Properties

Label 3249.2.a.x.1.3
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,3,0,-3,3,0,-6,3,0,-3,-6,0,-6,9,0,0,-3,0,-3,-6,0,-6,12, 0,-3,9,0,-24,-9,0,15,3,0,-6,0,0,9,-6,0,-21,12,0,-9,3,0,-12,-9,0,6,-18, 0,6,3,0,-12,-15,0,-9,3,0,-3,-15,0,6,3,0,3,-9,0,-6,3,0,0,0,0,-9,-3,0,21, 15,0,-6,-18,0,6,0,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.87939 q^{2} +1.53209 q^{4} -0.879385 q^{5} -2.87939 q^{7} -0.879385 q^{8} -1.65270 q^{10} +1.83750 q^{11} +2.75877 q^{13} -5.41147 q^{14} -4.71688 q^{16} +7.10607 q^{17} -1.34730 q^{20} +3.45336 q^{22} -6.59627 q^{23} -4.22668 q^{25} +5.18479 q^{26} -4.41147 q^{28} -3.12836 q^{29} -7.65270 q^{31} -7.10607 q^{32} +13.3550 q^{34} +2.53209 q^{35} -2.83750 q^{37} +0.773318 q^{40} +3.98545 q^{41} -11.4534 q^{43} +2.81521 q^{44} -12.3969 q^{46} -2.20708 q^{47} +1.29086 q^{49} -7.94356 q^{50} +4.22668 q^{52} +2.70233 q^{53} -1.61587 q^{55} +2.53209 q^{56} -5.87939 q^{58} -8.41147 q^{59} +0.615867 q^{61} -14.3824 q^{62} -3.92127 q^{64} -2.42602 q^{65} +3.67499 q^{67} +10.8871 q^{68} +4.75877 q^{70} -7.45336 q^{71} -10.0077 q^{73} -5.33275 q^{74} -5.29086 q^{77} -1.61081 q^{79} +4.14796 q^{80} +7.49020 q^{82} -0.985452 q^{83} -6.24897 q^{85} -21.5253 q^{86} -1.61587 q^{88} +17.0574 q^{89} -7.94356 q^{91} -10.1061 q^{92} -4.14796 q^{94} +5.90167 q^{97} +2.42602 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} - 3 q^{7} + 3 q^{8} - 6 q^{10} + 3 q^{11} - 3 q^{13} - 6 q^{14} - 6 q^{16} + 9 q^{17} - 3 q^{20} - 3 q^{22} - 6 q^{23} - 6 q^{25} + 12 q^{26} - 3 q^{28} + 9 q^{29} - 24 q^{31} - 9 q^{32} + 15 q^{34}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.87939 1.32893 0.664463 0.747321i \(-0.268660\pi\)
0.664463 + 0.747321i \(0.268660\pi\)
\(3\) 0 0
\(4\) 1.53209 0.766044
\(5\) −0.879385 −0.393273 −0.196637 0.980476i \(-0.563002\pi\)
−0.196637 + 0.980476i \(0.563002\pi\)
\(6\) 0 0
\(7\) −2.87939 −1.08831 −0.544153 0.838986i \(-0.683149\pi\)
−0.544153 + 0.838986i \(0.683149\pi\)
\(8\) −0.879385 −0.310910
\(9\) 0 0
\(10\) −1.65270 −0.522631
\(11\) 1.83750 0.554026 0.277013 0.960866i \(-0.410655\pi\)
0.277013 + 0.960866i \(0.410655\pi\)
\(12\) 0 0
\(13\) 2.75877 0.765145 0.382573 0.923925i \(-0.375038\pi\)
0.382573 + 0.923925i \(0.375038\pi\)
\(14\) −5.41147 −1.44628
\(15\) 0 0
\(16\) −4.71688 −1.17922
\(17\) 7.10607 1.72347 0.861737 0.507355i \(-0.169377\pi\)
0.861737 + 0.507355i \(0.169377\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) −1.34730 −0.301265
\(21\) 0 0
\(22\) 3.45336 0.736260
\(23\) −6.59627 −1.37542 −0.687708 0.725987i \(-0.741383\pi\)
−0.687708 + 0.725987i \(0.741383\pi\)
\(24\) 0 0
\(25\) −4.22668 −0.845336
\(26\) 5.18479 1.01682
\(27\) 0 0
\(28\) −4.41147 −0.833690
\(29\) −3.12836 −0.580921 −0.290461 0.956887i \(-0.593808\pi\)
−0.290461 + 0.956887i \(0.593808\pi\)
\(30\) 0 0
\(31\) −7.65270 −1.37447 −0.687233 0.726437i \(-0.741175\pi\)
−0.687233 + 0.726437i \(0.741175\pi\)
\(32\) −7.10607 −1.25619
\(33\) 0 0
\(34\) 13.3550 2.29037
\(35\) 2.53209 0.428001
\(36\) 0 0
\(37\) −2.83750 −0.466481 −0.233241 0.972419i \(-0.574933\pi\)
−0.233241 + 0.972419i \(0.574933\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.773318 0.122272
\(41\) 3.98545 0.622423 0.311212 0.950341i \(-0.399265\pi\)
0.311212 + 0.950341i \(0.399265\pi\)
\(42\) 0 0
\(43\) −11.4534 −1.74662 −0.873311 0.487164i \(-0.838032\pi\)
−0.873311 + 0.487164i \(0.838032\pi\)
\(44\) 2.81521 0.424408
\(45\) 0 0
\(46\) −12.3969 −1.82783
\(47\) −2.20708 −0.321936 −0.160968 0.986960i \(-0.551462\pi\)
−0.160968 + 0.986960i \(0.551462\pi\)
\(48\) 0 0
\(49\) 1.29086 0.184408
\(50\) −7.94356 −1.12339
\(51\) 0 0
\(52\) 4.22668 0.586135
\(53\) 2.70233 0.371194 0.185597 0.982626i \(-0.440578\pi\)
0.185597 + 0.982626i \(0.440578\pi\)
\(54\) 0 0
\(55\) −1.61587 −0.217883
\(56\) 2.53209 0.338365
\(57\) 0 0
\(58\) −5.87939 −0.772001
\(59\) −8.41147 −1.09508 −0.547540 0.836779i \(-0.684436\pi\)
−0.547540 + 0.836779i \(0.684436\pi\)
\(60\) 0 0
\(61\) 0.615867 0.0788537 0.0394268 0.999222i \(-0.487447\pi\)
0.0394268 + 0.999222i \(0.487447\pi\)
\(62\) −14.3824 −1.82656
\(63\) 0 0
\(64\) −3.92127 −0.490159
\(65\) −2.42602 −0.300911
\(66\) 0 0
\(67\) 3.67499 0.448972 0.224486 0.974477i \(-0.427930\pi\)
0.224486 + 0.974477i \(0.427930\pi\)
\(68\) 10.8871 1.32026
\(69\) 0 0
\(70\) 4.75877 0.568782
\(71\) −7.45336 −0.884551 −0.442276 0.896879i \(-0.645829\pi\)
−0.442276 + 0.896879i \(0.645829\pi\)
