Properties

Label 325.10.a.b.1.3
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.150341\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.15034 q^{2} +136.532 q^{3} -502.075 q^{4} -430.124 q^{6} -9399.91 q^{7} +3194.68 q^{8} -1041.89 q^{9} +O(q^{10})\) \(q-3.15034 q^{2} +136.532 q^{3} -502.075 q^{4} -430.124 q^{6} -9399.91 q^{7} +3194.68 q^{8} -1041.89 q^{9} +44094.1 q^{11} -68549.6 q^{12} -28561.0 q^{13} +29612.9 q^{14} +246998. q^{16} -28289.4 q^{17} +3282.30 q^{18} +273836. q^{19} -1.28339e6 q^{21} -138911. q^{22} +1.12921e6 q^{23} +436178. q^{24} +89976.9 q^{26} -2.82962e6 q^{27} +4.71947e6 q^{28} -1.63691e6 q^{29} +6.65402e6 q^{31} -2.41381e6 q^{32} +6.02028e6 q^{33} +89121.2 q^{34} +523105. q^{36} +1.71193e7 q^{37} -862677. q^{38} -3.89950e6 q^{39} -5.15179e6 q^{41} +4.04313e6 q^{42} +1.97275e7 q^{43} -2.21386e7 q^{44} -3.55739e6 q^{46} -4.82947e7 q^{47} +3.37233e7 q^{48} +4.80048e7 q^{49} -3.86242e6 q^{51} +1.43398e7 q^{52} +3.06731e7 q^{53} +8.91427e6 q^{54} -3.00298e7 q^{56} +3.73875e7 q^{57} +5.15683e6 q^{58} -1.15154e7 q^{59} -3.62567e7 q^{61} -2.09624e7 q^{62} +9.79364e6 q^{63} -1.18859e8 q^{64} -1.89659e7 q^{66} +6.48390e7 q^{67} +1.42034e7 q^{68} +1.54174e8 q^{69} -1.47071e8 q^{71} -3.32850e6 q^{72} +3.37321e8 q^{73} -5.39317e7 q^{74} -1.37486e8 q^{76} -4.14481e8 q^{77} +1.22848e7 q^{78} -2.04060e8 q^{79} -3.65828e8 q^{81} +1.62299e7 q^{82} -7.61700e8 q^{83} +6.44360e8 q^{84} -6.21484e7 q^{86} -2.23491e8 q^{87} +1.40867e8 q^{88} -8.29058e8 q^{89} +2.68471e8 q^{91} -5.66948e8 q^{92} +9.08490e8 q^{93} +1.52145e8 q^{94} -3.29563e8 q^{96} -1.00647e9 q^{97} -1.51231e8 q^{98} -4.59410e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{2} - 161 q^{3} + 361 q^{4} + 5693 q^{6} - 10099 q^{7} - 23151 q^{8} + 61060 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 15 q^{2} - 161 q^{3} + 361 q^{4} + 5693 q^{6} - 10099 q^{7} - 23151 q^{8} + 61060 q^{9} + 121746 q^{11} - 113389 q^{12} - 142805 q^{13} + 8475 q^{14} - 322463 q^{16} + 495669 q^{17} + 656228 q^{18} - 840738 q^{19} - 1599467 q^{21} + 2023594 q^{22} + 592152 q^{23} - 2295657 q^{24} + 428415 q^{26} - 6847883 q^{27} - 2587955 q^{28} + 10678182 q^{29} + 12885296 q^{31} - 3282927 q^{32} - 17278298 q^{33} - 9934079 q^{34} - 20483302 q^{36} - 7171823 q^{37} + 25568814 q^{38} + 4598321 q^{39} + 9294012 q^{41} + 69520457 q^{42} - 12831975 q^{43} - 41479074 q^{44} - 59319696 q^{46} - 43354215 q^{47} + 86874671 q^{48} + 25249488 q^{49} + 16905901 q^{51} - 10310521 q^{52} - 93231780 q^{53} + 58983719 q^{54} + 199599225 q^{56} - 90173382 q^{57} - 151020970 q^{58} + 246496182 q^{59} - 132232612 q^{61} - 158135724 q^{62} + 416955202 q^{63} + 91019105 q^{64} - 323733130 q^{66} + 369388534 q^{67} - 238172073 q^{68} - 579986760 q^{69} + 212150457 q^{71} + 415774278 q^{72} + 252729806 q^{73} + 192105957 q^{74} - 953775990 q^{76} - 449666118 q^{77} - 162597773 q^{78} - 1247271728 q^{79} - 317713115 q^{81} - 169559388 q^{82} - 1696894296 q^{83} + 1247983739 q^{84} + 3291621459 q^{86} + 614530466 q^{87} + 220227222 q^{88} - 753854382 q^{89} + 288437539 q^{91} - 13876128 q^{92} + 892784668 q^{93} + 272071215 q^{94} + 930612847 q^{96} - 3824606 q^{97} - 1570614816 q^{98} + 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.15034 −0.139227 −0.0696134 0.997574i \(-0.522177\pi\)
−0.0696134 + 0.997574i \(0.522177\pi\)
\(3\) 136.532 0.973174 0.486587 0.873632i \(-0.338242\pi\)
0.486587 + 0.873632i \(0.338242\pi\)
\(4\) −502.075 −0.980616
\(5\) 0 0
\(6\) −430.124 −0.135492
\(7\) −9399.91 −1.47973 −0.739865 0.672755i \(-0.765111\pi\)
−0.739865 + 0.672755i \(0.765111\pi\)
\(8\) 3194.68 0.275755
\(9\) −1041.89 −0.0529333
\(10\) 0 0
\(11\) 44094.1 0.908058 0.454029 0.890987i \(-0.349986\pi\)
0.454029 + 0.890987i \(0.349986\pi\)
\(12\) −68549.6 −0.954309
\(13\) −28561.0 −0.277350
\(14\) 29612.9 0.206018
\(15\) 0 0
\(16\) 246998. 0.942223
\(17\) −28289.4 −0.0821492 −0.0410746 0.999156i \(-0.513078\pi\)
−0.0410746 + 0.999156i \(0.513078\pi\)
\(18\) 3282.30 0.00736973
\(19\) 273836. 0.482058 0.241029 0.970518i \(-0.422515\pi\)
0.241029 + 0.970518i \(0.422515\pi\)
\(20\) 0 0
\(21\) −1.28339e6 −1.44003
\(22\) −138911. −0.126426
\(23\) 1.12921e6 0.841393 0.420697 0.907201i \(-0.361786\pi\)
0.420697 + 0.907201i \(0.361786\pi\)
\(24\) 436178. 0.268357
\(25\) 0 0
\(26\) 89976.9 0.0386145
\(27\) −2.82962e6 −1.02469
\(28\) 4.71947e6 1.45105
\(29\) −1.63691e6 −0.429768 −0.214884 0.976640i \(-0.568937\pi\)
−0.214884 + 0.976640i \(0.568937\pi\)
\(30\) 0 0
\(31\) 6.65402e6 1.29407 0.647033 0.762462i \(-0.276009\pi\)
0.647033 + 0.762462i \(0.276009\pi\)
\(32\) −2.41381e6 −0.406937
\(33\) 6.02028e6 0.883698
\(34\) 89121.2 0.0114374
\(35\) 0 0
\(36\) 523105. 0.0519073
\(37\) 1.71193e7 1.50169 0.750843 0.660481i \(-0.229648\pi\)
0.750843 + 0.660481i \(0.229648\pi\)
\(38\) −862677. −0.0671154
\(39\) −3.89950e6 −0.269910
\(40\) 0 0
\(41\) −5.15179e6 −0.284728 −0.142364 0.989814i \(-0.545470\pi\)
−0.142364 + 0.989814i \(0.545470\pi\)
\(42\) 4.04313e6 0.200491
\(43\) 1.97275e7 0.879962 0.439981 0.898007i \(-0.354985\pi\)
0.439981 + 0.898007i \(0.354985\pi\)
\(44\) −2.21386e7 −0.890456
\(45\) 0 0
\(46\) −3.55739e6 −0.117144
