302333 −0.151167 0.988508i \(-0.548303\pi\)
−0.151167 + 0.988508i \(0.548303\pi\)
\(752\) −1.55798e13 −1.77656
\(753\) −1.68898e13 −1.91446
\(754\) 6.35465e11 0.0716012
\(755\) 0 0
\(756\) −1.67578e11 −0.0186582
\(757\) 1.02796e13 1.13774 0.568870 0.822428i \(-0.307381\pi\)
0.568870 + 0.822428i \(0.307381\pi\)
\(758\) −7.60508e12 −0.836744
\(759\) −1.16992e13 −1.27958
\(760\) 0 0
\(761\) 1.47695e12 0.159638 0.0798190 0.996809i \(-0.474566\pi\)
0.0798190 + 0.996809i \(0.474566\pi\)
\(762\) −1.00381e13 −1.07859
\(763\) 2.35834e12 0.251910
\(764\) −1.64355e11 −0.0174527
\(765\) 0 0
\(766\) −3.25823e12 −0.341942
\(767\) −3.77674e12 −0.394038
\(768\) −7.47448e12 −0.775275
\(769\) −3.06990e12 −0.316560 −0.158280 0.987394i \(-0.550595\pi\)
−0.158280 + 0.987394i \(0.550595\pi\)
\(770\) 0 0
\(771\) 7.87745e12 0.802862
\(772\) −3.06461e12 −0.310526
\(773\) −1.22536e13 −1.23440 −0.617200 0.786807i \(-0.711733\pi\)
−0.617200 + 0.786807i \(0.711733\pi\)
\(774\) 1.04110e13 1.04270
\(775\) 0 0
\(776\) −1.01191e13 −1.00176
\(777\) 4.89764e12 0.482050
\(778\) 3.25650e12 0.318671
\(779\) 7.22134e12 0.702585
\(780\) 0 0
\(781\) −1.63482e13 −1.57232
\(782\) −8.48783e12 −0.811645
\(783\) −2.84255e11 −0.0270259
\(784\) 3.52570e12 0.333290
\(785\) 0 0
\(786\) −5.94435e11 −0.0555524
\(787\) −1.16840e13 −1.08569 −0.542847 0.839832i \(-0.682653\pi\)
−0.542847 + 0.839832i \(0.682653\pi\)
\(788\) 3.01353e12 0.278425
\(789\) 3.02904e12 0.278265
\(790\) 0 0
\(791\) −4.44095e12 −0.403349
\(792\) −1.46150e13 −1.31988
\(793\) 3.53151e12 0.317125
\(794\) −1.09941e13 −0.981675
\(795\) 0 0
\(796\) 4.40445e10 0.00388851
\(797\) 1.05711e13 0.928024 0.464012 0.885829i \(-0.346410\pi\)
0.464012 + 0.885829i \(0.346410\pi\)
\(798\) 5.46942e12 0.477451
\(799\) −2.32418e13 −2.01748
\(800\) 0 0
\(801\) −1.11575e13 −0.957682
\(802\) −2.06782e13 −1.76494
\(803\) −2.73089e13 −2.31785
\(804\) −4.14121e12 −0.349522
\(805\) 0 0
\(806\) −1.60360e12 −0.133841
\(807\) −2.61902e13 −2.17374
\(808\) 1.17557e13 0.970282
\(809\) −9.18043e12 −0.753520 −0.376760 0.926311i \(-0.622962\pi\)
−0.376760 + 0.926311i \(0.622962\pi\)
\(810\) 0 0
\(811\) −1.38738e12 −0.112616 −0.0563081 0.998413i \(-0.517933\pi\)
−0.0563081 + 0.998413i \(0.517933\pi\)
\(812\) 4.77630e11 0.0385558
\(813\) −2.10111e12 −0.168672
\(814\) 9.21958e12 0.736040
\(815\) 0 0
\(816\) −2.66135e13 −2.10134
