Properties

Label 325.10.a.b.1.2
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(16.7176\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-19.7176 q^{2} -250.479 q^{3} -123.217 q^{4} +4938.84 q^{6} +8329.39 q^{7} +12524.9 q^{8} +43056.6 q^{9} +O(q^{10})\) \(q-19.7176 q^{2} -250.479 q^{3} -123.217 q^{4} +4938.84 q^{6} +8329.39 q^{7} +12524.9 q^{8} +43056.6 q^{9} +30751.5 q^{11} +30863.2 q^{12} -28561.0 q^{13} -164236. q^{14} -183875. q^{16} +637455. q^{17} -848973. q^{18} +105834. q^{19} -2.08634e6 q^{21} -606345. q^{22} +511169. q^{23} -3.13723e6 q^{24} +563154. q^{26} -5.85460e6 q^{27} -1.02632e6 q^{28} +781868. q^{29} -2.83285e6 q^{31} -2.78721e6 q^{32} -7.70259e6 q^{33} -1.25691e7 q^{34} -5.30530e6 q^{36} -1.22183e7 q^{37} -2.08680e6 q^{38} +7.15392e6 q^{39} -6.83367e6 q^{41} +4.11375e7 q^{42} -3.84656e7 q^{43} -3.78910e6 q^{44} -1.00790e7 q^{46} +1.30402e7 q^{47} +4.60567e7 q^{48} +2.90252e7 q^{49} -1.59669e8 q^{51} +3.51920e6 q^{52} +2.42871e7 q^{53} +1.15439e8 q^{54} +1.04325e8 q^{56} -2.65092e7 q^{57} -1.54166e7 q^{58} +1.63738e8 q^{59} +1.90751e7 q^{61} +5.58569e7 q^{62} +3.58636e8 q^{63} +1.49101e8 q^{64} +1.51876e8 q^{66} +7.22869e7 q^{67} -7.85452e7 q^{68} -1.28037e8 q^{69} +2.65461e7 q^{71} +5.39282e8 q^{72} -2.42850e8 q^{73} +2.40916e8 q^{74} -1.30406e7 q^{76} +2.56141e8 q^{77} -1.41058e8 q^{78} -4.64290e8 q^{79} +6.18969e8 q^{81} +1.34744e8 q^{82} -5.46643e8 q^{83} +2.57072e8 q^{84} +7.58449e8 q^{86} -1.95841e8 q^{87} +3.85160e8 q^{88} +3.65672e8 q^{89} -2.37896e8 q^{91} -6.29847e7 q^{92} +7.09568e8 q^{93} -2.57121e8 q^{94} +6.98137e8 q^{96} -9.98914e7 q^{97} -5.72307e8 q^{98} +1.32405e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{2} - 161 q^{3} + 361 q^{4} + 5693 q^{6} - 10099 q^{7} - 23151 q^{8} + 61060 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 15 q^{2} - 161 q^{3} + 361 q^{4} + 5693 q^{6} - 10099 q^{7} - 23151 q^{8} + 61060 q^{9} + 121746 q^{11} - 113389 q^{12} - 142805 q^{13} + 8475 q^{14} - 322463 q^{16} + 495669 q^{17} + 656228 q^{18} - 840738 q^{19} - 1599467 q^{21} + 2023594 q^{22} + 592152 q^{23} - 2295657 q^{24} + 428415 q^{26} - 6847883 q^{27} - 2587955 q^{28} + 10678182 q^{29} + 12885296 q^{31} - 3282927 q^{32} - 17278298 q^{33} - 9934079 q^{34} - 20483302 q^{36} - 7171823 q^{37} + 25568814 q^{38} + 4598321 q^{39} + 9294012 q^{41} + 69520457 q^{42} - 12831975 q^{43} - 41479074 q^{44} - 59319696 q^{46} - 43354215 q^{47} + 86874671 q^{48} + 25249488 q^{49} + 16905901 q^{51} - 10310521 q^{52} - 93231780 q^{53} + 58983719 q^{54} + 199599225 q^{56} - 90173382 q^{57} - 151020970 q^{58} + 246496182 q^{59} - 132232612 q^{61} - 158135724 q^{62} + 416955202 q^{63} + 91019105 q^{64} - 323733130 q^{66} + 369388534 q^{67} - 238172073 q^{68} - 579986760 q^{69} + 212150457 q^{71} + 415774278 q^{72} + 252729806 q^{73} + 192105957 q^{74} - 953775990 q^{76} - 449666118 q^{77} - 162597773 q^{78} - 1247271728 q^{79} - 317713115 q^{81} - 169559388 q^{82} - 1696894296 q^{83} + 1247983739 q^{84} + 3291621459 q^{86} + 614530466 q^{87} + 220227222 q^{88} - 753854382 q^{89} + 288437539 q^{91} - 13876128 q^{92} + 892784668 q^{93} + 272071215 q^{94} + 930612847 q^{96} - 3824606 q^{97} - 1570614816 q^{98} + 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −19.7176 −0.871402 −0.435701 0.900091i \(-0.643500\pi\)
−0.435701 + 0.900091i \(0.643500\pi\)
\(3\) −250.479 −1.78536 −0.892679 0.450693i \(-0.851177\pi\)
−0.892679 + 0.450693i \(0.851177\pi\)
\(4\) −123.217 −0.240658
\(5\) 0 0
\(6\) 4938.84 1.55577
\(7\) 8329.39 1.31121 0.655605 0.755104i \(-0.272414\pi\)
0.655605 + 0.755104i \(0.272414\pi\)
\(8\) 12524.9 1.08111
\(9\) 43056.6 2.18750
\(10\) 0 0
\(11\) 30751.5 0.633284 0.316642 0.948545i \(-0.397445\pi\)
0.316642 + 0.948545i \(0.397445\pi\)
\(12\) 30863.2 0.429661
\(13\) −28561.0 −0.277350
\(14\) −164236. −1.14259
\(15\) 0 0
\(16\) −183875. −0.701426
\(17\) 637455. 1.85110 0.925549 0.378629i \(-0.123604\pi\)
0.925549 + 0.378629i \(0.123604\pi\)
\(18\) −848973. −1.90620
\(19\) 105834. 0.186310 0.0931548 0.995652i \(-0.470305\pi\)
0.0931548 + 0.995652i \(0.470305\pi\)
\(20\) 0 0
\(21\) −2.08634e6 −2.34098
\(22\) −606345. −0.551845
\(23\) 511169. 0.380881 0.190441 0.981699i \(-0.439008\pi\)
0.190441 + 0.981699i \(0.439008\pi\)
\(24\) −3.13723e6 −1.93017
\(25\) 0 0
\(26\) 563154. 0.241684
\(27\) −5.85460e6 −2.12012
\(28\) −1.02632e6 −0.315553
\(29\) 781868. 0.205278 0.102639 0.994719i \(-0.467271\pi\)
0.102639 + 0.994719i \(0.467271\pi\)
\(30\) 0 0
\(31\) −2.83285e6 −0.550929 −0.275464 0.961311i \(-0.588832\pi\)
−0.275464 + 0.961311i \(0.588832\pi\)
\(32\) −2.78721e6 −0.469888
\(33\) −7.70259e6 −1.13064
\(34\) −1.25691e7 −1.61305
\(35\) 0 0
\(36\) −5.30530e6 −0.526440
\(37\) −1.22183e7 −1.07178 −0.535889 0.844289i \(-0.680023\pi\)
−0.535889 + 0.844289i \(0.680023\pi\)
\(38\) −2.08680e6 −0.162351
\(39\) 7.15392e6 0.495169
\(40\) 0 0
\(41\) −6.83367e6 −0.377682 −0.188841 0.982008i \(-0.560473\pi\)
−0.188841 + 0.982008i \(0.560473\pi\)
\(42\) 4.11375e7 2.03993
\(43\) −3.84656e7 −1.71579 −0.857896 0.513823i \(-0.828229\pi\)
−0.857896 + 0.513823i \(0.828229\pi\)
\(44\) −3.78910e6 −0.152405
\(45\) 0 0