\(72\) 0 0
\(73\) −10.0077 −1.17132 −0.585659 0.810558i \(-0.699164\pi\)
−0.585659 + 0.810558i \(0.699164\pi\)
\(74\) −5.33275 −0.619919
\(75\) 0 0
\(76\) 0 0
\(77\) −5.29086 −0.602949
\(78\) 0 0
\(79\) −1.61081 −0.181231 −0.0906154 0.995886i \(-0.528883\pi\)
−0.0906154 + 0.995886i \(0.528883\pi\)
\(80\) 4.14796 0.463756
\(81\) 0 0
\(82\) 7.49020 0.827154
\(83\) −0.985452 −0.108167 −0.0540837 0.998536i \(-0.517224\pi\)
−0.0540837 + 0.998536i \(0.517224\pi\)
\(84\) 0 0
\(85\) −6.24897 −0.677796
\(86\) −21.5253 −2.32113
\(87\) 0 0
\(88\) −1.61587 −0.172252
\(89\) 17.0574 1.80808 0.904039 0.427450i \(-0.140588\pi\)
0.904039 + 0.427450i \(0.140588\pi\)
\(90\) 0 0
\(91\) −7.94356 −0.832712
\(92\) −10.1061 −1.05363
\(93\) 0 0
\(94\) −4.14796 −0.427829
\(95\) 0 0
\(96\) 0 0
\(97\) 5.90167 0.599224 0.299612 0.954061i \(-0.403143\pi\)
0.299612 + 0.954061i \(0.403143\pi\)
\(98\) 2.42602 0.245065
\(99\) 0 0
\(100\) −6.47565 −0.647565
\(101\) 4.30541 0.428404 0.214202 0.976789i \(-0.431285\pi\)
0.214202 + 0.976789i \(0.431285\pi\)
\(102\) 0 0
\(103\) −17.8084 −1.75471 −0.877357 0.479838i \(-0.840695\pi\)
−0.877357 + 0.479838i \(0.840695\pi\)
\(104\) −2.42602 −0.237891
\(105\) 0 0
\(106\) 5.07873 0.493289
\(107\) 5.88713 0.569130 0.284565 0.958657i \(-0.408151\pi\)
0.284565 + 0.958657i \(0.408151\pi\)
\(108\) 0 0
\(109\) −15.1138 −1.44764 −0.723820 0.689989i \(-0.757615\pi\)
−0.723820 + 0.689989i \(0.757615\pi\)
\(110\) −3.03684 −0.289551
\(111\) 0 0
\(112\) 13.5817 1.28335
\(113\) −6.08378 −0.572314 −0.286157 0.958183i \(-0.592378\pi\)
−0.286157 + 0.958183i \(0.592378\pi\)
\(114\) 0 0
\(115\) 5.80066 0.540914
\(116\) −4.79292 −0.445011
\(117\) 0 0
\(118\) −15.8084 −1.45528
\(119\) −20.4611 −1.87567
\(120\) 0 0
\(121\) −7.62361 −0.693055
\(122\) 1.15745 0.104791
\(123\) 0 0
\(124\) −11.7246 −1.05290
\(125\) 8.11381 0.725721
\(126\) 0 0
\(127\) −11.9213 −1.05784 −0.528921 0.848671i \(-0.677403\pi\)
−0.528921 + 0.848671i \(0.677403\pi\)
\(128\) 6.84255 0.604802
\(129\) 0 0
\(130\) −4.55943 −0.399888
\(131\) 2.39187 0.208979 0.104489 0.994526i \(-0.466679\pi\)
0.104489 + 0.994526i \(0.466679\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.90673 0.596650
\(135\) 0 0
\(136\) −6.24897 −0.535845
\(137\) 21.8229 1.86446 0.932230 0.361866i \(-0.117860\pi\)
0.932230 + 0.361866i \(0.117860\pi\)
\(138\) 0 0
\(139\) 8.26857 0.701331 0.350666 0.936501i \(-0.385955\pi\)
0.350666 + 0.936501i \(0.385955\pi\)
\(140\) 3.87939 0.327868
\(141\) 0 0
\(142\) −14.0077 −1.17550
\(143\) 5.06923 0.423910
\(144\) 0 0
\(145\) 2.75103 0.228461
\(146\) −18.8084 −1.55659
\(147\) 0 0
\(148\) −4.34730 −0.357346
\(149\) −7.68273 −0.629394 −0.314697 0.949192i \(-0.601903\pi\)
−0.314697 + 0.949192i \(0.601903\pi\)
\(150\) 0 0
\(151\) 5.94356 0.483680 0.241840 0.970316i \(-0.422249\pi\)
0.241840 + 0.970316i \(0.422249\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −9.94356 −0.801275
\(155\) 6.72967 0.540540
\(156\) 0 0
\(157\) −10.3969 −0.829765 −0.414883 0.909875i \(-0.636177\pi\)
−0.414883 + 0.909875i \(0.636177\pi\)
\(158\) −3.02734 −0.240842
\(159\) 0 0
\(160\) 6.24897 0.494024
\(161\) 18.9932 1.49687
\(162\) 0 0
\(163\) 10.0719 0.788894 0.394447 0.918919i \(-0.370936\pi\)
0.394447 + 0.918919i \(0.370936\pi\)
\(164\) 6.10607 0.476804
\(165\) 0 0
\(166\) −1.85204 −0.143746
\(167\) 8.12836 0.628991 0.314496 0.949259i \(-0.398165\pi\)
0.314496 + 0.949259i \(0.398165\pi\)
\(168\) 0 0
\(169\) −5.38919 −0.414553
\(170\) −11.7442 −0.900741
\(171\) 0 0
\(172\) −17.5476 −1.33799
\(173\) −5.31315 −0.403951 −0.201976 0.979391i \(-0.564736\pi\)
−0.201976 + 0.979391i \(0.564736\pi\)
\(174\) 0 0
\(175\) 12.1702 0.919984
\(176\) −8.66725 −0.653319
\(177\) 0 0
\(178\) 32.0574 2.40280
\(179\) −17.0273 −1.27268 −0.636342 0.771407i \(-0.719553\pi\)
−0.636342 + 0.771407i \(0.719553\pi\)
\(180\) 0 0
\(181\) 17.0692 1.26875 0.634373 0.773027i \(-0.281258\pi\)
0.634373 + 0.773027i \(0.281258\pi\)
\(182\) −14.9290 −1.10661
\(183\) 0 0
\(184\) 5.80066 0.427630
\(185\) 2.49525 0.183455
\(186\) 0 0
\(187\) 13.0574 0.954850
\(188\) −3.38144 −0.246617
\(189\) 0 0
\(190\) 0 0
\(191\) −3.62361 −0.262195 −0.131098 0.991369i \(-0.541850\pi\)
−0.131098 + 0.991369i \(0.541850\pi\)
\(192\) 0 0
\(193\) 5.12330 0.368783 0.184392 0.982853i \(-0.440968\pi\)
0.184392 + 0.982853i \(0.440968\pi\)
\(194\) 11.0915 0.796325
\(195\) 0 0
\(196\) 1.97771 0.141265