\(817\) 4.95721e12 0.389258
\(818\) 5.23609e12 0.408900
\(819\) 2.76385e12 0.214653
\(820\) 0 0
\(821\) 1.09862e12 0.0843924 0.0421962 0.999109i \(-0.486565\pi\)
0.0421962 + 0.999109i \(0.486565\pi\)
\(822\) −6.30410e12 −0.481615
\(823\) 1.94330e13 1.47653 0.738263 0.674513i \(-0.235646\pi\)
0.738263 + 0.674513i \(0.235646\pi\)
\(824\) 1.31498e13 0.993684
\(825\) 0 0
\(826\) −1.75169e13 −1.30932
\(827\) 2.56778e12 0.190890 0.0954448 0.995435i \(-0.469573\pi\)
0.0954448 + 0.995435i \(0.469573\pi\)
\(828\) 1.35811e12 0.100415
\(829\) 1.15684e13 0.850703 0.425352 0.905028i \(-0.360150\pi\)
0.425352 + 0.905028i \(0.360150\pi\)
\(830\) 0 0
\(831\) 2.04496e13 1.48758
\(832\) −2.83301e12 −0.204971
\(833\) 5.25961e12 0.378487
\(834\) 2.31938e13 1.66006
\(835\) 0 0
\(836\) 1.66850e12 0.118140
\(837\) 7.17320e11 0.0505182
\(838\) 1.31047e13 0.917974
\(839\) −1.07035e13 −0.745754 −0.372877 0.927881i \(-0.621629\pi\)
−0.372877 + 0.927881i \(0.621629\pi\)
\(840\) 0 0
\(841\) −1.36970e13 −0.944153
\(842\) 8.44302e11 0.0578887
\(843\) −1.14746e13 −0.782553
\(844\) 4.83287e11 0.0327841
\(845\) 0 0
\(846\) 2.29481e13 1.54021
\(847\) −2.10503e13 −1.40534
\(848\) 3.06083e13 2.03263
\(849\) −2.83425e13 −1.87220
\(850\) 0 0
\(851\) 3.57325e12 0.233550
\(852\) 3.96647e12 0.257885
\(853\) −1.85417e13 −1.19917 −0.599583 0.800313i \(-0.704667\pi\)
−0.599583 + 0.800313i \(0.704667\pi\)
\(854\) 1.63794e13 1.05375
\(855\) 0 0
\(856\) 8.07053e12 0.513772
\(857\) −8.38633e12 −0.531078 −0.265539 0.964100i \(-0.585550\pi\)
−0.265539 + 0.964100i \(0.585550\pi\)
\(858\) 1.08740e13 0.685010
\(859\) 2.49383e12 0.156278 0.0781390 0.996942i \(-0.475102\pi\)
0.0781390 + 0.996942i \(0.475102\pi\)
\(860\) 0 0
\(861\) 3.53736e13 2.19364
\(862\) 2.13328e13 1.31603
\(863\) 1.05758e12 0.0649029 0.0324515 0.999473i \(-0.489669\pi\)
0.0324515 + 0.999473i \(0.489669\pi\)
\(864\) −7.14977e11 −0.0436496
\(865\) 0 0
\(866\) 8.00101e12 0.483408
\(867\) −1.66640e13 −1.00160
\(868\) −1.20530e12 −0.0720705
\(869\) 3.99056e12 0.237380
\(870\) 0 0
\(871\) −6.14868e12 −0.361993
\(872\) 4.49241e12 0.263121
\(873\) 1.78995e13 1.04298
\(874\) 3.99042e12 0.231322
\(875\) 0 0
\(876\) 6.62579e12 0.380162
\(877\) −2.46623e13 −1.40778 −0.703891 0.710308i \(-0.748556\pi\)
−0.703891 + 0.710308i \(0.748556\pi\)
\(878\) −3.60423e13 −2.04685
\(879\) −1.49516e12 −0.0844767