\(46\) −1.00790e7 −0.331901
\(47\) 1.30402e7 0.389802 0.194901 0.980823i \(-0.437561\pi\)
0.194901 + 0.980823i \(0.437561\pi\)
\(48\) 4.60567e7 1.25230
\(49\) 2.90252e7 0.719272
\(50\) 0 0
\(51\) −1.59669e8 −3.30487
\(52\) 3.51920e6 0.0667465
\(53\) 2.42871e7 0.422800 0.211400 0.977400i \(-0.432198\pi\)
0.211400 + 0.977400i \(0.432198\pi\)
\(54\) 1.15439e8 1.84748
\(55\) 0 0
\(56\) 1.04325e8 1.41757
\(57\) −2.65092e7 −0.332629
\(58\) −1.54166e7 −0.178880
\(59\) 1.63738e8 1.75920 0.879599 0.475716i \(-0.157811\pi\)
0.879599 + 0.475716i \(0.157811\pi\)
\(60\) 0 0
\(61\) 1.90751e7 0.176394 0.0881968 0.996103i \(-0.471890\pi\)
0.0881968 + 0.996103i \(0.471890\pi\)
\(62\) 5.58569e7 0.480081
\(63\) 3.58636e8 2.86828
\(64\) 1.49101e8 1.11089
\(65\) 0 0
\(66\) 1.51876e8 0.985242
\(67\) 7.22869e7 0.438251 0.219125 0.975697i \(-0.429680\pi\)
0.219125 + 0.975697i \(0.429680\pi\)
\(68\) −7.85452e7 −0.445481
\(69\) −1.28037e8 −0.680009
\(70\) 0 0
\(71\) 2.65461e7 0.123976 0.0619880 0.998077i \(-0.480256\pi\)
0.0619880 + 0.998077i \(0.480256\pi\)
\(72\) 5.39282e8 2.36494
\(73\) −2.42850e8 −1.00089 −0.500445 0.865769i \(-0.666830\pi\)
−0.500445 + 0.865769i \(0.666830\pi\)
\(74\) 2.40916e8 0.933950
\(75\) 0 0
\(76\) −1.30406e7 −0.0448369
\(77\) 2.56141e8 0.830369
\(78\) −1.41058e8 −0.431492
\(79\) −4.64290e8 −1.34112 −0.670560 0.741855i \(-0.733946\pi\)
−0.670560 + 0.741855i \(0.733946\pi\)
\(80\) 0 0
\(81\) 6.18969e8 1.59767
\(82\) 1.34744e8 0.329113
\(83\) −5.46643e8 −1.26431 −0.632153 0.774843i \(-0.717829\pi\)
−0.632153 + 0.774843i \(0.717829\pi\)
\(84\) 2.57072e8 0.563375
\(85\) 0 0
\(86\) 7.58449e8 1.49515
\(87\) −1.95841e8 −0.366495
\(88\) 3.85160e8 0.684651
\(89\) 3.65672e8 0.617783 0.308892 0.951097i \(-0.400042\pi\)
0.308892 + 0.951097i \(0.400042\pi\)
\(90\) 0 0
\(91\) −2.37896e8 −0.363664
\(92\) −6.29847e7 −0.0916621
\(93\) 7.09568e8 0.983605
\(94\) −2.57121e8 −0.339674
\(95\) 0 0
\(96\) 6.98137e8 0.838919
\(97\) −9.98914e7 −0.114566 −0.0572830 0.998358i \(-0.518244\pi\)
−0.0572830 + 0.998358i \(0.518244\pi\)
\(98\) −5.72307e8 −0.626775
\(99\) 1.32405e9 1.38531
\(100\) 0 0
\(101\) −6.76155e8 −0.646547 −0.323273 0.946306i \(-0.604783\pi\)
−0.323273 + 0.946306i \(0.604783\pi\)
\(102\) 3.14829e9 2.87987
\(103\) 1.73267e8 0.151687 0.0758434 0.997120i \(-0.475835\pi\)
0.0758434 + 0.997120i \(0.475835\pi\)
\(104\) −3.57725e8 −0.299847
\(105\) 0 0
\(106\) −4.78883e8 −0.368429
\(107\) −1.23684e9 −0.912191 −0.456095 0.889931i \(-0.650752\pi\)
−0.456095 + 0.889931i \(0.650752\pi\)
\(108\) 7.21385e8 0.510223
\(109\) −1.04481e9 −0.708956 −0.354478 0.935064i \(-0.615341\pi\)
−0.354478 + 0.935064i \(0.615341\pi\)
\(110\) 0 0
\(111\) 3.06044e9 1.91351
\(112\) −1.53156e9 −0.919716
\(113\) 1.17492e9 0.677884 0.338942 0.940807i \(-0.389931\pi\)
0.338942 + 0.940807i \(0.389931\pi\)
\(114\) 5.22698e8 0.289854
\(115\) 0 0
\(116\) −9.63394e7 −0.0494018
\(117\) −1.22974e9 −0.606704
\(118\) −3.22851e9 −1.53297
\(119\) 5.30961e9 2.42718
\(120\) 0 0
\(121\) −1.41230e9 −0.598951
\(122\) −3.76115e8 −0.153710
\(123\) 1.71169e9 0.674298
\(124\) 3.49055e8 0.132585
\(125\) 0 0
\(126\) −7.07143e9 −2.49942
\(127\) −6.34961e8 −0.216586 −0.108293 0.994119i \(-0.534538\pi\)
−0.108293 + 0.994119i \(0.534538\pi\)
\(128\) −1.51286e9 −0.498142
\(129\) 9.63482e9 3.06330
\(130\) 0 0
\(131\) −5.68611e9 −1.68692 −0.843459 0.537193i \(-0.819485\pi\)
−0.843459 + 0.537193i \(0.819485\pi\)
\(132\) 9.49089e8 0.272097
\(133\) 8.81536e8 0.244291
\(134\) −1.42532e9 −0.381893
\(135\) 0 0
\(136\) 7.98408e9 2.00124
\(137\) −4.47162e9 −1.08448 −0.542241 0.840223i \(-0.682424\pi\)
−0.542241 + 0.840223i \(0.682424\pi\)
\(138\) 2.52458e9 0.592562
\(139\) −8.63285e9 −1.96150 −0.980748 0.195275i \(-0.937440\pi\)
−0.980748 + 0.195275i \(0.937440\pi\)
\(140\) 0 0
\(141\) −3.26629e9 −0.695936
\(142\) −5.23424e8 −0.108033
\(143\) −8.78292e8 −0.175641
\(144\) −7.91702e9 −1.53437
\(145\) 0 0
\(146\) 4.78842e9 0.872177
\(147\) −7.27020e9 −1.28416
\(148\) 1.50551e9 0.257932
\(149\) −6.88630e9 −1.14458 −0.572292 0.820050i \(-0.693946\pi\)
−0.572292 + 0.820050i \(0.693946\pi\)
\(150\) 0 0
\(151\) 4.01063e9 0.627792 0.313896 0.949457i \(-0.398366\pi\)
0.313896 + 0.949457i \(0.398366\pi\)
\(152\) 1.32557e9 0.201422
\(153\) 2.74467e10 4.04928
\(154\) −5.05048e9 −0.723585
\(155\) 0 0
\(156\) −8.81484e8 −0.119166
\(157\) −9.39913e9 −1.23464 −0.617318 0.786714i \(-0.711781\pi\)
−0.617318 + 0.786714i \(0.711781\pi\)
\(158\) 9.15469e9 1.16866
\(159\) −6.08341e9 −0.754849
\(160\) 0 0
\(161\) 4.25773e9 0.499415
\(162\) −1.22046e10 −1.39221
\(163\) −3.72144e9 −0.412920 −0.206460 0.978455i \(-0.566194\pi\)
−0.206460 + 0.978455i \(0.566194\pi\)
\(164\) 8.42024e8 0.0908923
\(165\) 0 0
\(166\) 1.07785e10 1.10172
\(167\) 4.48607e9 0.446315 0.223158 0.974782i \(-0.428364\pi\)
0.223158 + 0.974782i \(0.428364\pi\)
\(168\) −2.61312e10 −2.53086
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 4.55687e9 0.407553
\(172\) 4.73962e9 0.412919
\(173\) 1.69286e10 1.43686 0.718428 0.695602i \(-0.244862\pi\)
0.718428 + 0.695602i \(0.244862\pi\)
\(174\) 3.86152e9 0.319364
\(175\) 0 0
\(176\) −5.65441e9 −0.444202
\(177\) −4.10128e10 −3.14080