\(197\) 9.12836 0.650368 0.325184 0.945651i \(-0.394574\pi\)
0.325184 + 0.945651i \(0.394574\pi\)
\(198\) 0 0
\(199\) 22.0847 1.56554 0.782772 0.622309i \(-0.213805\pi\)
0.782772 + 0.622309i \(0.213805\pi\)
\(200\) 3.71688 0.262823
\(201\) 0 0
\(202\) 8.09152 0.569317
\(203\) 9.00774 0.632219
\(204\) 0 0
\(205\) −3.50475 −0.244782
\(206\) −33.4688 −2.33188
\(207\) 0 0
\(208\) −13.0128 −0.902275
\(209\) 0 0
\(210\) 0 0
\(211\) −6.72369 −0.462878 −0.231439 0.972849i \(-0.574343\pi\)
−0.231439 + 0.972849i \(0.574343\pi\)
\(212\) 4.14022 0.284351
\(213\) 0 0
\(214\) 11.0642 0.756332
\(215\) 10.0719 0.686899
\(216\) 0 0
\(217\) 22.0351 1.49584
\(218\) −28.4047 −1.92381
\(219\) 0 0
\(220\) −2.47565 −0.166908
\(221\) 19.6040 1.31871
\(222\) 0 0
\(223\) 4.57667 0.306476 0.153238 0.988189i \(-0.451030\pi\)
0.153238 + 0.988189i \(0.451030\pi\)
\(224\) 20.4611 1.36712
\(225\) 0 0
\(226\) −11.4338 −0.760563
\(227\) −15.8425 −1.05151 −0.525753 0.850637i \(-0.676217\pi\)
−0.525753 + 0.850637i \(0.676217\pi\)
\(228\) 0 0
\(229\) 3.86753 0.255573 0.127787 0.991802i \(-0.459213\pi\)
0.127787 + 0.991802i \(0.459213\pi\)
\(230\) 10.9017 0.718835
\(231\) 0 0
\(232\) 2.75103 0.180614
\(233\) 23.7246 1.55425 0.777126 0.629345i \(-0.216677\pi\)
0.777126 + 0.629345i \(0.216677\pi\)
\(234\) 0 0
\(235\) 1.94087 0.126609
\(236\) −12.8871 −0.838880
\(237\) 0 0
\(238\) −38.4543 −2.49262
\(239\) −4.54664 −0.294097 −0.147049 0.989129i \(-0.546977\pi\)
−0.147049 + 0.989129i \(0.546977\pi\)
\(240\) 0 0
\(241\) 1.09327 0.0704239 0.0352120 0.999380i \(-0.488789\pi\)
0.0352120 + 0.999380i \(0.488789\pi\)
\(242\) −14.3277 −0.921019
\(243\) 0 0
\(244\) 0.943563 0.0604054
\(245\) −1.13516 −0.0725229
\(246\) 0 0
\(247\) 0 0
\(248\) 6.72967 0.427335
\(249\) 0 0
\(250\) 15.2490 0.964430
\(251\) −13.7733 −0.869364 −0.434682 0.900584i \(-0.643139\pi\)
−0.434682 + 0.900584i \(0.643139\pi\)
\(252\) 0 0
\(253\) −12.1206 −0.762017
\(254\) −22.4047 −1.40579
\(255\) 0 0
\(256\) 20.7023 1.29390
\(257\) 12.8675 0.802654 0.401327 0.915935i \(-0.368549\pi\)
0.401327 + 0.915935i \(0.368549\pi\)
\(258\) 0 0
\(259\) 8.17024 0.507674
\(260\) −3.71688 −0.230511
\(261\) 0 0
\(262\) 4.49525 0.277718
\(263\) 13.8425 0.853568 0.426784 0.904354i \(-0.359646\pi\)
0.426784 + 0.904354i \(0.359646\pi\)
\(264\) 0 0
\(265\) −2.37639 −0.145981
\(266\) 0 0
\(267\) 0 0
\(268\) 5.63041 0.343932
\(269\) −13.8871 −0.846713 −0.423357 0.905963i \(-0.639148\pi\)
−0.423357 + 0.905963i \(0.639148\pi\)
\(270\) 0 0
\(271\) 5.89393 0.358031 0.179015 0.983846i \(-0.442709\pi\)
0.179015 + 0.983846i \(0.442709\pi\)
\(272\) −33.5185 −2.03236
\(273\) 0 0
\(274\) 41.0137 2.47773
\(275\) −7.76651 −0.468338
\(276\) 0 0
\(277\) −4.53890 −0.272716 −0.136358 0.990660i \(-0.543540\pi\)
−0.136358 + 0.990660i \(0.543540\pi\)
\(278\) 15.5398 0.932017
\(279\) 0 0
\(280\) −2.22668 −0.133070
\(281\) −17.0324 −1.01607 −0.508034 0.861337i \(-0.669627\pi\)
−0.508034 + 0.861337i \(0.669627\pi\)
\(282\) 0 0
\(283\) 22.7638 1.35317 0.676584 0.736365i \(-0.263459\pi\)
0.676584 + 0.736365i \(0.263459\pi\)
\(284\) −11.4192 −0.677606
\(285\) 0 0
\(286\) 9.52704 0.563345
\(287\) −11.4757 −0.677386
\(288\) 0 0
\(289\) 33.4962 1.97036
\(290\) 5.17024 0.303607
\(291\) 0 0
\(292\) −15.3327 −0.897281
\(293\) −5.55943 −0.324785 −0.162393 0.986726i \(-0.551921\pi\)
−0.162393 + 0.986726i \(0.551921\pi\)
\(294\) 0 0
\(295\) 7.39693 0.430666
\(296\) 2.49525 0.145034
\(297\) 0 0
\(298\) −14.4388 −0.836418
\(299\) −18.1976 −1.05239
\(300\) 0 0
\(301\) 32.9786 1.90086
\(302\) 11.1702 0.642775
\(303\) 0 0
\(304\) 0 0
\(305\) −0.541584 −0.0310110
\(306\) 0 0
\(307\) 11.8307 0.675213 0.337607 0.941287i \(-0.390383\pi\)
0.337607 + 0.941287i \(0.390383\pi\)
\(308\) −8.10607 −0.461886
\(309\) 0 0
\(310\) 12.6477 0.718338
\(311\) 18.0428 1.02311 0.511557 0.859249i \(-0.329069\pi\)
0.511557 + 0.859249i \(0.329069\pi\)
\(312\) 0 0
\(313\) 6.89393 0.389668 0.194834 0.980836i \(-0.437583\pi\)
0.194834 + 0.980836i \(0.437583\pi\)
\(314\) −19.5398 −1.10270
\(315\) 0 0
\(316\) −2.46791 −0.138831
\(317\) −33.3259 −1.87177 −0.935886 0.352304i \(-0.885398\pi\)
−0.935886 + 0.352304i \(0.885398\pi\)
\(318\) 0 0
\(319\) −5.74834 −0.321845
\(320\) 3.44831 0.192766
\(321\) 0 0
\(322\) 35.6955 1.98923
\(323\) 0 0
\(324\) 0 0
\(325\) −11.6604 −0.646805
\(326\) 18.9290 1.04838
\(327\) 0 0
\(328\) −3.50475 −0.193517
\(329\) 6.35504 0.350365
\(330\) 0 0