\(47\) −4.82947e7 −1.44364 −0.721821 0.692080i \(-0.756695\pi\)
−0.721821 + 0.692080i \(0.756695\pi\)
\(48\) 3.37233e7 0.916947
\(49\) 4.80048e7 1.18960
\(50\) 0 0
\(51\) −3.86242e6 −0.0799454
\(52\) 1.43398e7 0.271974
\(53\) 3.06731e7 0.533970 0.266985 0.963701i \(-0.413973\pi\)
0.266985 + 0.963701i \(0.413973\pi\)
\(54\) 8.91427e6 0.142664
\(55\) 0 0
\(56\) −3.00298e7 −0.408043
\(57\) 3.73875e7 0.469126
\(58\) 5.15683e6 0.0598352
\(59\) −1.15154e7 −0.123722 −0.0618609 0.998085i \(-0.519704\pi\)
−0.0618609 + 0.998085i \(0.519704\pi\)
\(60\) 0 0
\(61\) −3.62567e7 −0.335277 −0.167639 0.985849i \(-0.553614\pi\)
−0.167639 + 0.985849i \(0.553614\pi\)
\(62\) −2.09624e7 −0.180169
\(63\) 9.79364e6 0.0783271
\(64\) −1.18859e8 −0.885567
\(65\) 0 0
\(66\) −1.89659e7 −0.123034
\(67\) 6.48390e7 0.393097 0.196548 0.980494i \(-0.437027\pi\)
0.196548 + 0.980494i \(0.437027\pi\)
\(68\) 1.42034e7 0.0805568
\(69\) 1.54174e8 0.818822
\(70\) 0 0
\(71\) −1.47071e8 −0.686853 −0.343427 0.939180i \(-0.611588\pi\)
−0.343427 + 0.939180i \(0.611588\pi\)
\(72\) −3.32850e6 −0.0145966
\(73\) 3.37321e8 1.39024 0.695122 0.718892i \(-0.255350\pi\)
0.695122 + 0.718892i \(0.255350\pi\)
\(74\) −5.39317e7 −0.209075
\(75\) 0 0
\(76\) −1.37486e8 −0.472714
\(77\) −4.14481e8 −1.34368
\(78\) 1.22848e7 0.0375787
\(79\) −2.04060e8 −0.589436 −0.294718 0.955584i \(-0.595226\pi\)
−0.294718 + 0.955584i \(0.595226\pi\)
\(80\) 0 0
\(81\) −3.65828e8 −0.944265
\(82\) 1.62299e7 0.0396418
\(83\) −7.61700e8 −1.76170 −0.880851 0.473394i \(-0.843029\pi\)
−0.880851 + 0.473394i \(0.843029\pi\)
\(84\) 6.44360e8 1.41212
\(85\) 0 0
\(86\) −6.21484e7 −0.122514
\(87\) −2.23491e8 −0.418239
\(88\) 1.40867e8 0.250401
\(89\) −8.29058e8 −1.40065 −0.700326 0.713823i \(-0.746962\pi\)
−0.700326 + 0.713823i \(0.746962\pi\)
\(90\) 0 0
\(91\) 2.68471e8 0.410403
\(92\) −5.66948e8 −0.825084
\(93\) 9.08490e8 1.25935
\(94\) 1.52145e8 0.200994
\(95\) 0 0
\(96\) −3.29563e8 −0.396021
\(97\) −1.00647e9 −1.15432 −0.577161 0.816631i \(-0.695839\pi\)
−0.577161 + 0.816631i \(0.695839\pi\)
\(98\) −1.51231e8 −0.165625
\(99\) −4.59410e7 −0.0480665
\(100\) 0 0
\(101\) 1.59054e9 1.52089 0.760446 0.649401i \(-0.224980\pi\)
0.760446 + 0.649401i \(0.224980\pi\)
\(102\) 1.21679e7 0.0111305
\(103\) −1.13889e9 −0.997040 −0.498520 0.866878i \(-0.666123\pi\)
−0.498520 + 0.866878i \(0.666123\pi\)
\(104\) −9.12434e7 −0.0764806
\(105\) 0 0
\(106\) −9.66309e7 −0.0743429
\(107\) 7.21432e8 0.532069 0.266035 0.963963i \(-0.414286\pi\)
0.266035 + 0.963963i \(0.414286\pi\)
\(108\) 1.42068e9 1.00482
\(109\) −6.86462e8 −0.465798 −0.232899 0.972501i \(-0.574821\pi\)
−0.232899 + 0.972501i \(0.574821\pi\)
\(110\) 0 0
\(111\) 2.33734e9 1.46140
\(112\) −2.32176e9 −1.39424
\(113\) 8.33795e8 0.481068 0.240534 0.970641i \(-0.422677\pi\)
0.240534 + 0.970641i \(0.422677\pi\)
\(114\) −1.17783e8 −0.0653149
\(115\) 0 0
\(116\) 8.21852e8 0.421437
\(117\) 2.97573e7 0.0146811
\(118\) 3.62775e7 0.0172254
\(119\) 2.65918e8 0.121559
\(120\) 0 0
\(121\) −4.13658e8 −0.175431
\(122\) 1.14221e8 0.0466796
\(123\) −7.03386e8 −0.277090
\(124\) −3.34082e9 −1.26898
\(125\) 0 0
\(126\) −3.08533e7 −0.0109052
\(127\) 4.01307e8 0.136886 0.0684431 0.997655i \(-0.478197\pi\)
0.0684431 + 0.997655i \(0.478197\pi\)
\(128\) 1.61031e9 0.530232
\(129\) 2.69344e9 0.856356
\(130\) 0 0
\(131\) −3.78377e9 −1.12255 −0.561273 0.827631i \(-0.689688\pi\)
−0.561273 + 0.827631i \(0.689688\pi\)
\(132\) −3.02263e9 −0.866568
\(133\) −2.57404e9 −0.713317
\(134\) −2.04265e8 −0.0547296
\(135\) 0 0
\(136\) −9.03756e7 −0.0226530
\(137\) −1.45518e9 −0.352919 −0.176459 0.984308i \(-0.556464\pi\)
−0.176459 + 0.984308i \(0.556464\pi\)
\(138\) −4.85700e8 −0.114002
\(139\) 1.50381e9 0.341685 0.170842 0.985298i \(-0.445351\pi\)
0.170842 + 0.985298i \(0.445351\pi\)
\(140\) 0 0
\(141\) −6.59380e9 −1.40491
\(142\) 4.63323e8 0.0956283
\(143\) −1.25937e9 −0.251850
\(144\) −2.57344e8 −0.0498750
\(145\) 0 0
\(146\) −1.06268e9 −0.193559
\(147\) 6.55421e9 1.15769
\(148\) −8.59520e9 −1.47258
\(149\) −4.28624e9 −0.712423 −0.356212 0.934405i \(-0.615932\pi\)
−0.356212 + 0.934405i \(0.615932\pi\)
\(150\) 0 0
\(151\) 4.79918e8 0.0751226 0.0375613 0.999294i \(-0.488041\pi\)
0.0375613 + 0.999294i \(0.488041\pi\)
\(152\) 8.74820e8 0.132930
\(153\) 2.94743e7 0.00434843
\(154\) 1.30576e9 0.187076
\(155\) 0 0
\(156\) 1.95784e9 0.264678
\(157\) 8.24624e9 1.08320 0.541598 0.840637i \(-0.317819\pi\)
0.541598 + 0.840637i \(0.317819\pi\)
\(158\) 6.42860e8 0.0820652
\(159\) 4.18788e9 0.519646
\(160\) 0 0
\(161\) −1.06145e10 −1.24504
\(162\) 1.15248e9 0.131467
\(163\) 5.93537e9 0.658573 0.329286 0.944230i \(-0.393192\pi\)
0.329286 + 0.944230i \(0.393192\pi\)
\(164\) 2.58659e9 0.279209
\(165\) 0 0
\(166\) 2.39961e9 0.245276
\(167\) 7.41172e9 0.737386 0.368693 0.929551i \(-0.379805\pi\)
0.368693 + 0.929551i \(0.379805\pi\)
\(168\) −4.10004e9 −0.397096
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −2.85306e8 −0.0255169
\(172\) −9.90469e9 −0.862905
\(173\) −5.63923e9 −0.478643 −0.239322 0.970940i \(-0.576925\pi\)
−0.239322 + 0.970940i \(0.576925\pi\)
\(174\) 7.04074e8 0.0582300
\(175\) 0 0
\(176\) 1.08912e10 0.855593
\(177\) −1.57223e9 −0.120403
\(178\) 2.61182e9 0.195008