\(178\) −7.21016e9 −0.538338
\(179\) 1.23127e10 0.896428 0.448214 0.893926i \(-0.352060\pi\)
0.448214 + 0.893926i \(0.352060\pi\)
\(180\) 0 0
\(181\) −2.43748e10 −1.68806 −0.844030 0.536295i \(-0.819823\pi\)
−0.844030 + 0.536295i \(0.819823\pi\)
\(182\) 4.69073e9 0.316898
\(183\) −4.77791e9 −0.314926
\(184\) 6.40237e9 0.411775
\(185\) 0 0
\(186\) −1.39910e10 −0.857116
\(187\) 1.96027e10 1.17227
\(188\) −1.60677e9 −0.0938089
\(189\) −4.87653e10 −2.77992
\(190\) 0 0
\(191\) −8.67702e9 −0.471759 −0.235880 0.971782i \(-0.575797\pi\)
−0.235880 + 0.971782i \(0.575797\pi\)
\(192\) −3.73466e10 −1.98333
\(193\) 2.33509e10 1.21142 0.605712 0.795684i \(-0.292888\pi\)
0.605712 + 0.795684i \(0.292888\pi\)
\(194\) 1.96962e9 0.0998330
\(195\) 0 0
\(196\) −3.57640e9 −0.173098
\(197\) 2.62332e9 0.124095 0.0620473 0.998073i \(-0.480237\pi\)
0.0620473 + 0.998073i \(0.480237\pi\)
\(198\) −2.61071e10 −1.20716
\(199\) 8.36775e9 0.378242 0.189121 0.981954i \(-0.439436\pi\)
0.189121 + 0.981954i \(0.439436\pi\)
\(200\) 0 0
\(201\) −1.81063e10 −0.782435
\(202\) 1.33321e10 0.563403
\(203\) 6.51249e9 0.269163
\(204\) 1.96739e10 0.795344
\(205\) 0 0
\(206\) −3.41640e9 −0.132180
\(207\) 2.20092e10 0.833179
\(208\) 5.25164e9 0.194541
\(209\) 3.25456e9 0.117987
\(210\) 0 0
\(211\) 3.66318e10 1.27229 0.636147 0.771568i \(-0.280527\pi\)
0.636147 + 0.771568i \(0.280527\pi\)
\(212\) −2.99258e9 −0.101750
\(213\) −6.64923e9 −0.221342
\(214\) 2.43874e10 0.794885
\(215\) 0 0
\(216\) −7.33285e10 −2.29209
\(217\) −2.35959e10 −0.722383
\(218\) 2.06012e10 0.617786
\(219\) 6.08289e10 1.78695
\(220\) 0 0
\(221\) −1.82063e10 −0.513402
\(222\) −6.03444e10 −1.66743
\(223\) −6.22383e10 −1.68533 −0.842667 0.538435i \(-0.819016\pi\)
−0.842667 + 0.538435i \(0.819016\pi\)
\(224\) −2.32158e10 −0.616122
\(225\) 0 0
\(226\) −2.31666e10 −0.590710
\(227\) −4.00531e10 −1.00120 −0.500599 0.865679i \(-0.666887\pi\)
−0.500599 + 0.865679i \(0.666887\pi\)
\(228\) 3.26639e9 0.0800499
\(229\) 4.61622e10 1.10924 0.554621 0.832103i \(-0.312863\pi\)
0.554621 + 0.832103i \(0.312863\pi\)
\(230\) 0 0
\(231\) −6.41579e10 −1.48251
\(232\) 9.79285e9 0.221929
\(233\) 2.82042e10 0.626920 0.313460 0.949601i \(-0.398512\pi\)
0.313460 + 0.949601i \(0.398512\pi\)
\(234\) 2.42475e10 0.528683
\(235\) 0 0
\(236\) −2.01753e10 −0.423365
\(237\) 1.16295e11 2.39438
\(238\) −1.04693e11 −2.11505
\(239\) 7.93923e9 0.157394 0.0786969 0.996899i \(-0.474924\pi\)
0.0786969 + 0.996899i \(0.474924\pi\)
\(240\) 0 0
\(241\) −4.33069e10 −0.826953 −0.413476 0.910515i \(-0.635686\pi\)
−0.413476 + 0.910515i \(0.635686\pi\)
\(242\) 2.78471e10 0.521927
\(243\) −3.98026e10 −0.732290
\(244\) −2.35037e9 −0.0424505
\(245\) 0 0
\(246\) −3.37504e10 −0.587585
\(247\) −3.02273e9 −0.0516730
\(248\) −3.54812e10 −0.595616
\(249\) 1.36922e11 2.25724
\(250\) 0 0
\(251\) 3.48447e10 0.554121 0.277061 0.960852i \(-0.410640\pi\)
0.277061 + 0.960852i \(0.410640\pi\)
\(252\) −4.41900e10 −0.690274
\(253\) 1.57192e10 0.241206
\(254\) 1.25199e10 0.188733
\(255\) 0 0
\(256\) −4.65097e10 −0.676806
\(257\) −6.17149e10 −0.882452 −0.441226 0.897396i \(-0.645456\pi\)
−0.441226 + 0.897396i \(0.645456\pi\)
\(258\) −1.89975e11 −2.66937
\(259\) −1.01771e11 −1.40533
\(260\) 0 0
\(261\) 3.36646e10 0.449046
\(262\) 1.12116e11 1.46999
\(263\) 1.78558e10 0.230132 0.115066 0.993358i \(-0.463292\pi\)
0.115066 + 0.993358i \(0.463292\pi\)
\(264\) −9.64745e10 −1.22235
\(265\) 0 0
\(266\) −1.73818e10 −0.212876
\(267\) −9.15930e10 −1.10296
\(268\) −8.90696e9 −0.105469
\(269\) −5.24399e10 −0.610628 −0.305314 0.952252i \(-0.598761\pi\)
−0.305314 + 0.952252i \(0.598761\pi\)
\(270\) 0 0
\(271\) −5.03988e10 −0.567621 −0.283811 0.958880i \(-0.591599\pi\)
−0.283811 + 0.958880i \(0.591599\pi\)
\(272\) −1.17212e11 −1.29841
\(273\) 5.95879e10 0.649271
\(274\) 8.81695e10 0.945020
\(275\) 0 0
\(276\) 1.57763e10 0.163650
\(277\) 1.58677e11 1.61941 0.809703 0.586840i \(-0.199628\pi\)
0.809703 + 0.586840i \(0.199628\pi\)
\(278\) 1.70219e11 1.70925
\(279\) −1.21973e11 −1.20516
\(280\) 0 0
\(281\) 3.04536e10 0.291381 0.145690 0.989330i \(-0.453460\pi\)
0.145690 + 0.989330i \(0.453460\pi\)
\(282\) 6.44034e10 0.606440
\(283\) −4.21589e10 −0.390706 −0.195353 0.980733i \(-0.562585\pi\)
−0.195353 + 0.980733i \(0.562585\pi\)
\(284\) −3.27092e9 −0.0298358
\(285\) 0 0
\(286\) 1.73178e10 0.153054
\(287\) −5.69204e10 −0.495221
\(288\) −1.20008e11 −1.02788
\(289\) 2.87761e11 2.42656
\(290\) 0 0
\(291\) 2.50207e10 0.204541
\(292\) 2.99233e10 0.240872
\(293\) −9.73493e10 −0.771665 −0.385832 0.922569i \(-0.626086\pi\)
−0.385832 + 0.922569i \(0.626086\pi\)
\(294\) 1.43351e11 1.11902
\(295\) 0 0
\(296\) −1.53034e11 −1.15871
\(297\) −1.80037e11 −1.34264
\(298\) 1.35781e11 0.997393
\(299\) −1.45995e10 −0.105637
\(300\) 0 0
\(301\) −3.20395e11 −2.24976
\(302\) −7.90799e10 −0.547060
\(303\) 1.69362e11 1.15432
\(304\) −1.94602e10 −0.130682
\(305\) 0 0
\(306\) −5.41182e11 −3.52855
\(307\) 1.62669e11 1.04516 0.522578 0.852591i \(-0.324970\pi\)
0.522578 + 0.852591i \(0.324970\pi\)
\(308\) −3.15609e10 −0.199835
\(309\) −4.33996e10 −0.270815
\(310\) 0 0
\(311\) 1.80301e11 1.09289 0.546445 0.837495i \(-0.315981\pi\)