\(331\) −4.94356 −0.271723 −0.135861 0.990728i \(-0.543380\pi\)
−0.135861 + 0.990728i \(0.543380\pi\)
\(332\) −1.50980 −0.0828610
\(333\) 0 0
\(334\) 15.2763 0.835883
\(335\) −3.23173 −0.176568
\(336\) 0 0
\(337\) −9.41921 −0.513097 −0.256549 0.966531i \(-0.582585\pi\)
−0.256549 + 0.966531i \(0.582585\pi\)
\(338\) −10.1284 −0.550910
\(339\) 0 0
\(340\) −9.57398 −0.519222
\(341\) −14.0618 −0.761490
\(342\) 0 0
\(343\) 16.4388 0.887613
\(344\) 10.0719 0.543041
\(345\) 0 0
\(346\) −9.98545 −0.536821
\(347\) 11.8648 0.636938 0.318469 0.947933i \(-0.396831\pi\)
0.318469 + 0.947933i \(0.396831\pi\)
\(348\) 0 0
\(349\) 21.9418 1.17452 0.587259 0.809399i \(-0.300207\pi\)
0.587259 + 0.809399i \(0.300207\pi\)
\(350\) 22.8726 1.22259
\(351\) 0 0
\(352\) −13.0574 −0.695960
\(353\) −3.89393 −0.207253 −0.103627 0.994616i \(-0.533045\pi\)
−0.103627 + 0.994616i \(0.533045\pi\)
\(354\) 0 0
\(355\) 6.55438 0.347870
\(356\) 26.1334 1.38507
\(357\) 0 0
\(358\) −32.0009 −1.69130
\(359\) 12.0051 0.633602 0.316801 0.948492i \(-0.397391\pi\)
0.316801 + 0.948492i \(0.397391\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 32.0797 1.68607
\(363\) 0 0
\(364\) −12.1702 −0.637894
\(365\) 8.80066 0.460648
\(366\) 0 0
\(367\) −26.8033 −1.39912 −0.699562 0.714572i \(-0.746621\pi\)
−0.699562 + 0.714572i \(0.746621\pi\)
\(368\) 31.1138 1.62192
\(369\) 0 0
\(370\) 4.68954 0.243798
\(371\) −7.78106 −0.403972
\(372\) 0 0
\(373\) 28.5817 1.47991 0.739953 0.672659i \(-0.234848\pi\)
0.739953 + 0.672659i \(0.234848\pi\)
\(374\) 24.5398 1.26892
\(375\) 0 0
\(376\) 1.94087 0.100093
\(377\) −8.63041 −0.444489
\(378\) 0 0
\(379\) 3.09833 0.159150 0.0795752 0.996829i \(-0.474644\pi\)
0.0795752 + 0.996829i \(0.474644\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6.81016 −0.348438
\(383\) −28.6236 −1.46260 −0.731299 0.682057i \(-0.761086\pi\)
−0.731299 + 0.682057i \(0.761086\pi\)
\(384\) 0 0
\(385\) 4.65270 0.237124
\(386\) 9.62866 0.490086
\(387\) 0 0
\(388\) 9.04189 0.459032
\(389\) 22.4142 1.13644 0.568222 0.822876i \(-0.307632\pi\)
0.568222 + 0.822876i \(0.307632\pi\)
\(390\) 0 0
\(391\) −46.8735 −2.37050
\(392\) −1.13516 −0.0573344
\(393\) 0 0
\(394\) 17.1557 0.864292
\(395\) 1.41653 0.0712732
\(396\) 0 0
\(397\) −13.7314 −0.689161 −0.344580 0.938757i \(-0.611979\pi\)
−0.344580 + 0.938757i \(0.611979\pi\)
\(398\) 41.5057 2.08049
\(399\) 0 0
\(400\) 19.9368 0.996838
\(401\) −29.2867 −1.46251 −0.731255 0.682104i \(-0.761065\pi\)
−0.731255 + 0.682104i \(0.761065\pi\)
\(402\) 0 0
\(403\) −21.1121 −1.05167
\(404\) 6.59627 0.328177
\(405\) 0 0
\(406\) 16.9290 0.840173
\(407\) −5.21389 −0.258443
\(408\) 0 0
\(409\) 2.33544 0.115480 0.0577400 0.998332i \(-0.481611\pi\)
0.0577400 + 0.998332i \(0.481611\pi\)
\(410\) −6.58677 −0.325297
\(411\) 0 0
\(412\) −27.2841 −1.34419
\(413\) 24.2199 1.19178
\(414\) 0 0
\(415\) 0.866592 0.0425393
\(416\) −19.6040 −0.961166
\(417\) 0 0
\(418\) 0 0
\(419\) −2.27362 −0.111074 −0.0555369 0.998457i \(-0.517687\pi\)
−0.0555369 + 0.998457i \(0.517687\pi\)
\(420\) 0 0
\(421\) −19.0182 −0.926889 −0.463444 0.886126i \(-0.653387\pi\)
−0.463444 + 0.886126i \(0.653387\pi\)
\(422\) −12.6364 −0.615130
\(423\) 0 0
\(424\) −2.37639 −0.115408
\(425\) −30.0351 −1.45692
\(426\) 0 0
\(427\) −1.77332 −0.0858169
\(428\) 9.01960 0.435979
\(429\) 0 0
\(430\) 18.9290 0.912838
\(431\) −12.7939 −0.616258 −0.308129 0.951345i \(-0.599703\pi\)
−0.308129 + 0.951345i \(0.599703\pi\)
\(432\) 0 0
\(433\) −14.5749 −0.700426 −0.350213 0.936670i \(-0.613891\pi\)
−0.350213 + 0.936670i \(0.613891\pi\)
\(434\) 41.4124 1.98786
\(435\) 0 0
\(436\) −23.1557 −1.10896
\(437\) 0 0
\(438\) 0 0
\(439\) −24.6195 −1.17502 −0.587512 0.809215i \(-0.699893\pi\)
−0.587512 + 0.809215i \(0.699893\pi\)
\(440\) 1.42097 0.0677421
\(441\) 0 0
\(442\) 36.8435 1.75247
\(443\) −38.5354 −1.83087 −0.915436 0.402464i \(-0.868154\pi\)
−0.915436 + 0.402464i \(0.868154\pi\)
\(444\) 0 0
\(445\) −15.0000 −0.711068
\(446\) 8.60132 0.407284
\(447\) 0 0
\(448\) 11.2909 0.533443
\(449\) −35.1807 −1.66028 −0.830139 0.557556i \(-0.811739\pi\)
−0.830139 + 0.557556i \(0.811739\pi\)
\(450\) 0 0
\(451\) 7.32325 0.344839
\(452\) −9.32089 −0.438418
\(453\) 0 0
\(454\) −29.7743 −1.39737
\(455\) 6.98545 0.327483
\(456\) 0 0
\(457\) −13.7983 −0.645457 −0.322729 0.946492i \(-0.604600\pi\)
−0.322729 + 0.946492i \(0.604600\pi\)
\(458\) 7.26857 0.339638
\(459\) 0 0
\(460\) 8.88713 0.414364