\(179\) 1.23881e10 0.901916 0.450958 0.892545i \(-0.351082\pi\)
0.450958 + 0.892545i \(0.351082\pi\)
\(180\) 0 0
\(181\) −2.45852e10 −1.70263 −0.851314 0.524657i \(-0.824194\pi\)
−0.851314 + 0.524657i \(0.824194\pi\)
\(182\) −8.45775e8 −0.0571391
\(183\) −4.95022e9 −0.326283
\(184\) 3.60746e9 0.232018
\(185\) 0 0
\(186\) −2.86205e9 −0.175335
\(187\) −1.24739e9 −0.0745962
\(188\) 2.42476e10 1.41566
\(189\) 2.65982e10 1.51626
\(190\) 0 0
\(191\) −1.06604e10 −0.579592 −0.289796 0.957088i \(-0.593587\pi\)
−0.289796 + 0.957088i \(0.593587\pi\)
\(192\) −1.62281e10 −0.861810
\(193\) 2.09640e10 1.08759 0.543797 0.839217i \(-0.316986\pi\)
0.543797 + 0.839217i \(0.316986\pi\)
\(194\) 3.17071e9 0.160712
\(195\) 0 0
\(196\) −2.41020e10 −1.16654
\(197\) −1.27051e10 −0.601009 −0.300504 0.953780i \(-0.597155\pi\)
−0.300504 + 0.953780i \(0.597155\pi\)
\(198\) 1.44730e8 0.00669214
\(199\) 2.57825e9 0.116543 0.0582715 0.998301i \(-0.481441\pi\)
0.0582715 + 0.998301i \(0.481441\pi\)
\(200\) 0 0
\(201\) 8.85262e9 0.382551
\(202\) −5.01075e9 −0.211749
\(203\) 1.53868e10 0.635941
\(204\) 1.93922e9 0.0783957
\(205\) 0 0
\(206\) 3.58788e9 0.138815
\(207\) −1.17651e9 −0.0445377
\(208\) −7.05452e9 −0.261326
\(209\) 1.20746e10 0.437737
\(210\) 0 0
\(211\) 1.94301e10 0.674846 0.337423 0.941353i \(-0.390445\pi\)
0.337423 + 0.941353i \(0.390445\pi\)
\(212\) −1.54002e10 −0.523620
\(213\) −2.00799e10 −0.668427
\(214\) −2.27276e9 −0.0740783
\(215\) 0 0
\(216\) −9.03974e9 −0.282562
\(217\) −6.25472e10 −1.91487
\(218\) 2.16259e9 0.0648515
\(219\) 4.60553e10 1.35295
\(220\) 0 0
\(221\) 8.07973e8 0.0227841
\(222\) −7.36343e9 −0.203466
\(223\) −9.56077e9 −0.258893 −0.129447 0.991586i \(-0.541320\pi\)
−0.129447 + 0.991586i \(0.541320\pi\)
\(224\) 2.26896e10 0.602158
\(225\) 0 0
\(226\) −2.62674e9 −0.0669775
\(227\) 2.02032e10 0.505015 0.252507 0.967595i \(-0.418745\pi\)
0.252507 + 0.967595i \(0.418745\pi\)
\(228\) −1.87714e10 −0.460033
\(229\) −2.45816e10 −0.590678 −0.295339 0.955392i \(-0.595433\pi\)
−0.295339 + 0.955392i \(0.595433\pi\)
\(230\) 0 0
\(231\) −5.65901e10 −1.30763
\(232\) −5.22941e9 −0.118510
\(233\) −7.93260e10 −1.76325 −0.881625 0.471951i \(-0.843550\pi\)
−0.881625 + 0.471951i \(0.843550\pi\)
\(234\) −9.37457e7 −0.00204400
\(235\) 0 0
\(236\) 5.78161e9 0.121324
\(237\) −2.78609e10 −0.573623
\(238\) −8.37732e8 −0.0169242
\(239\) −2.62515e10 −0.520431 −0.260215 0.965551i \(-0.583794\pi\)
−0.260215 + 0.965551i \(0.583794\pi\)
\(240\) 0 0
\(241\) −1.00766e11 −1.92415 −0.962074 0.272787i \(-0.912055\pi\)
−0.962074 + 0.272787i \(0.912055\pi\)
\(242\) 1.30316e9 0.0244247
\(243\) 5.74808e9 0.105753
\(244\) 1.82036e10 0.328778
\(245\) 0 0
\(246\) 2.21591e9 0.0385783
\(247\) −7.82103e9 −0.133699
\(248\) 2.12575e10 0.356845
\(249\) −1.03997e11 −1.71444
\(250\) 0 0
\(251\) −8.72780e10 −1.38795 −0.693973 0.720001i \(-0.744142\pi\)
−0.693973 + 0.720001i \(0.744142\pi\)
\(252\) −4.91715e9 −0.0768088
\(253\) 4.97914e10 0.764034
\(254\) −1.26425e9 −0.0190582
\(255\) 0 0
\(256\) 5.57827e10 0.811744
\(257\) −4.84205e10 −0.692358 −0.346179 0.938169i \(-0.612521\pi\)
−0.346179 + 0.938169i \(0.612521\pi\)
\(258\) −8.48527e9 −0.119228
\(259\) −1.60920e11 −2.22209
\(260\) 0 0
\(261\) 1.70547e9 0.0227490
\(262\) 1.19202e10 0.156288
\(263\) 4.40656e9 0.0567935 0.0283968 0.999597i \(-0.490960\pi\)
0.0283968 + 0.999597i \(0.490960\pi\)
\(264\) 1.92329e10 0.243684
\(265\) 0 0
\(266\) 8.10909e9 0.0993127
\(267\) −1.13193e11 −1.36308
\(268\) −3.25540e10 −0.385477
\(269\) 1.41879e11 1.65209 0.826045 0.563604i \(-0.190586\pi\)
0.826045 + 0.563604i \(0.190586\pi\)
\(270\) 0 0
\(271\) −7.09707e10 −0.799313 −0.399657 0.916665i \(-0.630871\pi\)
−0.399657 + 0.916665i \(0.630871\pi\)
\(272\) −6.98743e9 −0.0774029
\(273\) 3.66550e10 0.399394
\(274\) 4.58432e9 0.0491357
\(275\) 0 0
\(276\) −7.74068e10 −0.802950
\(277\) −1.22293e11 −1.24808 −0.624039 0.781393i \(-0.714509\pi\)
−0.624039 + 0.781393i \(0.714509\pi\)
\(278\) −4.73751e9 −0.0475717
\(279\) −6.93274e9 −0.0684992
\(280\) 0 0
\(281\) −9.91936e10 −0.949085 −0.474543 0.880233i \(-0.657387\pi\)
−0.474543 + 0.880233i \(0.657387\pi\)
\(282\) 2.07727e10 0.195602
\(283\) −1.89673e11 −1.75779 −0.878893 0.477019i \(-0.841717\pi\)
−0.878893 + 0.477019i \(0.841717\pi\)
\(284\) 7.38406e10 0.673539
\(285\) 0 0
\(286\) 3.96745e9 0.0350642
\(287\) 4.84264e10 0.421321
\(288\) 2.51491e9 0.0215405
\(289\) −1.17788e11 −0.993252
\(290\) 0 0
\(291\) −1.37415e11 −1.12336
\(292\) −1.69361e11 −1.36329
\(293\) −1.95772e11 −1.55183 −0.775917 0.630835i \(-0.782713\pi\)
−0.775917 + 0.630835i \(0.782713\pi\)
\(294\) −2.06480e10 −0.161181
\(295\) 0 0
\(296\) 5.46908e10 0.414097
\(297\) −1.24770e11 −0.930475
\(298\) 1.35031e10 0.0991884
\(299\) −3.22513e10 −0.233360
\(300\) 0 0
\(301\) −1.85437e11 −1.30211
\(302\) −1.51190e9 −0.0104591
\(303\) 2.17160e11 1.48009
\(304\) 6.76370e10 0.454207
\(305\) 0 0
\(306\) −9.28542e7 −0.000605417 0
\(307\) 7.17504e10 0.461001 0.230500 0.973072i \(-0.425964\pi\)
0.230500 + 0.973072i \(0.425964\pi\)
\(308\) 2.08101e11 1.31763
\(309\) −1.55495e11 −0.970293
\(310\) 0 0
\(311\) 2.11023e10 0.127911 0.0639554 0.997953i \(-0.479628\pi\)
0.0639554 + 0.997953i \(0.479628\pi\)