0.546445 + 0.837495i \(0.315981\pi\)
\(312\) 8.96025e10 0.535334
\(313\) 6.08927e10 0.358605 0.179302 0.983794i \(-0.442616\pi\)
0.179302 + 0.983794i \(0.442616\pi\)
\(314\) 1.85328e11 1.07586
\(315\) 0 0
\(316\) 5.72084e10 0.322751
\(317\) −4.75152e10 −0.264281 −0.132140 0.991231i \(-0.542185\pi\)
−0.132140 + 0.991231i \(0.542185\pi\)
\(318\) 1.19950e11 0.657777
\(319\) 2.40436e10 0.129999
\(320\) 0 0
\(321\) 3.09802e11 1.62859
\(322\) −8.39522e10 −0.435192
\(323\) 6.74646e10 0.344877
\(324\) −7.62674e10 −0.384491
\(325\) 0 0
\(326\) 7.33777e10 0.359820
\(327\) 2.61704e11 1.26574
\(328\) −8.55914e10 −0.408317
\(329\) 1.08617e11 0.511112
\(330\) 0 0
\(331\) −8.96236e10 −0.410390 −0.205195 0.978721i \(-0.565783\pi\)
−0.205195 + 0.978721i \(0.565783\pi\)
\(332\) 6.73557e10 0.304265
\(333\) −5.26081e11 −2.34452
\(334\) −8.84544e10 −0.388920
\(335\) 0 0
\(336\) 3.83624e11 1.64202
\(337\) −2.05747e11 −0.868957 −0.434478 0.900682i \(-0.643067\pi\)
−0.434478 + 0.900682i \(0.643067\pi\)
\(338\) −1.60842e10 −0.0670309
\(339\) −2.94293e11 −1.21027
\(340\) 0 0
\(341\) −8.71142e10 −0.348894
\(342\) −8.98504e10 −0.355143
\(343\) −9.43587e10 −0.368094
\(344\) −4.81780e11 −1.85496
\(345\) 0 0
\(346\) −3.33791e11 −1.25208
\(347\) −3.41311e11 −1.26377 −0.631884 0.775063i \(-0.717718\pi\)
−0.631884 + 0.775063i \(0.717718\pi\)
\(348\) 2.41310e10 0.0881999
\(349\) −4.15352e11 −1.49866 −0.749328 0.662198i \(-0.769624\pi\)
−0.749328 + 0.662198i \(0.769624\pi\)
\(350\) 0 0
\(351\) 1.67213e11 0.588015
\(352\) −8.57107e10 −0.297573
\(353\) 1.00300e11 0.343806 0.171903 0.985114i \(-0.445008\pi\)
0.171903 + 0.985114i \(0.445008\pi\)
\(354\) 8.08674e11 2.73690
\(355\) 0 0
\(356\) −4.50569e10 −0.148675
\(357\) −1.32995e12 −4.33338
\(358\) −2.42777e11 −0.781149
\(359\) −3.35856e11 −1.06716 −0.533578 0.845751i \(-0.679153\pi\)
−0.533578 + 0.845751i \(0.679153\pi\)
\(360\) 0 0
\(361\) −3.11487e11 −0.965289
\(362\) 4.80613e11 1.47098
\(363\) 3.53750e11 1.06934
\(364\) 2.93128e10 0.0875187
\(365\) 0 0
\(366\) 9.42088e10 0.274427
\(367\) −3.43252e11 −0.987679 −0.493839 0.869553i \(-0.664407\pi\)
−0.493839 + 0.869553i \(0.664407\pi\)
\(368\) −9.39910e10 −0.267160
\(369\) −2.94235e11 −0.826182
\(370\) 0 0
\(371\) 2.02297e11 0.554379
\(372\) −8.74308e10 −0.236712
\(373\) 3.20544e11 0.857428 0.428714 0.903440i \(-0.358967\pi\)
0.428714 + 0.903440i \(0.358967\pi\)
\(374\) −3.86517e11 −1.02152
\(375\) 0 0
\(376\) 1.63328e11 0.421420
\(377\) −2.23309e10 −0.0569339
\(378\) 9.61533e11 2.42243
\(379\) 5.59129e11 1.39199 0.695994 0.718047i \(-0.254964\pi\)
0.695994 + 0.718047i \(0.254964\pi\)
\(380\) 0 0
\(381\) 1.59044e11 0.386683
\(382\) 1.71090e11 0.411092
\(383\) 1.14158e11 0.271089 0.135544 0.990771i \(-0.456722\pi\)
0.135544 + 0.990771i \(0.456722\pi\)
\(384\) 3.78938e11 0.889361
\(385\) 0 0
\(386\) −4.60424e11 −1.05564
\(387\) −1.65620e12 −3.75330
\(388\) 1.23083e10 0.0275712
\(389\) −1.10883e11 −0.245522 −0.122761 0.992436i \(-0.539175\pi\)
−0.122761 + 0.992436i \(0.539175\pi\)
\(390\) 0 0
\(391\) 3.25847e11 0.705048
\(392\) 3.63539e11 0.777613
\(393\) 1.42425e12 3.01175
\(394\) −5.17255e10 −0.108136
\(395\) 0 0
\(396\) −1.63146e11 −0.333386
\(397\) −2.31687e11 −0.468107 −0.234053 0.972224i \(-0.575199\pi\)
−0.234053 + 0.972224i \(0.575199\pi\)
\(398\) −1.64992e11 −0.329601
\(399\) −2.20806e11 −0.436147
\(400\) 0 0
\(401\) 5.44480e10 0.105156 0.0525778 0.998617i \(-0.483256\pi\)
0.0525778 + 0.998617i \(0.483256\pi\)
\(402\) 3.57013e11 0.681815
\(403\) 8.09089e10 0.152800
\(404\) 8.33137e10 0.155597
\(405\) 0 0
\(406\) −1.28411e11 −0.234549
\(407\) −3.75732e11 −0.678740
\(408\) −1.99984e12 −3.57294
\(409\) 2.35793e11 0.416654 0.208327 0.978059i \(-0.433198\pi\)
0.208327 + 0.978059i \(0.433198\pi\)
\(410\) 0 0
\(411\) 1.12005e12 1.93619
\(412\) −2.13494e10 −0.0365046
\(413\) 1.36384e12 2.30668
\(414\) −4.33969e11 −0.726034
\(415\) 0 0
\(416\) 7.96055e10 0.130324
\(417\) 2.16235e12 3.50197
\(418\) −6.41721e10 −0.102814
\(419\) 5.43639e11 0.861682 0.430841 0.902428i \(-0.358217\pi\)
0.430841 + 0.902428i \(0.358217\pi\)
\(420\) 0 0
\(421\) 2.70622e11 0.419849 0.209925 0.977718i \(-0.432678\pi\)
0.209925 + 0.977718i \(0.432678\pi\)
\(422\) −7.22291e11 −1.10868
\(423\) 5.61467e11 0.852693
\(424\) 3.04195e11 0.457094
\(425\) 0 0
\(426\) 1.31107e11 0.192878
\(427\) 1.58884e11 0.231289
\(428\) 1.52399e11 0.219526
\(429\) 2.19994e11 0.313583
\(430\) 0 0
\(431\) −1.07553e12 −1.50132 −0.750662 0.660687i \(-0.770265\pi\)
−0.750662 + 0.660687i \(0.770265\pi\)
\(432\) 1.07651e12 1.48711
\(433\) 2.63085e11 0.359667 0.179833 0.983697i \(-0.442444\pi\)
0.179833 + 0.983697i \(0.442444\pi\)
\(434\) 4.65254e11 0.629486
\(435\) 0 0
\(436\) 1.28739e11 0.170616
\(437\) 5.40992e10 0.0709618
\(438\) −1.19940e12 −1.55715
\(439\) −8.20045e11 −1.05377 −0.526887 0.849935i \(-0.676641\pi\)
−0.526887 + 0.849935i \(0.676641\pi\)
\(440\) 0 0
\(441\) 1.24973e12 1.57341
\(442\) 3.58985e11 0.447380
\(443\) 1.77977e10 0.0219557 0.0109779 0.999940i \(-0.496506\pi\)
0.0109779 + 0.999940i \(0.496506\pi\)
\(444\) −3.77098e11 −0.460501
\(445\) 0 0
\(446\) 1.22719e12 1.46860
\(447\) 1.72487e12 2.04349