\(461\) −24.2722 −1.13047 −0.565234 0.824930i \(-0.691214\pi\)
−0.565234 + 0.824930i \(0.691214\pi\)
\(462\) 0 0
\(463\) −11.2909 −0.524731 −0.262365 0.964969i \(-0.584503\pi\)
−0.262365 + 0.964969i \(0.584503\pi\)
\(464\) 14.7561 0.685034
\(465\) 0 0
\(466\) 44.5877 2.06549
\(467\) 4.78787 0.221556 0.110778 0.993845i \(-0.464666\pi\)
0.110778 + 0.993845i \(0.464666\pi\)
\(468\) 0 0
\(469\) −10.5817 −0.488618
\(470\) 3.64765 0.168254
\(471\) 0 0
\(472\) 7.39693 0.340471
\(473\) −21.0455 −0.967674
\(474\) 0 0
\(475\) 0 0
\(476\) −31.3482 −1.43684
\(477\) 0 0
\(478\) −8.54488 −0.390834
\(479\) 16.9094 0.772611 0.386305 0.922371i \(-0.373751\pi\)
0.386305 + 0.922371i \(0.373751\pi\)
\(480\) 0 0
\(481\) −7.82800 −0.356926
\(482\) 2.05468 0.0935882
\(483\) 0 0
\(484\) −11.6800 −0.530911
\(485\) −5.18984 −0.235659
\(486\) 0 0
\(487\) −7.76382 −0.351812 −0.175906 0.984407i \(-0.556286\pi\)
−0.175906 + 0.984407i \(0.556286\pi\)
\(488\) −0.541584 −0.0245164
\(489\) 0 0
\(490\) −2.13341 −0.0963775
\(491\) 14.5253 0.655517 0.327758 0.944762i \(-0.393707\pi\)
0.327758 + 0.944762i \(0.393707\pi\)
\(492\) 0 0
\(493\) −22.2303 −1.00120
\(494\) 0 0
\(495\) 0 0
\(496\) 36.0969 1.62080
\(497\) 21.4611 0.962662
\(498\) 0 0
\(499\) 28.2695 1.26552 0.632758 0.774349i \(-0.281923\pi\)
0.632758 + 0.774349i \(0.281923\pi\)
\(500\) 12.4311 0.555935
\(501\) 0 0
\(502\) −25.8854 −1.15532
\(503\) 38.0624 1.69712 0.848560 0.529100i \(-0.177470\pi\)
0.848560 + 0.529100i \(0.177470\pi\)
\(504\) 0 0
\(505\) −3.78611 −0.168480
\(506\) −22.7793 −1.01266
\(507\) 0 0
\(508\) −18.2645 −0.810354
\(509\) −13.7520 −0.609545 −0.304773 0.952425i \(-0.598580\pi\)
−0.304773 + 0.952425i \(0.598580\pi\)
\(510\) 0 0
\(511\) 28.8161 1.27475
\(512\) 25.2226 1.11469
\(513\) 0 0
\(514\) 24.1830 1.06667
\(515\) 15.6604 0.690082
\(516\) 0 0
\(517\) −4.05550 −0.178361
\(518\) 15.3550 0.674662
\(519\) 0 0
\(520\) 2.13341 0.0935561
\(521\) 15.3942 0.674434 0.337217 0.941427i \(-0.390514\pi\)
0.337217 + 0.941427i \(0.390514\pi\)
\(522\) 0 0
\(523\) −0.260830 −0.0114053 −0.00570265 0.999984i \(-0.501815\pi\)
−0.00570265 + 0.999984i \(0.501815\pi\)
\(524\) 3.66456 0.160087
\(525\) 0 0
\(526\) 26.0155 1.13433
\(527\) −54.3806 −2.36886
\(528\) 0 0
\(529\) 20.5107 0.891771
\(530\) −4.46616 −0.193997
\(531\) 0 0
\(532\) 0 0
\(533\) 10.9949 0.476244
\(534\) 0 0
\(535\) −5.17705 −0.223823
\(536\) −3.23173 −0.139590
\(537\) 0 0
\(538\) −26.0993 −1.12522
\(539\) 2.37195 0.102167
\(540\) 0 0
\(541\) 1.16519 0.0500955 0.0250478 0.999686i \(-0.492026\pi\)
0.0250478 + 0.999686i \(0.492026\pi\)
\(542\) 11.0770 0.475797
\(543\) 0 0
\(544\) −50.4962 −2.16501
\(545\) 13.2909 0.569318
\(546\) 0 0
\(547\) −5.52259 −0.236129 −0.118065 0.993006i \(-0.537669\pi\)
−0.118065 + 0.993006i \(0.537669\pi\)
\(548\) 33.4347 1.42826
\(549\) 0 0
\(550\) −14.5963 −0.622387
\(551\) 0 0
\(552\) 0 0
\(553\) 4.63816 0.197234
\(554\) −8.53033 −0.362419
\(555\) 0 0
\(556\) 12.6682 0.537251
\(557\) 29.6560 1.25657 0.628283 0.777985i \(-0.283758\pi\)
0.628283 + 0.777985i \(0.283758\pi\)
\(558\) 0 0
\(559\) −31.5972 −1.33642
\(560\) −11.9436 −0.504708
\(561\) 0 0
\(562\) −32.0104 −1.35028
\(563\) 12.3078 0.518711 0.259355 0.965782i \(-0.416490\pi\)
0.259355 + 0.965782i \(0.416490\pi\)
\(564\) 0 0
\(565\) 5.34998 0.225076
\(566\) 42.7820 1.79826
\(567\) 0 0
\(568\) 6.55438 0.275016
\(569\) 24.3054 1.01894 0.509468 0.860490i \(-0.329842\pi\)
0.509468 + 0.860490i \(0.329842\pi\)
\(570\) 0 0
\(571\) −7.99731 −0.334677 −0.167339 0.985899i \(-0.553517\pi\)
−0.167339 + 0.985899i \(0.553517\pi\)
\(572\) 7.76651 0.324734
\(573\) 0 0
\(574\) −21.5672 −0.900196
\(575\) 27.8803 1.16269
\(576\) 0 0
\(577\) −11.6970 −0.486951 −0.243475 0.969907i \(-0.578287\pi\)
−0.243475 + 0.969907i \(0.578287\pi\)
\(578\) 62.9522 2.61847
\(579\) 0 0
\(580\) 4.21482 0.175011
\(581\) 2.83750 0.117719
\(582\) 0 0
\(583\) 4.96553 0.205651
\(584\) 8.80066 0.364174
\(585\) 0 0
\(586\) −10.4483 −0.431616
\(587\) −6.49289 −0.267990 −0.133995 0.990982i \(-0.542781\pi\)
−0.133995 + 0.990982i \(0.542781\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 13.9017 0.572323
\(591\) 0 0
\(592\) 13.3841 0.550084
\(593\) −22.8821 −0.939654 −0.469827 0.882758i \(-0.655684\pi\)
−0.469827 + 0.882758i \(0.655684\pi\)
\(594\) 0 0
\(595\) 17.9932 0.737649
\(596\) −11.7706 −0.482144
\(597\) 0 0
\(598\) −34.2003 −1.39855
\(599\) 27.6040 1.12787 0.563935 0.825819i \(-0.309287\pi\)