\(312\) −1.24577e10 −0.0744289
\(313\) 1.44667e11 0.851963 0.425982 0.904732i \(-0.359929\pi\)
0.425982 + 0.904732i \(0.359929\pi\)
\(314\) −2.59785e10 −0.150810
\(315\) 0 0
\(316\) 1.02454e11 0.578010
\(317\) −5.78709e10 −0.321880 −0.160940 0.986964i \(-0.551453\pi\)
−0.160940 + 0.986964i \(0.551453\pi\)
\(318\) −1.31933e10 −0.0723485
\(319\) −7.21781e10 −0.390254
\(320\) 0 0
\(321\) 9.84988e10 0.517796
\(322\) 3.34392e10 0.173342
\(323\) −7.74665e9 −0.0396007
\(324\) 1.83673e11 0.925961
\(325\) 0 0
\(326\) −1.86984e10 −0.0916909
\(327\) −9.37244e10 −0.453302
\(328\) −1.64583e10 −0.0785151
\(329\) 4.53966e11 2.13620
\(330\) 0 0
\(331\) −1.00283e11 −0.459199 −0.229600 0.973285i \(-0.573742\pi\)
−0.229600 + 0.973285i \(0.573742\pi\)
\(332\) 3.82431e11 1.72755
\(333\) −1.78364e10 −0.0794892
\(334\) −2.33495e10 −0.102664
\(335\) 0 0
\(336\) −3.16996e11 −1.35683
\(337\) 5.73297e10 0.242128 0.121064 0.992645i \(-0.461369\pi\)
0.121064 + 0.992645i \(0.461369\pi\)
\(338\) −2.56983e9 −0.0107097
\(339\) 1.13840e11 0.468163
\(340\) 0 0
\(341\) 2.93403e11 1.17509
\(342\) 8.98812e8 0.00355264
\(343\) −7.19204e10 −0.280562
\(344\) 6.30231e10 0.242654
\(345\) 0 0
\(346\) 1.77655e10 0.0666399
\(347\) 2.34072e10 0.0866695 0.0433347 0.999061i \(-0.486202\pi\)
0.0433347 + 0.999061i \(0.486202\pi\)
\(348\) 1.12210e11 0.410131
\(349\) 3.92804e11 1.41730 0.708649 0.705562i \(-0.249305\pi\)
0.708649 + 0.705562i \(0.249305\pi\)
\(350\) 0 0
\(351\) 8.08168e10 0.284197
\(352\) −1.06435e11 −0.369523
\(353\) −2.16422e11 −0.741849 −0.370925 0.928663i \(-0.620959\pi\)
−0.370925 + 0.928663i \(0.620959\pi\)
\(354\) 4.95306e9 0.0167633
\(355\) 0 0
\(356\) 4.16250e11 1.37350
\(357\) 3.63064e10 0.118298
\(358\) −3.90267e10 −0.125571
\(359\) 3.49576e11 1.11075 0.555376 0.831600i \(-0.312574\pi\)
0.555376 + 0.831600i \(0.312574\pi\)
\(360\) 0 0
\(361\) −2.47701e11 −0.767620
\(362\) 7.74517e10 0.237051
\(363\) −5.64778e10 −0.170725
\(364\) −1.34793e11 −0.402448
\(365\) 0 0
\(366\) 1.55949e10 0.0454273
\(367\) 1.83237e9 0.00527248 0.00263624 0.999997i \(-0.499161\pi\)
0.00263624 + 0.999997i \(0.499161\pi\)
\(368\) 2.78913e11 0.792780
\(369\) 5.36758e9 0.0150716
\(370\) 0 0
\(371\) −2.88325e11 −0.790132
\(372\) −4.56130e11 −1.23494
\(373\) −5.52030e10 −0.147663 −0.0738317 0.997271i \(-0.523523\pi\)
−0.0738317 + 0.997271i \(0.523523\pi\)
\(374\) 3.92972e9 0.0103858
\(375\) 0 0
\(376\) −1.54286e11 −0.398091
\(377\) 4.67518e10 0.119196
\(378\) −8.37934e10 −0.211104
\(379\) 2.25258e11 0.560795 0.280397 0.959884i \(-0.409534\pi\)
0.280397 + 0.959884i \(0.409534\pi\)
\(380\) 0 0
\(381\) 5.47914e10 0.133214
\(382\) 3.35838e10 0.0806947
\(383\) −4.64079e11 −1.10204 −0.551020 0.834492i \(-0.685761\pi\)
−0.551020 + 0.834492i \(0.685761\pi\)
\(384\) 2.19860e11 0.516008
\(385\) 0 0
\(386\) −6.60438e10 −0.151422
\(387\) −2.05538e10 −0.0465793
\(388\) 5.05322e11 1.13195
\(389\) −2.63061e11 −0.582482 −0.291241 0.956650i \(-0.594068\pi\)
−0.291241 + 0.956650i \(0.594068\pi\)
\(390\) 0 0
\(391\) −3.19446e10 −0.0691198
\(392\) 1.53360e11 0.328039
\(393\) −5.16608e11 −1.09243
\(394\) 4.00255e10 0.0836765
\(395\) 0 0
\(396\) 2.30659e10 0.0471348
\(397\) 1.80382e10 0.0364449 0.0182224 0.999834i \(-0.494199\pi\)
0.0182224 + 0.999834i \(0.494199\pi\)
\(398\) −8.12236e9 −0.0162259
\(399\) −3.51440e11 −0.694181
\(400\) 0 0
\(401\) 7.18792e10 0.138821 0.0694103 0.997588i \(-0.477888\pi\)
0.0694103 + 0.997588i \(0.477888\pi\)
\(402\) −2.78888e10 −0.0532614
\(403\) −1.90046e11 −0.358910
\(404\) −7.98571e11 −1.49141
\(405\) 0 0
\(406\) −4.84737e10 −0.0885399
\(407\) 7.54862e11 1.36362
\(408\) −1.23392e10 −0.0220453
\(409\) 5.31862e11 0.939819 0.469910 0.882715i \(-0.344287\pi\)
0.469910 + 0.882715i \(0.344287\pi\)
\(410\) 0 0
\(411\) −1.98680e11 −0.343451
\(412\) 5.71806e11 0.977713
\(413\) 1.08244e11 0.183075
\(414\) 3.70640e9 0.00620084
\(415\) 0 0
\(416\) 6.89407e10 0.112864
\(417\) 2.05319e11 0.332519
\(418\) −3.80390e10 −0.0609446
\(419\) 1.45942e11 0.231322 0.115661 0.993289i \(-0.463101\pi\)
0.115661 + 0.993289i \(0.463101\pi\)
\(420\) 0 0
\(421\) 3.66247e11 0.568204 0.284102 0.958794i \(-0.408305\pi\)
0.284102 + 0.958794i \(0.408305\pi\)
\(422\) −6.12115e10 −0.0939565
\(423\) 5.03176e10 0.0764168
\(424\) 9.79910e10 0.147245
\(425\) 0 0
\(426\) 6.32587e10 0.0930629
\(427\) 3.40810e11 0.496120
\(428\) −3.62213e11 −0.521756
\(429\) −1.71945e11 −0.245094
\(430\) 0 0
\(431\) 7.66389e11 1.06980 0.534899 0.844916i \(-0.320350\pi\)
0.534899 + 0.844916i \(0.320350\pi\)
\(432\) −6.98911e11 −0.965484
\(433\) 1.24176e12 1.69763 0.848813 0.528694i \(-0.177318\pi\)
0.848813 + 0.528694i \(0.177318\pi\)
\(434\) 1.97045e11 0.266601
\(435\) 0 0
\(436\) 3.44656e11 0.456769
\(437\) 3.09218e11 0.405601
\(438\) −1.45090e11 −0.188367
\(439\) −1.48429e12 −1.90734 −0.953671 0.300852i \(-0.902729\pi\)
−0.953671 + 0.300852i \(0.902729\pi\)
\(440\) 0 0
\(441\) −5.00155e10 −0.0629696
\(442\) −2.54539e9 −0.00317215
\(443\) −1.03343e12 −1.27487 −0.637433 0.770506i \(-0.720004\pi\)
−0.637433 + 0.770506i \(0.720004\pi\)
\(444\) −1.17352e12 −1.43307
\(445\) 0 0
\(446\) 3.01197e10 0.0360449
\(447\) −5.85211e11 −0.693312
\(448\) 1.11726e12 1.31040