\(448\) 1.24192e12 1.45661
\(449\) 1.15873e12 1.34547 0.672734 0.739885i \(-0.265120\pi\)
0.672734 + 0.739885i \(0.265120\pi\)
\(450\) 0 0
\(451\) −2.10145e11 −0.239180
\(452\) −1.44770e11 −0.163138
\(453\) −1.00458e12 −1.12083
\(454\) 7.89751e11 0.872446
\(455\) 0 0
\(456\) −3.32027e11 −0.359610
\(457\) 9.23583e11 0.990497 0.495249 0.868751i \(-0.335077\pi\)
0.495249 + 0.868751i \(0.335077\pi\)
\(458\) −9.10207e11 −0.966597
\(459\) −3.73204e12 −3.92455
\(460\) 0 0
\(461\) 6.32718e11 0.652464 0.326232 0.945290i \(-0.394221\pi\)
0.326232 + 0.945290i \(0.394221\pi\)
\(462\) 1.26504e12 1.29186
\(463\) −2.14607e11 −0.217035 −0.108517 0.994095i \(-0.534610\pi\)
−0.108517 + 0.994095i \(0.534610\pi\)
\(464\) −1.43766e11 −0.143987
\(465\) 0 0
\(466\) −5.56119e11 −0.546300
\(467\) −5.49922e11 −0.535026 −0.267513 0.963554i \(-0.586202\pi\)
−0.267513 + 0.963554i \(0.586202\pi\)
\(468\) 1.51525e11 0.146008
\(469\) 6.02106e11 0.574639
\(470\) 0 0
\(471\) 2.35428e12 2.20427
\(472\) 2.05081e12 1.90189
\(473\) −1.18287e12 −1.08658
\(474\) −2.29305e12 −2.08647
\(475\) 0 0
\(476\) −6.54234e11 −0.584120
\(477\) 1.04572e12 0.924875
\(478\) −1.56542e11 −0.137153
\(479\) 1.60843e12 1.39602 0.698010 0.716088i \(-0.254069\pi\)
0.698010 + 0.716088i \(0.254069\pi\)
\(480\) 0 0
\(481\) 3.48968e11 0.297258
\(482\) 8.53908e11 0.720609
\(483\) −1.06647e12 −0.891635
\(484\) 1.74019e11 0.144142
\(485\) 0 0
\(486\) 7.84810e11 0.638119
\(487\) 1.40030e12 1.12808 0.564040 0.825747i \(-0.309246\pi\)
0.564040 + 0.825747i \(0.309246\pi\)
\(488\) 2.38915e11 0.190701
\(489\) 9.32141e11 0.737211
\(490\) 0 0
\(491\) 1.31274e12 1.01932 0.509661 0.860376i \(-0.329771\pi\)
0.509661 + 0.860376i \(0.329771\pi\)
\(492\) −2.10909e11 −0.162275
\(493\) 4.98406e11 0.379990
\(494\) 5.96010e10 0.0450280
\(495\) 0 0
\(496\) 5.20888e11 0.386436
\(497\) 2.21113e11 0.162559
\(498\) −2.69978e12 −1.96696
\(499\) −3.50247e11 −0.252885 −0.126442 0.991974i \(-0.540356\pi\)
−0.126442 + 0.991974i \(0.540356\pi\)
\(500\) 0 0
\(501\) −1.12366e12 −0.796833
\(502\) −6.87053e11 −0.482863
\(503\) −2.62962e12 −1.83163 −0.915815 0.401601i \(-0.868454\pi\)
−0.915815 + 0.401601i \(0.868454\pi\)
\(504\) 4.49189e12 3.10093
\(505\) 0 0
\(506\) −3.09945e11 −0.210187
\(507\) −2.04323e11 −0.137335
\(508\) 7.82379e10 0.0521231
\(509\) 4.07673e11 0.269204 0.134602 0.990900i \(-0.457024\pi\)
0.134602 + 0.990900i \(0.457024\pi\)
\(510\) 0 0
\(511\) −2.02280e12 −1.31238
\(512\) 1.69164e12 1.08791
\(513\) −6.19617e11 −0.394998
\(514\) 1.21687e12 0.768970
\(515\) 0 0
\(516\) −1.18717e12 −0.737209
\(517\) 4.01005e11 0.246855
\(518\) 2.00669e12 1.22460
\(519\) −4.24025e12 −2.56530
\(520\) 0 0
\(521\) −1.90638e12 −1.13355 −0.566773 0.823874i \(-0.691808\pi\)
−0.566773 + 0.823874i \(0.691808\pi\)
\(522\) −6.63785e11 −0.391300
\(523\) 6.84980e11 0.400332 0.200166 0.979762i \(-0.435852\pi\)
0.200166 + 0.979762i \(0.435852\pi\)
\(524\) 7.00624e11 0.405971
\(525\) 0 0
\(526\) −3.52073e11 −0.200538
\(527\) −1.80581e12 −1.01982
\(528\) 1.41631e12 0.793059
\(529\) −1.53986e12 −0.854930
\(530\) 0 0
\(531\) 7.04999e12 3.84825
\(532\) −1.08620e11 −0.0587906
\(533\) 1.95177e11 0.104750
\(534\) 1.80599e12 0.961126
\(535\) 0 0
\(536\) 9.05389e11 0.473798
\(537\) −3.08407e12 −1.60044
\(538\) 1.03399e12 0.532103
\(539\) 8.92568e11 0.455503
\(540\) 0 0
\(541\) −1.99962e12 −1.00360 −0.501798 0.864985i \(-0.667328\pi\)
−0.501798 + 0.864985i \(0.667328\pi\)
\(542\) 9.93743e11 0.494626
\(543\) 6.10538e12 3.01379
\(544\) −1.77672e12 −0.869809
\(545\) 0 0
\(546\) −1.17493e12 −0.565776
\(547\) −2.19967e12 −1.05055 −0.525273 0.850933i \(-0.676037\pi\)
−0.525273 + 0.850933i \(0.676037\pi\)
\(548\) 5.50979e11 0.260989
\(549\) 8.21310e11 0.385861
\(550\) 0 0
\(551\) 8.27485e10 0.0382453
\(552\) −1.60366e12 −0.735166
\(553\) −3.86726e12 −1.75849
\(554\) −3.12873e12 −1.41115
\(555\) 0 0
\(556\) 1.06371e12 0.472050
\(557\) −2.10846e12 −0.928148 −0.464074 0.885797i \(-0.653613\pi\)
−0.464074 + 0.885797i \(0.653613\pi\)
\(558\) 2.40501e12 1.05018
\(559\) 1.09862e12 0.475875
\(560\) 0 0
\(561\) −4.91005e12 −2.09292
\(562\) −6.00472e11 −0.253910
\(563\) −2.49136e12 −1.04508 −0.522540 0.852615i \(-0.675015\pi\)
−0.522540 + 0.852615i \(0.675015\pi\)
\(564\) 4.02462e11 0.167483
\(565\) 0 0
\(566\) 8.31272e11 0.340462
\(567\) 5.15564e12 2.09488
\(568\) 3.32488e11 0.134032
\(569\) 6.91496e11 0.276557 0.138278 0.990393i \(-0.455843\pi\)
0.138278 + 0.990393i \(0.455843\pi\)
\(570\) 0 0
\(571\) −2.70238e11 −0.106386 −0.0531930 0.998584i \(-0.516940\pi\)
−0.0531930 + 0.998584i \(0.516940\pi\)
\(572\) 1.08220e11 0.0422695
\(573\) 2.17341e12 0.842259
\(574\) 1.12233e12 0.431537
\(575\) 0 0
\(576\) 6.41978e12 2.43007
\(577\) 3.66686e12 1.37722 0.688610 0.725132i \(-0.258221\pi\)
0.688610 + 0.725132i \(0.258221\pi\)
\(578\) −5.67395e12 −2.11451
\(579\) −5.84891e12 −2.16283
\(580\) 0 0
\(581\) −4.55321e12 −1.65777
\(582\) −4.93347e11 −0.178238
\(583\) 7.46864e11 0.267752
\(584\) −3.04169e12 −1.08207
\(585\) 0 0
\(586\) 1.91949e12 0.672431
\(587\) −1.16732e12 −0.405806 −0.202903 0.979199i \(-0.565038\pi\)
−0.202903 + 0.979199i \(0.565038\pi\)
\(588\) 8.95811e11 0.309043