0.563935 + 0.825819i \(0.309287\pi\)
\(600\) 0 0
\(601\) 14.1310 0.576417 0.288209 0.957568i \(-0.406940\pi\)
0.288209 + 0.957568i \(0.406940\pi\)
\(602\) 61.9796 2.52610
\(603\) 0 0
\(604\) 9.10607 0.370521
\(605\) 6.70409 0.272560
\(606\) 0 0
\(607\) −9.50980 −0.385991 −0.192995 0.981200i \(-0.561820\pi\)
−0.192995 + 0.981200i \(0.561820\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1.01785 −0.0412114
\(611\) −6.08883 −0.246328
\(612\) 0 0
\(613\) −42.1165 −1.70107 −0.850535 0.525919i \(-0.823721\pi\)
−0.850535 + 0.525919i \(0.823721\pi\)
\(614\) 22.2344 0.897308
\(615\) 0 0
\(616\) 4.65270 0.187463
\(617\) 28.9617 1.16596 0.582978 0.812488i \(-0.301887\pi\)
0.582978 + 0.812488i \(0.301887\pi\)
\(618\) 0 0
\(619\) 30.9195 1.24276 0.621380 0.783509i \(-0.286572\pi\)
0.621380 + 0.783509i \(0.286572\pi\)
\(620\) 10.3105 0.414078
\(621\) 0 0
\(622\) 33.9094 1.35964
\(623\) −49.1147 −1.96774
\(624\) 0 0
\(625\) 13.9982 0.559930
\(626\) 12.9564 0.517840
\(627\) 0 0
\(628\) −15.9290 −0.635637
\(629\) −20.1634 −0.803969
\(630\) 0 0
\(631\) −8.57491 −0.341362 −0.170681 0.985326i \(-0.554597\pi\)
−0.170681 + 0.985326i \(0.554597\pi\)
\(632\) 1.41653 0.0563464
\(633\) 0 0
\(634\) −62.6323 −2.48745
\(635\) 10.4834 0.416021
\(636\) 0 0
\(637\) 3.56118 0.141099
\(638\) −10.8033 −0.427709
\(639\) 0 0
\(640\) −6.01724 −0.237852
\(641\) 26.5229 1.04759 0.523796 0.851844i \(-0.324515\pi\)
0.523796 + 0.851844i \(0.324515\pi\)
\(642\) 0 0
\(643\) −21.0137 −0.828700 −0.414350 0.910118i \(-0.635991\pi\)
−0.414350 + 0.910118i \(0.635991\pi\)
\(644\) 29.0993 1.14667
\(645\) 0 0
\(646\) 0 0
\(647\) −38.0273 −1.49501 −0.747505 0.664257i \(-0.768748\pi\)
−0.747505 + 0.664257i \(0.768748\pi\)
\(648\) 0 0
\(649\) −15.4561 −0.606703
\(650\) −21.9145 −0.859556
\(651\) 0 0
\(652\) 15.4311 0.604328
\(653\) −33.1917 −1.29889 −0.649446 0.760408i \(-0.724999\pi\)
−0.649446 + 0.760408i \(0.724999\pi\)
\(654\) 0 0
\(655\) −2.10338 −0.0821858
\(656\) −18.7989 −0.733974
\(657\) 0 0
\(658\) 11.9436 0.465609
\(659\) −39.4201 −1.53559 −0.767795 0.640695i \(-0.778646\pi\)
−0.767795 + 0.640695i \(0.778646\pi\)
\(660\) 0 0
\(661\) 1.92808 0.0749937 0.0374968 0.999297i \(-0.488062\pi\)
0.0374968 + 0.999297i \(0.488062\pi\)
\(662\) −9.29086 −0.361100
\(663\) 0 0
\(664\) 0.866592 0.0336303
\(665\) 0 0
\(666\) 0 0
\(667\) 20.6355 0.799008
\(668\) 12.4534 0.481835
\(669\) 0 0
\(670\) −6.07367 −0.234646
\(671\) 1.13165 0.0436870
\(672\) 0 0
\(673\) −13.3865 −0.516012 −0.258006 0.966143i \(-0.583065\pi\)
−0.258006 + 0.966143i \(0.583065\pi\)
\(674\) −17.7023 −0.681868
\(675\) 0 0
\(676\) −8.25671 −0.317566
\(677\) 11.0419 0.424374 0.212187 0.977229i \(-0.431941\pi\)
0.212187 + 0.977229i \(0.431941\pi\)
\(678\) 0 0
\(679\) −16.9932 −0.652139
\(680\) 5.49525 0.210733
\(681\) 0 0
\(682\) −26.4276 −1.01196
\(683\) −9.16014 −0.350503 −0.175252 0.984524i \(-0.556074\pi\)
−0.175252 + 0.984524i \(0.556074\pi\)
\(684\) 0 0
\(685\) −19.1908 −0.733242
\(686\) 30.8949 1.17957
\(687\) 0 0
\(688\) 54.0242 2.05965
\(689\) 7.45512 0.284017
\(690\) 0 0
\(691\) −9.79385 −0.372576 −0.186288 0.982495i \(-0.559646\pi\)
−0.186288 + 0.982495i \(0.559646\pi\)
\(692\) −8.14022 −0.309445
\(693\) 0 0
\(694\) 22.2986 0.846443
\(695\) −7.27126 −0.275815
\(696\) 0 0
\(697\) 28.3209 1.07273
\(698\) 41.2371 1.56085
\(699\) 0 0
\(700\) 18.6459 0.704749
\(701\) 18.2071 0.687672 0.343836 0.939030i \(-0.388274\pi\)
0.343836 + 0.939030i \(0.388274\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −7.20533 −0.271561
\(705\) 0 0
\(706\) −7.31820 −0.275424
\(707\) −12.3969 −0.466234
\(708\) 0 0
\(709\) 42.1789 1.58406 0.792031 0.610481i \(-0.209024\pi\)
0.792031 + 0.610481i \(0.209024\pi\)
\(710\) 12.3182 0.462294
\(711\) 0 0
\(712\) −15.0000 −0.562149
\(713\) 50.4793 1.89046
\(714\) 0 0
\(715\) −4.45781 −0.166713
\(716\) −26.0874 −0.974932
\(717\) 0 0
\(718\) 22.5621 0.842011
\(719\) 4.52259 0.168664 0.0843321 0.996438i \(-0.473124\pi\)
0.0843321 + 0.996438i \(0.473124\pi\)
\(720\) 0 0
\(721\) 51.2772 1.90966
\(722\) 0 0
\(723\) 0 0
\(724\) 26.1516 0.971916
\(725\) 13.2226 0.491074
\(726\) 0 0
\(727\) 26.6932 0.989995 0.494997 0.868895i \(-0.335169\pi\)
0.494997 + 0.868895i \(0.335169\pi\)
\(728\) 6.98545 0.258898
\(729\) 0 0
\(730\) 16.5398 0.612167
\(731\) −81.3884 −3.01026
\(732\) 0 0
\(733\) −5.04963 −0.186512 −0.0932562 0.995642i \(-0.529728\pi\)
−0.0932562 + 0.995642i \(0.529728\pi\)