\(449\) −5.83072e11 −0.677039 −0.338519 0.940959i \(-0.609926\pi\)
−0.338519 + 0.940959i \(0.609926\pi\)
\(450\) 0 0
\(451\) −2.27163e11 −0.258550
\(452\) −4.18628e11 −0.471743
\(453\) 6.55244e10 0.0731073
\(454\) −6.36470e10 −0.0703116
\(455\) 0 0
\(456\) 1.19441e11 0.129364
\(457\) −7.39681e11 −0.793271 −0.396635 0.917976i \(-0.629822\pi\)
−0.396635 + 0.917976i \(0.629822\pi\)
\(458\) 7.74405e10 0.0822382
\(459\) 8.00482e10 0.0841772
\(460\) 0 0
\(461\) 1.45843e12 1.50394 0.751971 0.659197i \(-0.229104\pi\)
0.751971 + 0.659197i \(0.229104\pi\)
\(462\) 1.78278e11 0.182058
\(463\) 1.63194e12 1.65040 0.825200 0.564841i \(-0.191063\pi\)
0.825200 + 0.564841i \(0.191063\pi\)
\(464\) −4.04314e11 −0.404937
\(465\) 0 0
\(466\) 2.49904e11 0.245492
\(467\) 8.24440e11 0.802109 0.401054 0.916054i \(-0.368644\pi\)
0.401054 + 0.916054i \(0.368644\pi\)
\(468\) −1.49404e10 −0.0143965
\(469\) −6.09481e11 −0.581677
\(470\) 0 0
\(471\) 1.12588e12 1.05414
\(472\) −3.67882e10 −0.0341169
\(473\) 8.69866e11 0.799056
\(474\) 8.77712e10 0.0798637
\(475\) 0 0
\(476\) −1.33511e11 −0.119202
\(477\) −3.19579e10 −0.0282648
\(478\) 8.27011e10 0.0724579
\(479\) −1.80073e11 −0.156293 −0.0781463 0.996942i \(-0.524900\pi\)
−0.0781463 + 0.996942i \(0.524900\pi\)
\(480\) 0 0
\(481\) −4.88945e11 −0.416493
\(482\) 3.17448e11 0.267893
\(483\) −1.44922e12 −1.21164
\(484\) 2.07688e11 0.172031
\(485\) 0 0
\(486\) −1.81084e10 −0.0147237
\(487\) 7.22045e11 0.581680 0.290840 0.956772i \(-0.406065\pi\)
0.290840 + 0.956772i \(0.406065\pi\)
\(488\) −1.15829e11 −0.0924543
\(489\) 8.10371e11 0.640905
\(490\) 0 0
\(491\) 1.98313e12 1.53987 0.769937 0.638119i \(-0.220287\pi\)
0.769937 + 0.638119i \(0.220287\pi\)
\(492\) 3.53153e11 0.271719
\(493\) 4.63072e10 0.0353051
\(494\) 2.46389e10 0.0186145
\(495\) 0 0
\(496\) 1.64353e12 1.21930
\(497\) 1.38245e12 1.01636
\(498\) 3.27625e11 0.238696
\(499\) −8.27327e11 −0.597344 −0.298672 0.954356i \(-0.596544\pi\)
−0.298672 + 0.954356i \(0.596544\pi\)
\(500\) 0 0
\(501\) 1.01194e12 0.717605
\(502\) 2.74955e11 0.193239
\(503\) −4.94554e11 −0.344475 −0.172238 0.985055i \(-0.555100\pi\)
−0.172238 + 0.985055i \(0.555100\pi\)
\(504\) 3.12876e10 0.0215991
\(505\) 0 0
\(506\) −1.56860e11 −0.106374
\(507\) 1.11374e11 0.0748595
\(508\) −2.01486e11 −0.134233
\(509\) −2.31118e12 −1.52617 −0.763087 0.646296i \(-0.776317\pi\)
−0.763087 + 0.646296i \(0.776317\pi\)
\(510\) 0 0
\(511\) −3.17079e12 −2.05719
\(512\) −1.00022e12 −0.643248
\(513\) −7.74852e11 −0.493959
\(514\) 1.52541e11 0.0963947
\(515\) 0 0
\(516\) −1.35231e12 −0.839756
\(517\) −2.12951e12 −1.31091
\(518\) 5.06954e11 0.309374
\(519\) −7.69937e11 −0.465803
\(520\) 0 0
\(521\) 2.20997e12 1.31406 0.657031 0.753864i \(-0.271812\pi\)
0.657031 + 0.753864i \(0.271812\pi\)
\(522\) −5.37283e9 −0.00316727
\(523\) −2.43867e12 −1.42527 −0.712633 0.701537i \(-0.752497\pi\)
−0.712633 + 0.701537i \(0.752497\pi\)
\(524\) 1.89974e12 1.10079
\(525\) 0 0
\(526\) −1.38822e10 −0.00790718
\(527\) −1.88238e11 −0.106307
\(528\) 1.48700e12 0.832641
\(529\) −5.26040e11 −0.292057
\(530\) 0 0
\(531\) 1.19978e10 0.00654900
\(532\) 1.29236e12 0.699490
\(533\) 1.47140e11 0.0789694
\(534\) 3.56598e11 0.189777
\(535\) 0 0
\(536\) 2.07140e11 0.108398
\(537\) 1.69138e12 0.877720
\(538\) −4.46968e11 −0.230015
\(539\) 2.11673e12 1.08023
\(540\) 0 0
\(541\) −1.84418e12 −0.925585 −0.462792 0.886467i \(-0.653152\pi\)
−0.462792 + 0.886467i \(0.653152\pi\)
\(542\) 2.23582e11 0.111286
\(543\) −3.35667e12 −1.65695
\(544\) 6.82851e10 0.0334296
\(545\) 0 0
\(546\) −1.15476e11 −0.0556063
\(547\) 2.62022e12 1.25140 0.625698 0.780065i \(-0.284814\pi\)
0.625698 + 0.780065i \(0.284814\pi\)
\(548\) 7.30611e11 0.346078
\(549\) 3.77754e10 0.0177473
\(550\) 0 0
\(551\) −4.48245e11 −0.207173
\(552\) 4.92536e11 0.225794
\(553\) 1.91815e12 0.872206
\(554\) 3.85264e11 0.173766
\(555\) 0 0
\(556\) −7.55025e11 −0.335062
\(557\) −2.45908e12 −1.08249 −0.541245 0.840865i \(-0.682047\pi\)
−0.541245 + 0.840865i \(0.682047\pi\)
\(558\) 2.18405e10 0.00953692
\(559\) −5.63437e11 −0.244058
\(560\) 0 0
\(561\) −1.70310e11 −0.0725950
\(562\) 3.12494e11 0.132138
\(563\) 1.30659e12 0.548091 0.274046 0.961717i \(-0.411638\pi\)
0.274046 + 0.961717i \(0.411638\pi\)
\(564\) 3.31058e12 1.37768
\(565\) 0 0
\(566\) 5.97534e11 0.244731
\(567\) 3.43875e12 1.39726
\(568\) −4.69845e11 −0.189403
\(569\) −2.68810e12 −1.07508 −0.537539 0.843239i \(-0.680646\pi\)
−0.537539 + 0.843239i \(0.680646\pi\)
\(570\) 0 0
\(571\) 2.99602e12 1.17946 0.589729 0.807601i \(-0.299235\pi\)
0.589729 + 0.807601i \(0.299235\pi\)
\(572\) 6.32299e11 0.246968
\(573\) −1.45549e12 −0.564044
\(574\) −1.52560e11 −0.0586592
\(575\) 0 0
\(576\) 1.23837e11 0.0468760
\(577\) −6.04343e11 −0.226982 −0.113491 0.993539i \(-0.536203\pi\)
−0.113491 + 0.993539i \(0.536203\pi\)
\(578\) 3.71071e11 0.138287
\(579\) 2.86227e12 1.05842
\(580\) 0 0
\(581\) 7.15991e12 2.60684
\(582\) 4.32905e11 0.156401
\(583\) 1.35250e12 0.484876
\(584\) 1.07763e12 0.383366
\(585\) 0 0
\(586\) 6.16747e11 0.216057
\(587\) 7.41276e11 0.257697 0.128848 0.991664i \(-0.458872\pi\)
0.128848 + 0.991664i \(0.458872\pi\)
\(588\) −3.29071e12 −1.13525
\(589\) 1.82211e12 0.623816