\(589\) −2.99812e11 −0.102643
\(590\) 0 0
\(591\) −6.57085e11 −0.221553
\(592\) 2.24664e12 0.751773
\(593\) −3.14463e12 −1.04430 −0.522148 0.852855i \(-0.674869\pi\)
−0.522148 + 0.852855i \(0.674869\pi\)
\(594\) 3.54990e12 1.16998
\(595\) 0 0
\(596\) 8.48508e11 0.275453
\(597\) −2.09594e12 −0.675297
\(598\) 2.87867e11 0.0920527
\(599\) 2.09251e12 0.664120 0.332060 0.943258i \(-0.392256\pi\)
0.332060 + 0.943258i \(0.392256\pi\)
\(600\) 0 0
\(601\) 4.34608e12 1.35882 0.679410 0.733758i \(-0.262236\pi\)
0.679410 + 0.733758i \(0.262236\pi\)
\(602\) 6.31742e12 1.96045
\(603\) 3.11243e12 0.958675
\(604\) −4.94177e11 −0.151083
\(605\) 0 0
\(606\) −3.33942e12 −1.00588
\(607\) −1.73690e12 −0.519310 −0.259655 0.965701i \(-0.583609\pi\)
−0.259655 + 0.965701i \(0.583609\pi\)
\(608\) −2.94982e11 −0.0875447
\(609\) −1.63124e12 −0.480552
\(610\) 0 0
\(611\) −3.72441e11 −0.108112
\(612\) −3.38189e12 −0.974492
\(613\) −4.02259e12 −1.15062 −0.575312 0.817934i \(-0.695119\pi\)
−0.575312 + 0.817934i \(0.695119\pi\)
\(614\) −3.20744e12 −0.910752
\(615\) 0 0
\(616\) 3.20815e12 0.897722
\(617\) 5.03083e12 1.39752 0.698758 0.715358i \(-0.253737\pi\)
0.698758 + 0.715358i \(0.253737\pi\)
\(618\) 8.55736e11 0.235989
\(619\) −4.77626e12 −1.30761 −0.653807 0.756661i \(-0.726829\pi\)
−0.653807 + 0.756661i \(0.726829\pi\)
\(620\) 0 0
\(621\) −2.99269e12 −0.807513
\(622\) −3.55510e12 −0.952348
\(623\) 3.04582e12 0.810044
\(624\) −1.31542e12 −0.347324
\(625\) 0 0
\(626\) −1.20066e12 −0.312489
\(627\) −8.15198e11 −0.210649
\(628\) 1.15813e12 0.297125
\(629\) −7.78864e12 −1.98396
\(630\) 0 0
\(631\) −3.04417e12 −0.764428 −0.382214 0.924074i \(-0.624838\pi\)
−0.382214 + 0.924074i \(0.624838\pi\)
\(632\) −5.81521e12 −1.44990
\(633\) −9.17549e12 −2.27150
\(634\) 9.36884e11 0.230295
\(635\) 0 0
\(636\) 7.49579e11 0.181660
\(637\) −8.28989e11 −0.199490
\(638\) −4.74081e11 −0.113282
\(639\) 1.14298e12 0.271198
\(640\) 0 0
\(641\) −1.53417e12 −0.358932 −0.179466 0.983764i \(-0.557437\pi\)
−0.179466 + 0.983764i \(0.557437\pi\)
\(642\) −6.10854e12 −1.41915
\(643\) −3.17074e12 −0.731494 −0.365747 0.930714i \(-0.619186\pi\)
−0.365747 + 0.930714i \(0.619186\pi\)
\(644\) −5.24624e11 −0.120188
\(645\) 0 0
\(646\) −1.33024e12 −0.300527
\(647\) 6.75140e12 1.51469 0.757347 0.653013i \(-0.226495\pi\)
0.757347 + 0.653013i \(0.226495\pi\)
\(648\) 7.75255e12 1.72726
\(649\) 5.03517e12 1.11407
\(650\) 0 0
\(651\) 5.91027e12 1.28971
\(652\) 4.58544e11 0.0993726
\(653\) 3.96591e12 0.853559 0.426780 0.904356i \(-0.359648\pi\)
0.426780 + 0.904356i \(0.359648\pi\)
\(654\) −5.16016e12 −1.10297
\(655\) 0 0
\(656\) 1.25654e12 0.264916
\(657\) −1.04563e13 −2.18945
\(658\) −2.14166e12 −0.445384
\(659\) −1.08932e12 −0.224993 −0.112497 0.993652i \(-0.535885\pi\)
−0.112497 + 0.993652i \(0.535885\pi\)
\(660\) 0 0
\(661\) −9.01775e12 −1.83735 −0.918674 0.395017i \(-0.870739\pi\)
−0.918674 + 0.395017i \(0.870739\pi\)
\(662\) 1.76716e12 0.357615
\(663\) 4.56030e12 0.916606
\(664\) −6.84667e12 −1.36686
\(665\) 0 0
\(666\) 1.03730e13 2.04302
\(667\) 3.99667e11 0.0781865
\(668\) −5.52759e11 −0.107409
\(669\) 1.55894e13 3.00893
\(670\) 0 0
\(671\) 5.86587e11 0.111707
\(672\) 5.81506e12 1.10000
\(673\) −6.77812e12 −1.27362 −0.636812 0.771019i \(-0.719747\pi\)
−0.636812 + 0.771019i \(0.719747\pi\)
\(674\) 4.05683e12 0.757211
\(675\) 0 0
\(676\) −1.00512e11 −0.0185122
\(677\) 9.77011e12 1.78752 0.893759 0.448548i \(-0.148059\pi\)
0.893759 + 0.448548i \(0.148059\pi\)
\(678\) 5.80274e12 1.05463
\(679\) −8.32035e11 −0.150220
\(680\) 0 0
\(681\) 1.00325e13 1.78750
\(682\) 1.71768e12 0.304027
\(683\) −7.99180e12 −1.40524 −0.702621 0.711564i \(-0.747987\pi\)
−0.702621 + 0.711564i \(0.747987\pi\)
\(684\) −5.61483e11 −0.0980809
\(685\) 0 0
\(686\) 1.86053e12 0.320758
\(687\) −1.15626e13 −1.98040
\(688\) 7.07285e12 1.20350
\(689\) −6.93664e11 −0.117264
\(690\) 0 0
\(691\) −7.13265e12 −1.19014 −0.595072 0.803672i \(-0.702877\pi\)
−0.595072 + 0.803672i \(0.702877\pi\)
\(692\) −2.08589e12 −0.345791
\(693\) 1.10286e13 1.81643
\(694\) 6.72982e12 1.10125
\(695\) 0 0
\(696\) −2.45290e12 −0.396222
\(697\) −4.35616e12 −0.699127
\(698\) 8.18974e12 1.30593
\(699\) −7.06456e12 −1.11928
\(700\) 0 0
\(701\) 1.19764e13 1.87325 0.936626 0.350330i \(-0.113931\pi\)
0.936626 + 0.350330i \(0.113931\pi\)
\(702\) −3.29704e12 −0.512398
\(703\) −1.29312e12 −0.199683
\(704\) 4.58507e12 0.703507
\(705\) 0 0
\(706\) −1.97767e12 −0.299594
\(707\) −5.63196e12 −0.847759
\(708\) 5.05347e12 0.755858
\(709\) −6.13692e12 −0.912099 −0.456050 0.889954i \(-0.650736\pi\)
−0.456050 + 0.889954i \(0.650736\pi\)
\(710\) 0 0
\(711\) −1.99908e13 −2.93371
\(712\) 4.58002e12 0.667893
\(713\) −1.44806e12 −0.209838
\(714\) 2.62233e13 3.77612
\(715\) 0 0
\(716\) −1.51713e12 −0.215733
\(717\) −1.98861e12 −0.281004
\(718\) 6.62226e12 0.929922
\(719\) 4.74258e12 0.661812 0.330906 0.943664i \(-0.392646\pi\)
0.330906 + 0.943664i \(0.392646\pi\)
\(720\) 0 0
\(721\) 1.44321e12 0.198893
\(722\) 6.14177e12 0.841155
\(723\) 1.08475e13 1.47641
\(724\) 3.00339e12 0.406245
\(725\) 0 0
\(726\) −6.97510e12 −0.931827
\(727\) 9.67795e12 1.28493 0.642464 0.766316i \(-0.277912\pi\)