\(880\) 0 0
\(881\) −7.21428e12 −0.403461 −0.201731 0.979441i \(-0.564657\pi\)
−0.201731 + 0.979441i \(0.564657\pi\)
\(882\) −5.19316e12 −0.288951
\(883\) 5.65890e12 0.313263 0.156631 0.987657i \(-0.449937\pi\)
0.156631 + 0.987657i \(0.449937\pi\)
\(884\) 1.27848e12 0.0704138
\(885\) 0 0
\(886\) −3.68377e13 −2.00836
\(887\) −1.70857e13 −0.926778 −0.463389 0.886155i \(-0.653367\pi\)
−0.463389 + 0.886155i \(0.653367\pi\)
\(888\) 9.32952e12 0.503502
\(889\) −1.12023e13 −0.601518
\(890\) 0 0
\(891\) −3.30436e13 −1.75646
\(892\) −2.45057e12 −0.129606
\(893\) 1.09268e13 0.574989
\(894\) 2.10929e13 1.10438
\(895\) 0 0
\(896\) −1.93517e13 −1.00308
\(897\) 4.21446e12 0.217358
\(898\) 7.53304e12 0.386569
\(899\) −2.04450e12 −0.104392
\(900\) 0 0
\(901\) 4.56613e13 2.30827
\(902\) 6.65893e13 3.34946
\(903\) 2.42828e13 1.21536
\(904\) −8.45957e12 −0.421299
\(905\) 0 0
\(906\) 2.25843e13 1.11360
\(907\) −4.31310e12 −0.211620 −0.105810 0.994386i \(-0.533744\pi\)
−0.105810 + 0.994386i \(0.533744\pi\)
\(908\) −2.59866e12 −0.126871
\(909\) −2.07944e13 −1.01020
\(910\) 0 0
\(911\) 3.59972e13 1.73155 0.865777 0.500430i \(-0.166825\pi\)
0.865777 + 0.500430i \(0.166825\pi\)
\(912\) 1.25119e13 0.598891
\(913\) −6.50340e12 −0.309758
\(914\) 3.06041e12 0.145051
\(915\) 0 0
\(916\) −4.11185e12 −0.192978
\(917\) −6.63375e11 −0.0309811
\(918\) −3.52897e12 −0.164005
\(919\) −1.78486e13 −0.825437 −0.412719 0.910859i \(-0.635421\pi\)
−0.412719 + 0.910859i \(0.635421\pi\)
\(920\) 0 0
\(921\) 1.52293e13 0.697447
\(922\) 7.81490e12 0.356151
\(923\) 5.88923e12 0.267086
\(924\) 8.17315e12 0.368863
\(925\) 0 0
\(926\) −4.28551e13 −1.91537
\(927\) −2.32604e13 −1.03457
\(928\) 2.03782e12 0.0901988
\(929\) −2.28123e13 −1.00484 −0.502422 0.864622i \(-0.667558\pi\)
−0.502422 + 0.864622i \(0.667558\pi\)
\(930\) 0 0
\(931\) −2.47272e12 −0.107870
\(932\) −3.63795e12 −0.157937
\(933\) 3.93307e13 1.69928
\(934\) 1.40375e13 0.603572
\(935\) 0 0
\(936\) 5.26486e12 0.224205
\(937\) −9.14211e12 −0.387452 −0.193726 0.981056i \(-0.562057\pi\)
−0.193726 + 0.981056i \(0.562057\pi\)
\(938\) −2.85181e13 −1.20284
\(939\) 9.05084e12 0.379922
\(940\) 0 0
\(941\) 2.42073e13 1.00645 0.503225 0.864155i \(-0.332147\pi\)
0.503225 + 0.864155i \(0.332147\pi\)
\(942\) −2.53931e13 −1.05072
\(943\) 2.58082e13 1.06281
\(944\) −4.00719e13 −1.64235
\(945\) 0 0