\(590\) 0 0
\(591\) −1.73466e12 −0.584886
\(592\) 4.22845e12 1.41492
\(593\) 5.55536e12 1.84487 0.922435 0.386152i \(-0.126196\pi\)
0.922435 + 0.386152i \(0.126196\pi\)
\(594\) 3.93067e11 0.129547
\(595\) 0 0
\(596\) 2.15201e12 0.698614
\(597\) 3.52015e11 0.113417
\(598\) 1.01603e11 0.0324900
\(599\) −3.35363e12 −1.06437 −0.532187 0.846627i \(-0.678630\pi\)
−0.532187 + 0.846627i \(0.678630\pi\)
\(600\) 0 0
\(601\) 1.88646e12 0.589809 0.294905 0.955527i \(-0.404712\pi\)
0.294905 + 0.955527i \(0.404712\pi\)
\(602\) 5.84189e11 0.181288
\(603\) −6.75548e10 −0.0208079
\(604\) −2.40955e11 −0.0736664
\(605\) 0 0
\(606\) −6.84129e11 −0.206068
\(607\) −1.01740e12 −0.304188 −0.152094 0.988366i \(-0.548602\pi\)
−0.152094 + 0.988366i \(0.548602\pi\)
\(608\) −6.60987e11 −0.196168
\(609\) 2.10080e12 0.618881
\(610\) 0 0
\(611\) 1.37935e12 0.400394
\(612\) −1.47983e10 −0.00426414
\(613\) 5.21446e11 0.149155 0.0745774 0.997215i \(-0.476239\pi\)
0.0745774 + 0.997215i \(0.476239\pi\)
\(614\) −2.26038e11 −0.0641836
\(615\) 0 0
\(616\) −1.32413e12 −0.370526
\(617\) −1.14541e12 −0.318183 −0.159092 0.987264i \(-0.550857\pi\)
−0.159092 + 0.987264i \(0.550857\pi\)
\(618\) 4.89862e11 0.135091
\(619\) −1.10612e12 −0.302827 −0.151414 0.988470i \(-0.548383\pi\)
−0.151414 + 0.988470i \(0.548383\pi\)
\(620\) 0 0
\(621\) −3.19523e12 −0.862165
\(622\) −6.64793e10 −0.0178086
\(623\) 7.79308e12 2.07259
\(624\) −9.63171e11 −0.254315
\(625\) 0 0
\(626\) −4.55751e11 −0.118616
\(627\) 1.64857e12 0.425994
\(628\) −4.14023e12 −1.06220
\(629\) −4.84295e11 −0.123362
\(630\) 0 0
\(631\) 3.20443e12 0.804671 0.402336 0.915492i \(-0.368198\pi\)
0.402336 + 0.915492i \(0.368198\pi\)
\(632\) −6.51908e11 −0.162540
\(633\) 2.65284e12 0.656742
\(634\) 1.82313e11 0.0448143
\(635\) 0 0
\(636\) −2.10263e12 −0.509573
\(637\) −1.37106e12 −0.329937
\(638\) 2.27386e11 0.0543338
\(639\) 1.53231e11 0.0363574
\(640\) 0 0
\(641\) −4.90467e12 −1.14749 −0.573745 0.819034i \(-0.694510\pi\)
−0.573745 + 0.819034i \(0.694510\pi\)
\(642\) −3.10305e11 −0.0720910
\(643\) −1.53529e12 −0.354194 −0.177097 0.984193i \(-0.556671\pi\)
−0.177097 + 0.984193i \(0.556671\pi\)
\(644\) 5.32926e12 1.22090
\(645\) 0 0
\(646\) 2.44046e10 0.00551347
\(647\) 6.61326e11 0.148370 0.0741850 0.997244i \(-0.476364\pi\)
0.0741850 + 0.997244i \(0.476364\pi\)
\(648\) −1.16870e12 −0.260385
\(649\) −5.07763e11 −0.112347
\(650\) 0 0
\(651\) −8.53973e12 −1.86350
\(652\) −2.98000e12 −0.645807
\(653\) −4.61469e12 −0.993192 −0.496596 0.867982i \(-0.665417\pi\)
−0.496596 + 0.867982i \(0.665417\pi\)
\(654\) 2.95264e11 0.0631118
\(655\) 0 0
\(656\) −1.27248e12 −0.268278
\(657\) −3.51450e11 −0.0735902
\(658\) −1.43015e12 −0.297416
\(659\) −9.04687e12 −1.86859 −0.934294 0.356502i \(-0.883969\pi\)
−0.934294 + 0.356502i \(0.883969\pi\)
\(660\) 0 0
\(661\) 3.59295e12 0.732057 0.366028 0.930604i \(-0.380717\pi\)
0.366028 + 0.930604i \(0.380717\pi\)
\(662\) 3.15926e11 0.0639328
\(663\) 1.10315e11 0.0221729
\(664\) −2.43339e12 −0.485797
\(665\) 0 0
\(666\) 5.61907e10 0.0110670
\(667\) −1.84841e12 −0.361604
\(668\) −3.72124e12 −0.723093
\(669\) −1.30536e12 −0.251948
\(670\) 0 0
\(671\) −1.59871e12 −0.304451
\(672\) 3.09786e12 0.586004
\(673\) −2.13714e12 −0.401573 −0.200786 0.979635i \(-0.564350\pi\)
−0.200786 + 0.979635i \(0.564350\pi\)
\(674\) −1.80608e11 −0.0337107
\(675\) 0 0
\(676\) −4.09558e11 −0.0754320
\(677\) 2.55166e12 0.466847 0.233423 0.972375i \(-0.425007\pi\)
0.233423 + 0.972375i \(0.425007\pi\)
\(678\) −3.58635e11 −0.0651808
\(679\) 9.46070e12 1.70809
\(680\) 0 0
\(681\) 2.75840e12 0.491467
\(682\) −9.24320e11 −0.163604
\(683\) −7.63188e12 −1.34196 −0.670978 0.741477i \(-0.734126\pi\)
−0.670978 + 0.741477i \(0.734126\pi\)
\(684\) 1.43245e11 0.0250223
\(685\) 0 0
\(686\) 2.26574e11 0.0390617
\(687\) −3.35619e12 −0.574832
\(688\) 4.87266e12 0.829121
\(689\) −8.76056e11 −0.148097
\(690\) 0 0
\(691\) −2.36970e12 −0.395405 −0.197703 0.980262i \(-0.563348\pi\)
−0.197703 + 0.980262i \(0.563348\pi\)
\(692\) 2.83132e12 0.469365
\(693\) 4.31842e11 0.0711255
\(694\) −7.37405e10 −0.0120667
\(695\) 0 0
\(696\) −7.13984e11 −0.115331
\(697\) 1.45741e11 0.0233902
\(698\) −1.23747e12 −0.197326
\(699\) −1.08306e13 −1.71595
\(700\) 0 0
\(701\) −1.72803e12 −0.270284 −0.135142 0.990826i \(-0.543149\pi\)
−0.135142 + 0.990826i \(0.543149\pi\)
\(702\) −2.54600e11 −0.0395678
\(703\) 4.68789e12 0.723900
\(704\) −5.24097e12 −0.804146
\(705\) 0 0
\(706\) 6.81804e11 0.103285
\(707\) −1.49509e13 −2.25051
\(708\) 7.89378e11 0.118069
\(709\) −3.26440e12 −0.485172 −0.242586 0.970130i \(-0.577996\pi\)
−0.242586 + 0.970130i \(0.577996\pi\)
\(710\) 0 0
\(711\) 2.12608e11 0.0312008
\(712\) −2.64858e12 −0.386236
\(713\) 7.51378e12 1.08882
\(714\) −1.14378e11 −0.0164702
\(715\) 0 0
\(716\) −6.21976e12 −0.884433
\(717\) −3.58418e12 −0.506469
\(718\) −1.10128e12 −0.154646
\(719\) −6.17850e11 −0.0862191 −0.0431095 0.999070i \(-0.513726\pi\)
−0.0431095 + 0.999070i \(0.513726\pi\)
\(720\) 0 0
\(721\) 1.07054e13 1.47535
\(722\) 7.80344e11 0.106873
\(723\) −1.37579e13 −1.87253
\(724\) 1.23436e13 1.66962
\(725\) 0 0
\(726\) 1.77924e11 0.0237695
\(727\) −5.84000e12 −0.775368 −0.387684 0.921792i \(-0.626725\pi\)