0.642464 + 0.766316i \(0.277912\pi\)
\(728\) −2.97963e12 −0.393162
\(729\) −2.21347e12 −0.290268
\(730\) 0 0
\(731\) −2.45201e13 −3.17610
\(732\) 5.88719e11 0.0757894
\(733\) −1.50341e13 −1.92357 −0.961787 0.273798i \(-0.911720\pi\)
−0.961787 + 0.273798i \(0.911720\pi\)
\(734\) 6.76810e12 0.860666
\(735\) 0 0
\(736\) −1.42474e12 −0.178972
\(737\) 2.22293e12 0.277537
\(738\) 5.80160e12 0.719937
\(739\) −2.14842e12 −0.264983 −0.132492 0.991184i \(-0.542298\pi\)
−0.132492 + 0.991184i \(0.542298\pi\)
\(740\) 0 0
\(741\) 7.57131e11 0.0922548
\(742\) −3.98881e12 −0.483087
\(743\) −5.22310e12 −0.628751 −0.314376 0.949299i \(-0.601795\pi\)
−0.314376 + 0.949299i \(0.601795\pi\)
\(744\) 8.88730e12 1.06339
\(745\) 0 0
\(746\) −6.32035e12 −0.747165
\(747\) −2.35366e13 −2.76567
\(748\) −2.41538e12 −0.282116
\(749\) −1.03021e13 −1.19607
\(750\) 0 0
\(751\) 1.65523e13 1.89880 0.949399 0.314071i \(-0.101693\pi\)
0.949399 + 0.314071i \(0.101693\pi\)
\(752\) −2.39776e12 −0.273417
\(753\) −8.72786e12 −0.989305
\(754\) 4.40312e11 0.0496123
\(755\) 0 0
\(756\) 6.00870e12 0.669010
\(757\) −1.59809e13 −1.76877 −0.884384 0.466761i \(-0.845421\pi\)
−0.884384 + 0.466761i \(0.845421\pi\)
\(758\) −1.10247e13 −1.21298
\(759\) −3.93733e12 −0.430639
\(760\) 0 0
\(761\) 3.31655e12 0.358473 0.179236 0.983806i \(-0.442637\pi\)
0.179236 + 0.983806i \(0.442637\pi\)
\(762\) −3.13597e12 −0.336957
\(763\) −8.70266e12 −0.929591
\(764\) 1.06916e12 0.113533
\(765\) 0 0
\(766\) −2.25092e12 −0.236227
\(767\) −4.67651e12 −0.487914
\(768\) 1.16497e13 1.20834
\(769\) −2.26842e12 −0.233913 −0.116956 0.993137i \(-0.537314\pi\)
−0.116956 + 0.993137i \(0.537314\pi\)
\(770\) 0 0
\(771\) 1.54583e13 1.57549
\(772\) −2.87723e12 −0.291539
\(773\) −1.45998e13 −1.47075 −0.735375 0.677661i \(-0.762994\pi\)
−0.735375 + 0.677661i \(0.762994\pi\)
\(774\) 3.26563e13 3.27064
\(775\) 0 0
\(776\) −1.25113e12 −0.123859
\(777\) 2.54916e13 2.50901
\(778\) 2.18634e12 0.213949
\(779\) −7.23237e11 −0.0703659
\(780\) 0 0
\(781\) 8.16330e11 0.0785120
\(782\) −6.42492e12 −0.614380
\(783\) −4.57752e12 −0.435214
\(784\) −5.33700e12 −0.504516
\(785\) 0 0
\(786\) −2.80828e13 −2.62445
\(787\) 1.26923e13 1.17938 0.589692 0.807628i \(-0.299249\pi\)
0.589692 + 0.807628i \(0.299249\pi\)
\(788\) −3.23237e11 −0.0298643
\(789\) −4.47249e12 −0.410869
\(790\) 0 0
\(791\) 9.78638e12 0.888849
\(792\) 1.65837e13 1.49768
\(793\) −5.44804e11 −0.0489228
\(794\) 4.56831e12 0.407909
\(795\) 0 0
\(796\) −1.03105e12 −0.0910270
\(797\) 1.22392e13 1.07446 0.537230 0.843436i \(-0.319471\pi\)
0.537230 + 0.843436i \(0.319471\pi\)
\(798\) 4.35376e12 0.380059
\(799\) 8.31254e12 0.721561
\(800\) 0 0
\(801\) 1.57446e13 1.35140
\(802\) −1.07358e12 −0.0916328
\(803\) −7.46801e12 −0.633847
\(804\) 2.23101e12 0.188299
\(805\) 0 0
\(806\) −1.59533e12 −0.133150
\(807\) 1.31351e13 1.09019
\(808\) −8.46880e12 −0.698990
\(809\) −4.89425e12 −0.401714 −0.200857 0.979621i \(-0.564373\pi\)
−0.200857 + 0.979621i \(0.564373\pi\)
\(810\) 0 0
\(811\) −3.11178e12 −0.252590 −0.126295 0.991993i \(-0.540309\pi\)
−0.126295 + 0.991993i \(0.540309\pi\)
\(812\) −8.02449e11 −0.0647761
\(813\) 1.26238e13 1.01341
\(814\) 7.40853e12 0.591456
\(815\) 0 0
\(816\) 2.93590e13 2.31812
\(817\) −4.07098e12 −0.319669
\(818\) −4.64926e12 −0.363073
\(819\) −1.02430e13 −0.795517
\(820\) 0 0
\(821\) 3.48502e12 0.267708 0.133854 0.991001i \(-0.457265\pi\)
0.133854 + 0.991001i \(0.457265\pi\)
\(822\) −2.20846e13 −1.68720
\(823\) 4.38954e12 0.333518 0.166759 0.985998i \(-0.446670\pi\)
0.166759 + 0.985998i \(0.446670\pi\)
\(824\) 2.17016e12 0.163990
\(825\) 0 0
\(826\) −2.68916e13 −2.01004
\(827\) 1.21660e13 0.904424 0.452212 0.891910i \(-0.350635\pi\)
0.452212 + 0.891910i \(0.350635\pi\)
\(828\) −2.71191e12 −0.200511
\(829\) −1.35524e12 −0.0996600 −0.0498300 0.998758i \(-0.515868\pi\)
−0.0498300 + 0.998758i \(0.515868\pi\)
\(830\) 0 0
\(831\) −3.97453e13 −2.89122
\(832\) −4.25847e12 −0.308105
\(833\) 1.85023e13 1.33144
\(834\) −4.26362e13 −3.05163
\(835\) 0 0
\(836\) −4.01017e11 −0.0283945
\(837\) 1.65852e13 1.16803
\(838\) −1.07192e13 −0.750872
\(839\) −1.12215e13 −0.781847 −0.390924 0.920423i \(-0.627844\pi\)
−0.390924 + 0.920423i \(0.627844\pi\)
\(840\) 0 0
\(841\) −1.38958e13 −0.957861
\(842\) −5.33601e12 −0.365858
\(843\) −7.62799e12 −0.520219
\(844\) −4.51366e12 −0.306188
\(845\) 0 0
\(846\) −1.10708e13 −0.743038
\(847\) −1.17636e13 −0.785351
\(848\) −4.46578e12 −0.296563
\(849\) 1.05599e13 0.697551
\(850\) 0 0
\(851\) −6.24564e12 −0.408220
\(852\) 8.19297e11 0.0532676
\(853\) −7.91778e11 −0.0512074 −0.0256037 0.999672i \(-0.508151\pi\)
−0.0256037 + 0.999672i \(0.508151\pi\)
\(854\) −3.13281e12 −0.201546
\(855\) 0 0
\(856\) −1.54913e13 −0.986180
\(857\) −1.76782e13 −1.11950 −0.559751 0.828661i \(-0.689103\pi\)
−0.559751 + 0.828661i \(0.689103\pi\)
\(858\) −4.33774e12 −0.273257
\(859\) 4.03561e12 0.252895 0.126448 0.991973i \(-0.459642\pi\)
0.126448 + 0.991973i \(0.459642\pi\)
\(860\) 0 0
\(861\) 1.42573e13 0.884147
\(862\) 2.12068e13 1.30826
\(863\) 7.74540e11 0.0475330 0.0237665 0.999718i \(-0.492434\pi\)
0.0237665 + 0.999718i \(0.492434\pi\)
\(864\) 1.63180e13 0.996219
\(865\) 0 0