\(734\) −50.3738 −1.85933
\(735\) 0 0
\(736\) 46.8735 1.72778
\(737\) 6.75278 0.248742
\(738\) 0 0
\(739\) −8.42427 −0.309892 −0.154946 0.987923i \(-0.549520\pi\)
−0.154946 + 0.987923i \(0.549520\pi\)
\(740\) 3.82295 0.140534
\(741\) 0 0
\(742\) −14.6236 −0.536850
\(743\) 52.9846 1.94382 0.971909 0.235358i \(-0.0756262\pi\)
0.971909 + 0.235358i \(0.0756262\pi\)
\(744\) 0 0
\(745\) 6.75608 0.247524
\(746\) 53.7161 1.96668
\(747\) 0 0
\(748\) 20.0051 0.731457
\(749\) −16.9513 −0.619387
\(750\) 0 0
\(751\) 11.9172 0.434863 0.217432 0.976076i \(-0.430232\pi\)
0.217432 + 0.976076i \(0.430232\pi\)
\(752\) 10.4105 0.379633
\(753\) 0 0
\(754\) −16.2199 −0.590693
\(755\) −5.22668 −0.190218
\(756\) 0 0
\(757\) −30.8256 −1.12038 −0.560188 0.828365i \(-0.689271\pi\)
−0.560188 + 0.828365i \(0.689271\pi\)
\(758\) 5.82295 0.211499
\(759\) 0 0
\(760\) 0 0
\(761\) −43.9053 −1.59157 −0.795783 0.605582i \(-0.792940\pi\)
−0.795783 + 0.605582i \(0.792940\pi\)
\(762\) 0 0
\(763\) 43.5185 1.57547
\(764\) −5.55169 −0.200853
\(765\) 0 0
\(766\) −53.7948 −1.94368
\(767\) −23.2053 −0.837896
\(768\) 0 0
\(769\) −8.86247 −0.319589 −0.159794 0.987150i \(-0.551083\pi\)
−0.159794 + 0.987150i \(0.551083\pi\)
\(770\) 8.74422 0.315120
\(771\) 0 0
\(772\) 7.84936 0.282504
\(773\) 44.6432 1.60570 0.802852 0.596178i \(-0.203315\pi\)
0.802852 + 0.596178i \(0.203315\pi\)
\(774\) 0 0
\(775\) 32.3455 1.16189
\(776\) −5.18984 −0.186305
\(777\) 0 0
\(778\) 42.1248 1.51025
\(779\) 0 0
\(780\) 0 0
\(781\) −13.6955 −0.490064
\(782\) −88.0934 −3.15021
\(783\) 0 0
\(784\) −6.08883 −0.217458
\(785\) 9.14290 0.326324
\(786\) 0 0
\(787\) 18.5054 0.659645 0.329822 0.944043i \(-0.393011\pi\)
0.329822 + 0.944043i \(0.393011\pi\)
\(788\) 13.9855 0.498211
\(789\) 0 0
\(790\) 2.66220 0.0947168
\(791\) 17.5175 0.622852
\(792\) 0 0
\(793\) 1.69904 0.0603345
\(794\) −25.8066 −0.915844
\(795\) 0 0
\(796\) 33.8357 1.19928
\(797\) −15.3209 −0.542694 −0.271347 0.962482i \(-0.587469\pi\)
−0.271347 + 0.962482i \(0.587469\pi\)
\(798\) 0 0
\(799\) −15.6837 −0.554848
\(800\) 30.0351 1.06190
\(801\) 0 0
\(802\) −55.0411 −1.94357
\(803\) −18.3892 −0.648940
\(804\) 0 0
\(805\) −16.7023 −0.588680
\(806\) −39.6777 −1.39759
\(807\) 0 0
\(808\) −3.78611 −0.133195
\(809\) 14.0960 0.495588 0.247794 0.968813i \(-0.420294\pi\)
0.247794 + 0.968813i \(0.420294\pi\)
\(810\) 0 0
\(811\) 43.7306 1.53559 0.767795 0.640696i \(-0.221354\pi\)
0.767795 + 0.640696i \(0.221354\pi\)
\(812\) 13.8007 0.484308
\(813\) 0 0
\(814\) −9.79890 −0.343451
\(815\) −8.85710 −0.310251
\(816\) 0 0
\(817\) 0 0
\(818\) 4.38919 0.153464
\(819\) 0 0
\(820\) −5.36959 −0.187514
\(821\) 12.8966 0.450095 0.225048 0.974348i \(-0.427746\pi\)
0.225048 + 0.974348i \(0.427746\pi\)
\(822\) 0 0
\(823\) 31.0428 1.08208 0.541042 0.840995i \(-0.318030\pi\)
0.541042 + 0.840995i \(0.318030\pi\)
\(824\) 15.6604 0.545557
\(825\) 0 0
\(826\) 45.5185 1.58379
\(827\) 26.6049 0.925144 0.462572 0.886582i \(-0.346927\pi\)
0.462572 + 0.886582i \(0.346927\pi\)
\(828\) 0 0
\(829\) −48.3664 −1.67983 −0.839917 0.542714i \(-0.817397\pi\)
−0.839917 + 0.542714i \(0.817397\pi\)
\(830\) 1.62866 0.0565316
\(831\) 0 0
\(832\) −10.8179 −0.375043
\(833\) 9.17293 0.317823
\(834\) 0 0
\(835\) −7.14796 −0.247365
\(836\) 0 0
\(837\) 0 0
\(838\) −4.27301 −0.147609
\(839\) −17.4929 −0.603922 −0.301961 0.953320i \(-0.597641\pi\)
−0.301961 + 0.953320i \(0.597641\pi\)
\(840\) 0 0
\(841\) −19.2134 −0.662531
\(842\) −35.7425 −1.23177
\(843\) 0 0
\(844\) −10.3013 −0.354585
\(845\) 4.73917 0.163032
\(846\) 0 0
\(847\) 21.9513 0.754256
\(848\) −12.7466 −0.437720
\(849\) 0 0
\(850\) −56.4475 −1.93613
\(851\) 18.7169 0.641606
\(852\) 0 0
\(853\) −56.6596 −1.93999 −0.969994 0.243128i \(-0.921827\pi\)
−0.969994 + 0.243128i \(0.921827\pi\)
\(854\) −3.33275 −0.114044
\(855\) 0 0
\(856\) −5.17705 −0.176948
\(857\) 29.1352 0.995238 0.497619 0.867396i \(-0.334208\pi\)
0.497619 + 0.867396i \(0.334208\pi\)
\(858\) 0 0
\(859\) −17.9135 −0.611202 −0.305601 0.952160i \(-0.598857\pi\)
−0.305601 + 0.952160i \(0.598857\pi\)
\(860\) 15.4311 0.526195
\(861\) 0 0
\(862\) −24.0446 −0.818962
\(863\) −23.2746 −0.792275 −0.396138 0.918191i \(-0.629650\pi\)
−0.396138 + 0.918191i \(0.629650\pi\)
\(864\) 0 0
\(865\) 4.67230 0.158863
\(866\) −27.3919 −0.930814
\(867\) 0 0
\(868\) 33.7597 1.14588
\(869\) −2.95987 −0.100407
\(870\) 0 0
\(871\) 10.1385 0.343529
\(872\) 13.2909 0.450085