−0.387684 + 0.921792i \(0.626725\pi\)
\(728\) 8.57680e11 0.113171
\(729\) 7.98538e12 1.04718
\(730\) 0 0
\(731\) −5.58079e11 −0.0722882
\(732\) 2.48538e12 0.319958
\(733\) 7.18908e10 0.00919826 0.00459913 0.999989i \(-0.498536\pi\)
0.00459913 + 0.999989i \(0.498536\pi\)
\(734\) −5.77258e9 −0.000734070 0
\(735\) 0 0
\(736\) −2.72569e12 −0.342394
\(737\) 2.85902e12 0.356954
\(738\) −1.69097e10 −0.00209837
\(739\) −1.01033e13 −1.24613 −0.623067 0.782168i \(-0.714114\pi\)
−0.623067 + 0.782168i \(0.714114\pi\)
\(740\) 0 0
\(741\) −1.06783e12 −0.130112
\(742\) 9.08322e11 0.110007
\(743\) 6.09193e12 0.733340 0.366670 0.930351i \(-0.380498\pi\)
0.366670 + 0.930351i \(0.380498\pi\)
\(744\) 2.90234e12 0.347272
\(745\) 0 0
\(746\) 1.73908e11 0.0205587
\(747\) 7.93604e11 0.0932527
\(748\) 6.26286e11 0.0731502
\(749\) −6.78139e12 −0.787319
\(750\) 0 0
\(751\) −1.43572e13 −1.64698 −0.823491 0.567330i \(-0.807976\pi\)
−0.823491 + 0.567330i \(0.807976\pi\)
\(752\) −1.19287e13 −1.36023
\(753\) −1.19163e13 −1.35071
\(754\) −1.47284e11 −0.0165953
\(755\) 0 0
\(756\) −1.33543e13 −1.48687
\(757\) −1.33786e13 −1.48074 −0.740370 0.672200i \(-0.765349\pi\)
−0.740370 + 0.672200i \(0.765349\pi\)
\(758\) −7.09640e11 −0.0780776
\(759\) 6.79815e12 0.743537
\(760\) 0 0
\(761\) 1.00649e13 1.08788 0.543938 0.839126i \(-0.316933\pi\)
0.543938 + 0.839126i \(0.316933\pi\)
\(762\) −1.72611e11 −0.0185469
\(763\) 6.45269e12 0.689255
\(764\) 5.35231e12 0.568357
\(765\) 0 0
\(766\) 1.46201e12 0.153433
\(767\) 3.28892e11 0.0343142
\(768\) 7.61614e12 0.789968
\(769\) 4.34623e12 0.448172 0.224086 0.974569i \(-0.428060\pi\)
0.224086 + 0.974569i \(0.428060\pi\)
\(770\) 0 0
\(771\) −6.61097e12 −0.673784
\(772\) −1.05255e13 −1.06651
\(773\) −2.50017e12 −0.251862 −0.125931 0.992039i \(-0.540192\pi\)
−0.125931 + 0.992039i \(0.540192\pi\)
\(774\) 6.47515e10 0.00648509
\(775\) 0 0
\(776\) −3.21534e12 −0.318310
\(777\) −2.19708e13 −2.16248
\(778\) 8.28731e11 0.0810971
\(779\) −1.41075e12 −0.137256
\(780\) 0 0
\(781\) −6.48495e12 −0.623702
\(782\) 1.00636e11 0.00962332
\(783\) 4.63183e12 0.440377
\(784\) 1.18571e13 1.12087
\(785\) 0 0
\(786\) 1.62749e12 0.152096
\(787\) 1.47010e13 1.36603 0.683013 0.730406i \(-0.260669\pi\)
0.683013 + 0.730406i \(0.260669\pi\)
\(788\) 6.37893e12 0.589359
\(789\) 6.01639e11 0.0552700
\(790\) 0 0
\(791\) −7.83761e12 −0.711851
\(792\) −1.46767e11 −0.0132546
\(793\) 1.03553e12 0.0929892
\(794\) −5.68266e10 −0.00507410
\(795\) 0 0
\(796\) −1.29448e12 −0.114284
\(797\) −8.96898e12 −0.787373 −0.393687 0.919245i \(-0.628801\pi\)
−0.393687 + 0.919245i \(0.628801\pi\)
\(798\) 1.10715e12 0.0966485
\(799\) 1.36623e12 0.118594
\(800\) 0 0
\(801\) 8.63785e11 0.0741411
\(802\) −2.26444e11 −0.0193275
\(803\) 1.48739e13 1.26242
\(804\) −4.44468e12 −0.375136
\(805\) 0 0
\(806\) 5.98708e11 0.0499698
\(807\) 1.93711e13 1.60777
\(808\) 5.08127e12 0.419393
\(809\) 1.74450e13 1.43187 0.715934 0.698168i \(-0.246001\pi\)
0.715934 + 0.698168i \(0.246001\pi\)
\(810\) 0 0
\(811\) −8.34611e12 −0.677470 −0.338735 0.940882i \(-0.609999\pi\)
−0.338735 + 0.940882i \(0.609999\pi\)
\(812\) −7.72534e12 −0.623614
\(813\) −9.68980e12 −0.777871
\(814\) −2.37807e12 −0.189852
\(815\) 0 0
\(816\) −9.54010e11 −0.0753264
\(817\) 5.40210e12 0.424193
\(818\) −1.67555e12 −0.130848
\(819\) −2.79716e11 −0.0217240
\(820\) 0 0
\(821\) 1.88288e13 1.44637 0.723183 0.690657i \(-0.242678\pi\)
0.723183 + 0.690657i \(0.242678\pi\)
\(822\) 6.25909e11 0.0478176
\(823\) −4.02178e12 −0.305576 −0.152788 0.988259i \(-0.548825\pi\)
−0.152788 + 0.988259i \(0.548825\pi\)
\(824\) −3.63838e12 −0.274938
\(825\) 0 0
\(826\) −3.41006e11 −0.0254889
\(827\) −3.84013e12 −0.285477 −0.142738 0.989760i \(-0.545591\pi\)
−0.142738 + 0.989760i \(0.545591\pi\)
\(828\) 5.90695e11 0.0436744
\(829\) 1.81041e13 1.33132 0.665660 0.746255i \(-0.268150\pi\)
0.665660 + 0.746255i \(0.268150\pi\)
\(830\) 0 0
\(831\) −1.66969e13 −1.21460
\(832\) 3.39473e12 0.245612
\(833\) −1.35803e12 −0.0977249
\(834\) −6.46824e11 −0.0462955
\(835\) 0 0
\(836\) −6.06234e12 −0.429252
\(837\) −1.88284e13 −1.32601
\(838\) −4.59766e11 −0.0322062
\(839\) 1.83543e13 1.27882 0.639410 0.768866i \(-0.279179\pi\)
0.639410 + 0.768866i \(0.279179\pi\)
\(840\) 0 0
\(841\) −1.18277e13 −0.815300
\(842\) −1.15380e12 −0.0791092
\(843\) −1.35431e13 −0.923625
\(844\) −9.75538e12 −0.661764
\(845\) 0 0
\(846\) −1.58518e11 −0.0106393
\(847\) 3.88835e12 0.259591
\(848\) 7.57621e12 0.503119
\(849\) −2.58965e13 −1.71063
\(850\) 0 0
\(851\) 1.93313e13 1.26351
\(852\) 1.00816e13 0.655470
\(853\) 1.20116e13 0.776835 0.388418 0.921483i \(-0.373022\pi\)
0.388418 + 0.921483i \(0.373022\pi\)
\(854\) −1.07367e12 −0.0690732
\(855\) 0 0
\(856\) 2.30475e12 0.146721
\(857\) 6.17723e12 0.391183 0.195592 0.980685i \(-0.437337\pi\)
0.195592 + 0.980685i \(0.437337\pi\)
\(858\) 5.41686e11 0.0341236
\(859\) 2.76160e13 1.73058 0.865291 0.501269i \(-0.167133\pi\)
0.865291 + 0.501269i \(0.167133\pi\)
\(860\) 0 0
\(861\) 6.61177e12 0.410019
\(862\) −2.41439e12 −0.148944
\(863\) −9.27582e12 −0.569251 −0.284626 0.958639i \(-0.591869\pi\)
−0.284626 + 0.958639i \(0.591869\pi\)
\(864\) 6.83016e12 0.416983
\(865\) 0 0