\(866\) −5.18739e12 −0.313414
\(867\) −7.20780e13 −4.33228
\(868\) 2.90741e12 0.173847
\(869\) −1.42776e13 −0.849311
\(870\) 0 0
\(871\) −2.06459e12 −0.121549
\(872\) −1.30862e13 −0.766461
\(873\) −4.30099e12 −0.250613
\(874\) −1.06671e12 −0.0618363
\(875\) 0 0
\(876\) −7.49515e12 −0.430043
\(877\) 2.57530e13 1.47004 0.735020 0.678046i \(-0.237173\pi\)
0.735020 + 0.678046i \(0.237173\pi\)
\(878\) 1.61693e13 0.918261
\(879\) 2.43839e13 1.37770
\(880\) 0 0
\(881\) 1.93336e12 0.108124 0.0540620 0.998538i \(-0.482783\pi\)
0.0540620 + 0.998538i \(0.482783\pi\)
\(882\) −2.46416e13 −1.37107
\(883\) −2.94334e13 −1.62936 −0.814681 0.579910i \(-0.803088\pi\)
−0.814681 + 0.579910i \(0.803088\pi\)
\(884\) 2.24333e12 0.123554
\(885\) 0 0
\(886\) −3.50928e11 −0.0191323
\(887\) −4.07138e12 −0.220844 −0.110422 0.993885i \(-0.535220\pi\)
−0.110422 + 0.993885i \(0.535220\pi\)
\(888\) 3.83318e13 2.06872
\(889\) −5.28884e12 −0.283990
\(890\) 0 0
\(891\) 1.90342e13 1.01178
\(892\) 7.66881e12 0.405589
\(893\) 1.38010e12 0.0726238
\(894\) −3.40103e13 −1.78070
\(895\) 0 0
\(896\) −1.26012e13 −0.653168
\(897\) 3.65687e12 0.188601
\(898\) −2.28473e13 −1.17244
\(899\) −2.21491e12 −0.113094
\(900\) 0 0
\(901\) 1.54819e13 0.782643
\(902\) 4.14356e12 0.208422
\(903\) 8.02523e13 4.01664
\(904\) 1.47158e13 0.732869
\(905\) 0 0
\(906\) 1.98078e13 0.976698
\(907\) 5.11710e12 0.251068 0.125534 0.992089i \(-0.459936\pi\)
0.125534 + 0.992089i \(0.459936\pi\)
\(908\) 4.93522e12 0.240946
\(909\) −2.91130e13 −1.41432
\(910\) 0 0
\(911\) −1.65675e13 −0.796937 −0.398468 0.917182i \(-0.630458\pi\)
−0.398468 + 0.917182i \(0.630458\pi\)
\(912\) 4.87438e12 0.233315
\(913\) −1.68101e13 −0.800665
\(914\) −1.82108e13 −0.863121
\(915\) 0 0
\(916\) −5.68796e12 −0.266948
\(917\) −4.73618e13 −2.21191
\(918\) 7.35868e13 3.41986
\(919\) 2.46210e13 1.13864 0.569319 0.822117i \(-0.307207\pi\)
0.569319 + 0.822117i \(0.307207\pi\)
\(920\) 0 0
\(921\) −4.07451e13 −1.86598
\(922\) −1.24757e13 −0.568558
\(923\) −7.58182e11 −0.0343848
\(924\) 7.90534e12 0.356777
\(925\) 0 0
\(926\) 4.23153e12 0.189125
\(927\) 7.46028e12 0.331815
\(928\) −2.17923e12 −0.0964577
\(929\) 2.10967e13 0.929272 0.464636 0.885502i \(-0.346185\pi\)
0.464636 + 0.885502i \(0.346185\pi\)
\(930\) 0 0
\(931\) 3.07186e12 0.134007
\(932\) −3.47524e12 −0.150873
\(933\) −4.51616e13 −1.95120
\(934\) 1.08431e13 0.466223
\(935\) 0 0
\(936\) −1.54024e13 −0.655915
\(937\) 3.29230e13 1.39531 0.697656 0.716433i \(-0.254226\pi\)
0.697656 + 0.716433i \(0.254226\pi\)
\(938\) −1.18721e13 −0.500742
\(939\) −1.52523e13 −0.640238
\(940\) 0 0
\(941\) 3.85496e13 1.60275 0.801376 0.598161i \(-0.204102\pi\)
0.801376 + 0.598161i \(0.204102\pi\)
\(942\) −4.64208e13 −1.92080
\(943\) −3.49316e12 −0.143852
\(944\) −3.01072e13 −1.23395
\(945\) 0 0
\(946\) 2.33234e13 0.946852
\(947\) −1.22394e13 −0.494521 −0.247261 0.968949i \(-0.579530\pi\)
−0.247261 + 0.968949i \(0.579530\pi\)
\(948\) −1.43295e13 −0.576227
\(949\) 6.93605e12 0.277597
\(950\) 0 0
\(951\) 1.19015e13 0.471836
\(952\) 6.65026e13 2.62405
\(953\) −3.26425e13 −1.28194 −0.640968 0.767568i \(-0.721467\pi\)
−0.640968 + 0.767568i \(0.721467\pi\)
\(954\) −2.06191e13 −0.805939
\(955\) 0 0
\(956\) −9.78247e11 −0.0378781
\(957\) −6.02241e12 −0.232095
\(958\) −3.17143e13 −1.21649
\(959\) −3.72459e13 −1.42198
\(960\) 0 0
\(961\) −1.84146e13 −0.696478
\(962\) −6.88081e12 −0.259031
\(963\) −5.32540e13 −1.99542
\(964\) 5.33614e12 0.199013
\(965\) 0 0
\(966\) 2.10282e13 0.776973
\(967\) 1.28552e13 0.472780 0.236390 0.971658i \(-0.424036\pi\)
0.236390 + 0.971658i \(0.424036\pi\)
\(968\) −1.76889e13 −0.647533
\(969\) −1.68984e13 −0.615729
\(970\) 0 0
\(971\) −4.30846e13 −1.55538 −0.777689 0.628650i \(-0.783608\pi\)
−0.777689 + 0.628650i \(0.783608\pi\)
\(972\) 4.90435e12 0.176231
\(973\) −7.19064e13 −2.57193
\(974\) −2.76105e13 −0.983012
\(975\) 0 0
\(976\) −3.50743e12 −0.123727
\(977\) −3.58870e13 −1.26012 −0.630059 0.776547i \(-0.716969\pi\)
−0.630059 + 0.776547i \(0.716969\pi\)
\(978\) −1.83796e13 −0.642407
\(979\) 1.12449e13 0.391233
\(980\) 0 0
\(981\) −4.49861e13 −1.55084
\(982\) −2.58840e13 −0.888239
\(983\) −4.49637e12 −0.153593 −0.0767964 0.997047i \(-0.524469\pi\)
−0.0767964 + 0.997047i \(0.524469\pi\)
\(984\) 2.14388e13 0.728992
\(985\) 0 0
\(986\) −9.82735e12 −0.331124
\(987\) −2.72062e13 −0.912518
\(988\) 3.72452e11 0.0124355
\(989\) −1.96624e13 −0.653513
\(990\) 0 0
\(991\) 1.56221e13 0.514526 0.257263 0.966341i \(-0.417179\pi\)
0.257263 + 0.966341i \(0.417179\pi\)
\(992\) 7.89573e12 0.258875
\(993\) 2.24488e13 0.732693
\(994\) −4.35981e12 −0.141654
\(995\) 0 0
\(996\) −1.68712e13 −0.543223
\(997\) 3.76783e13 1.20771 0.603856 0.797094i \(-0.293630\pi\)
0.603856 + 0.797094i \(0.293630\pi\)
\(998\) 6.90603e12 0.220364
\(999\) 7.15335e13 2.27230
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.b.1.2 5
5.4 even 2 13.10.a.b.1.4 5
15.14 odd 2 117.10.a.e.1.2 5
20.19 odd 2 208.10.a.h.1.1 5
65.64 even 2 169.10.a.b.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.4 5 5.4 even 2
117.10.a.e.1.2 5 15.14 odd 2
169.10.a.b.1.2 5 65.64 even 2
208.10.a.h.1.1 5 20.19 odd 2
325.10.a.b.1.2 5 1.1 even 1 trivial