\(946\) 4.57113e13 1.85573
\(947\) −1.63239e13 −0.659550 −0.329775 0.944060i \(-0.606973\pi\)
−0.329775 + 0.944060i \(0.606973\pi\)
\(948\) −9.68202e11 −0.0389340
\(949\) 9.83767e12 0.393726
\(950\) 0 0
\(951\) −2.31630e12 −0.0918295
\(952\) −2.47313e13 −0.975845
\(953\) −2.42382e13 −0.951880 −0.475940 0.879478i \(-0.657892\pi\)
−0.475940 + 0.879478i \(0.657892\pi\)
\(954\) −4.50844e13 −1.76221
\(955\) 0 0
\(956\) −4.31641e12 −0.167133
\(957\) 1.38637e13 0.534289
\(958\) 2.30134e13 0.882748
\(959\) −7.03523e12 −0.268593
\(960\) 0 0
\(961\) −2.12803e13 −0.804864
\(962\) −3.32123e12 −0.125029
\(963\) −1.42758e13 −0.534910
\(964\) −1.03447e12 −0.0385809
\(965\) 0 0
\(966\) 1.95470e13 0.722244
\(967\) 1.11387e13 0.409654 0.204827 0.978798i \(-0.434337\pi\)
0.204827 + 0.978798i \(0.434337\pi\)
\(968\) −4.00987e13 −1.46788
\(969\) 1.86652e13 0.680106
\(970\) 0 0
\(971\) −3.10112e13 −1.11952 −0.559760 0.828655i \(-0.689107\pi\)
−0.559760 + 0.828655i \(0.689107\pi\)
\(972\) 7.40165e12 0.265969
\(973\) 2.58837e13 0.925804
\(974\) 1.11134e12 0.0395668
\(975\) 0 0
\(976\) 3.74699e13 1.32178
\(977\) −1.16626e13 −0.409516 −0.204758 0.978813i \(-0.565641\pi\)
−0.204758 + 0.978813i \(0.565641\pi\)
\(978\) 3.23171e13 1.12956
\(979\) −4.89889e13 −1.70442
\(980\) 0 0
\(981\) −7.94651e12 −0.273947
\(982\) 1.10729e13 0.379980
\(983\) 1.20376e13 0.411198 0.205599 0.978636i \(-0.434086\pi\)
0.205599 + 0.978636i \(0.434086\pi\)
\(984\) 6.73834e13 2.29126
\(985\) 0 0
\(986\) 1.00582e13 0.338904
\(987\) 5.35246e13 1.79526
\(988\) −6.01056e11 −0.0200682
\(989\) 1.77164e13 0.588834
\(990\) 0 0
\(991\) 4.45908e13 1.46863 0.734317 0.678806i \(-0.237502\pi\)
0.734317 + 0.678806i \(0.237502\pi\)
\(992\) −5.14247e12 −0.168604
\(993\) −3.87379e13 −1.26434
\(994\) 2.73148e13 0.887480
\(995\) 0 0
\(996\) 1.57788e12 0.0508050
\(997\) −5.03829e13 −1.61493 −0.807467 0.589912i \(-0.799162\pi\)
−0.807467 + 0.589912i \(0.799162\pi\)
\(998\) 1.79897e13 0.574032
\(999\) 1.48564e12 0.0471922
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.b.1.5 5
5.4 even 2 13.10.a.b.1.1 5
15.14 odd 2 117.10.a.e.1.5 5
20.19 odd 2 208.10.a.h.1.2 5
65.64 even 2 169.10.a.b.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.1 5 5.4 even 2
117.10.a.e.1.5 5 15.14 odd 2
169.10.a.b.1.5 5 65.64 even 2
208.10.a.h.1.2 5 20.19 odd 2
325.10.a.b.1.5 5 1.1 even 1 trivial