\(866\) −3.91197e12 −0.236355
\(867\) −1.60818e13 −0.966606
\(868\) 3.14034e13 1.87775
\(869\) −8.99785e12 −0.535242
\(870\) 0 0
\(871\) −1.85187e12 −0.109025
\(872\) −2.19303e12 −0.128446
\(873\) 1.04862e12 0.0611021
\(874\) −9.74143e11 −0.0564704
\(875\) 0 0
\(876\) −2.31232e13 −1.32672
\(877\) 2.19078e13 1.25055 0.625274 0.780405i \(-0.284987\pi\)
0.625274 + 0.780405i \(0.284987\pi\)
\(878\) 4.67602e12 0.265553
\(879\) −2.67292e13 −1.51020
\(880\) 0 0
\(881\) 2.92416e12 0.163534 0.0817672 0.996651i \(-0.473944\pi\)
0.0817672 + 0.996651i \(0.473944\pi\)
\(882\) 1.57566e11 0.00876706
\(883\) −3.35851e13 −1.85919 −0.929594 0.368585i \(-0.879842\pi\)
−0.929594 + 0.368585i \(0.879842\pi\)
\(884\) −4.05663e11 −0.0223424
\(885\) 0 0
\(886\) 3.25566e12 0.177495
\(887\) 3.31699e13 1.79924 0.899619 0.436676i \(-0.143844\pi\)
0.899619 + 0.436676i \(0.143844\pi\)
\(888\) 7.46708e12 0.402988
\(889\) −3.77225e12 −0.202555
\(890\) 0 0
\(891\) −1.61308e13 −0.857447
\(892\) 4.80023e12 0.253875
\(893\) −1.32248e13 −0.695920
\(894\) 1.84361e12 0.0965275
\(895\) 0 0
\(896\) −1.51368e13 −0.784601
\(897\) −4.40335e12 −0.227100
\(898\) 1.83688e12 0.0942619
\(899\) −1.08920e13 −0.556148
\(900\) 0 0
\(901\) −8.67724e11 −0.0438652
\(902\) 7.15642e11 0.0359970
\(903\) −2.53181e13 −1.26718
\(904\) 2.66371e12 0.132657
\(905\) 0 0
\(906\) −2.06424e11 −0.0101785
\(907\) −2.27086e13 −1.11418 −0.557092 0.830451i \(-0.688083\pi\)
−0.557092 + 0.830451i \(0.688083\pi\)
\(908\) −1.01435e13 −0.495226
\(909\) −1.65716e12 −0.0805059
\(910\) 0 0
\(911\) 4.92090e12 0.236707 0.118354 0.992972i \(-0.462238\pi\)
0.118354 + 0.992972i \(0.462238\pi\)
\(912\) 9.23465e12 0.442022
\(913\) −3.35865e13 −1.59973
\(914\) 2.33025e12 0.110444
\(915\) 0 0
\(916\) 1.23418e13 0.579229
\(917\) 3.55671e13 1.66107
\(918\) −2.52179e11 −0.0117197
\(919\) −9.41621e12 −0.435468 −0.217734 0.976008i \(-0.569867\pi\)
−0.217734 + 0.976008i \(0.569867\pi\)
\(920\) 0 0
\(921\) 9.79626e12 0.448634
\(922\) −4.59455e12 −0.209389
\(923\) 4.20049e12 0.190499
\(924\) 2.84125e13 1.28229
\(925\) 0 0
\(926\) −5.14116e12 −0.229780
\(927\) 1.18659e12 0.0527766
\(928\) 3.95118e12 0.174889
\(929\) −3.87518e13 −1.70695 −0.853476 0.521131i \(-0.825510\pi\)
−0.853476 + 0.521131i \(0.825510\pi\)
\(930\) 0 0
\(931\) 1.31454e13 0.573458
\(932\) 3.98276e13 1.72907
\(933\) 2.88114e12 0.124479
\(934\) −2.59727e12 −0.111675
\(935\) 0 0
\(936\) 9.50652e10 0.00404837
\(937\) −1.41425e13 −0.599373 −0.299687 0.954038i \(-0.596882\pi\)
−0.299687 + 0.954038i \(0.596882\pi\)
\(938\) 1.92007e12 0.0809850
\(939\) 1.97518e13 0.829108
\(940\) 0 0
\(941\) −2.29704e13 −0.955027 −0.477514 0.878624i \(-0.658462\pi\)
−0.477514 + 0.878624i \(0.658462\pi\)
\(942\) −3.54690e12 −0.146764
\(943\) −5.81744e12 −0.239568
\(944\) −2.84429e12 −0.116574
\(945\) 0 0
\(946\) −2.74038e12 −0.111250
\(947\) 1.50510e12 0.0608120 0.0304060 0.999538i \(-0.490320\pi\)
0.0304060 + 0.999538i \(0.490320\pi\)
\(948\) 1.39882e13 0.562504
\(949\) −9.63423e12 −0.385584
\(950\) 0 0
\(951\) −7.90126e12 −0.313245
\(952\) 8.49523e11 0.0335204
\(953\) −2.42253e13 −0.951373 −0.475686 0.879615i \(-0.657800\pi\)
−0.475686 + 0.879615i \(0.657800\pi\)
\(954\) 1.00678e11 0.00393522
\(955\) 0 0
\(956\) 1.31802e13 0.510343
\(957\) −9.85465e12 −0.379785
\(958\) 5.67291e11 0.0217601
\(959\) 1.36786e13 0.522225
\(960\) 0 0
\(961\) 1.78364e13 0.674608
\(962\) 1.54034e12 0.0579869
\(963\) −7.51650e11 −0.0281642
\(964\) 5.05923e13 1.88685
\(965\) 0 0
\(966\) 4.56554e12 0.168692
\(967\) −2.41172e13 −0.886967 −0.443484 0.896282i \(-0.646258\pi\)
−0.443484 + 0.896282i \(0.646258\pi\)
\(968\) −1.32151e12 −0.0483760
\(969\) −1.05767e12 −0.0385383
\(970\) 0 0
\(971\) 3.13584e13 1.13206 0.566028 0.824386i \(-0.308479\pi\)
0.566028 + 0.824386i \(0.308479\pi\)
\(972\) −2.88597e12 −0.103703
\(973\) −1.41357e13 −0.505602
\(974\) −2.27469e12 −0.0809854
\(975\) 0 0
\(976\) −8.95534e12 −0.315906
\(977\) −4.44366e13 −1.56033 −0.780163 0.625576i \(-0.784864\pi\)
−0.780163 + 0.625576i \(0.784864\pi\)
\(978\) −2.55294e12 −0.0892312
\(979\) −3.65566e13 −1.27187
\(980\) 0 0
\(981\) 7.15216e11 0.0246562
\(982\) −6.24755e12 −0.214392
\(983\) −1.53216e13 −0.523376 −0.261688 0.965153i \(-0.584279\pi\)
−0.261688 + 0.965153i \(0.584279\pi\)
\(984\) −2.24710e12 −0.0764089
\(985\) 0 0
\(986\) −1.45883e11 −0.00491541
\(987\) 6.19812e13 2.07889
\(988\) 3.92675e12 0.131107
\(989\) 2.22765e13 0.740394
\(990\) 0 0
\(991\) 2.32887e13 0.767034 0.383517 0.923534i \(-0.374713\pi\)
0.383517 + 0.923534i \(0.374713\pi\)
\(992\) −1.60615e13 −0.526604
\(993\) −1.36919e13 −0.446881
\(994\) −4.35520e12 −0.141504
\(995\) 0 0
\(996\) 5.22142e13 1.68121
\(997\) 1.12247e13 0.359788 0.179894 0.983686i \(-0.442425\pi\)
0.179894 + 0.983686i \(0.442425\pi\)
\(998\) 2.60636e12 0.0831663
\(999\) −4.84412e13 −1.53876
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.b.1.3 5
5.4 even 2 13.10.a.b.1.3 5
15.14 odd 2 117.10.a.e.1.3 5
20.19 odd 2 208.10.a.h.1.4 5
65.64 even 2 169.10.a.b.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.3 5 5.4 even 2
117.10.a.e.1.3 5 15.14 odd 2
169.10.a.b.1.3 5 65.64 even 2
208.10.a.h.1.4 5 20.19 odd 2
325.10.a.b.1.3 5 1.1 even 1 trivial