\(873\) 0 0
\(874\) 0 0
\(875\) −23.3628 −0.789806
\(876\) 0 0
\(877\) −27.6372 −0.933243 −0.466621 0.884457i \(-0.654529\pi\)
−0.466621 + 0.884457i \(0.654529\pi\)
\(878\) −46.2695 −1.56152
\(879\) 0 0
\(880\) 7.62185 0.256933
\(881\) −15.4037 −0.518965 −0.259482 0.965748i \(-0.583552\pi\)
−0.259482 + 0.965748i \(0.583552\pi\)
\(882\) 0 0
\(883\) 22.7314 0.764974 0.382487 0.923961i \(-0.375068\pi\)
0.382487 + 0.923961i \(0.375068\pi\)
\(884\) 30.0351 1.01019
\(885\) 0 0
\(886\) −72.4228 −2.43309
\(887\) −12.0564 −0.404816 −0.202408 0.979301i \(-0.564877\pi\)
−0.202408 + 0.979301i \(0.564877\pi\)
\(888\) 0 0
\(889\) 34.3259 1.15126
\(890\) −28.1908 −0.944957
\(891\) 0 0
\(892\) 7.01186 0.234774
\(893\) 0 0
\(894\) 0 0
\(895\) 14.9736 0.500512
\(896\) −19.7023 −0.658209
\(897\) 0 0
\(898\) −66.1180 −2.20639
\(899\) 23.9404 0.798456
\(900\) 0 0
\(901\) 19.2030 0.639743
\(902\) 13.7632 0.458265
\(903\) 0 0
\(904\) 5.34998 0.177938
\(905\) −15.0104 −0.498964
\(906\) 0 0
\(907\) 35.5776 1.18133 0.590667 0.806915i \(-0.298865\pi\)
0.590667 + 0.806915i \(0.298865\pi\)
\(908\) −24.2722 −0.805501
\(909\) 0 0
\(910\) 13.1284 0.435201
\(911\) 7.00505 0.232088 0.116044 0.993244i \(-0.462979\pi\)
0.116044 + 0.993244i \(0.462979\pi\)
\(912\) 0 0
\(913\) −1.81076 −0.0599276
\(914\) −25.9323 −0.857765
\(915\) 0 0
\(916\) 5.92539 0.195780
\(917\) −6.88713 −0.227433
\(918\) 0 0
\(919\) −8.36453 −0.275920 −0.137960 0.990438i \(-0.544055\pi\)
−0.137960 + 0.990438i \(0.544055\pi\)
\(920\) −5.10101 −0.168175
\(921\) 0 0
\(922\) −45.6168 −1.50231
\(923\) −20.5621 −0.676810
\(924\) 0 0
\(925\) 11.9932 0.394334
\(926\) −21.2199 −0.697328
\(927\) 0 0
\(928\) 22.2303 0.729745
\(929\) −50.8685 −1.66894 −0.834470 0.551053i \(-0.814226\pi\)
−0.834470 + 0.551053i \(0.814226\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 36.3482 1.19063
\(933\) 0 0
\(934\) 8.99825 0.294432
\(935\) −11.4825 −0.375517
\(936\) 0 0
\(937\) 23.5817 0.770381 0.385191 0.922837i \(-0.374136\pi\)
0.385191 + 0.922837i \(0.374136\pi\)
\(938\) −19.8871 −0.649338
\(939\) 0 0
\(940\) 2.97359 0.0969879
\(941\) −44.6901 −1.45686 −0.728429 0.685122i \(-0.759749\pi\)
−0.728429 + 0.685122i \(0.759749\pi\)
\(942\) 0 0
\(943\) −26.2891 −0.856091
\(944\) 39.6759 1.29134
\(945\) 0 0
\(946\) −39.5526 −1.28597
\(947\) 42.1786 1.37062 0.685310 0.728251i \(-0.259667\pi\)
0.685310 + 0.728251i \(0.259667\pi\)
\(948\) 0 0
\(949\) −27.6091 −0.896228
\(950\) 0 0
\(951\) 0 0
\(952\) 17.9932 0.583163
\(953\) 51.7502 1.67635 0.838177 0.545399i \(-0.183622\pi\)
0.838177 + 0.545399i \(0.183622\pi\)
\(954\) 0 0
\(955\) 3.18655 0.103114
\(956\) −6.96585 −0.225292
\(957\) 0 0
\(958\) 31.7793 1.02674
\(959\) −62.8367 −2.02910
\(960\) 0 0
\(961\) 27.5639 0.889157
\(962\) −14.7118 −0.474328
\(963\) 0 0
\(964\) 1.67499 0.0539479
\(965\) −4.50536 −0.145033
\(966\) 0 0
\(967\) 17.8544 0.574159 0.287080 0.957907i \(-0.407316\pi\)
0.287080 + 0.957907i \(0.407316\pi\)
\(968\) 6.70409 0.215478
\(969\) 0 0
\(970\) −9.75372 −0.313173
\(971\) −41.5449 −1.33324 −0.666619 0.745398i \(-0.732259\pi\)
−0.666619 + 0.745398i \(0.732259\pi\)
\(972\) 0 0
\(973\) −23.8084 −0.763262
\(974\) −14.5912 −0.467533
\(975\) 0 0
\(976\) −2.90497 −0.0929859
\(977\) 12.3527 0.395197 0.197599 0.980283i \(-0.436686\pi\)
0.197599 + 0.980283i \(0.436686\pi\)
\(978\) 0 0
\(979\) 31.3429 1.00172
\(980\) −1.73917 −0.0555558
\(981\) 0 0
\(982\) 27.2986 0.871133
\(983\) 16.2686 0.518887 0.259443 0.965758i \(-0.416461\pi\)
0.259443 + 0.965758i \(0.416461\pi\)
\(984\) 0 0
\(985\) −8.02734 −0.255772
\(986\) −41.7793 −1.33052
\(987\) 0 0
\(988\) 0 0
\(989\) 75.5494 2.40233
\(990\) 0 0
\(991\) −11.0993 −0.352580 −0.176290 0.984338i \(-0.556410\pi\)
−0.176290 + 0.984338i \(0.556410\pi\)
\(992\) 54.3806 1.72659
\(993\) 0 0
\(994\) 40.3337 1.27931
\(995\) −19.4210 −0.615686
\(996\) 0 0
\(997\) −15.6459 −0.495511 −0.247755 0.968823i \(-0.579693\pi\)
−0.247755 + 0.968823i \(0.579693\pi\)
\(998\) 53.1293 1.68178
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.x.1.3 3
3.2 odd 2 1083.2.a.n.1.1 3
19.3 odd 18 171.2.u.a.28.1 6
19.13 odd 18 171.2.u.a.55.1 6
19.18 odd 2 3249.2.a.w.1.1 3
57.32 even 18 57.2.i.a.55.1 yes 6
57.41 even 18 57.2.i.a.28.1 6
57.56 even 2 1083.2.a.m.1.3 3
228.155 odd 18 912.2.bo.b.769.1 6
228.203 odd 18 912.2.bo.b.625.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.i.a.28.1 6 57.41 even 18
57.2.i.a.55.1 yes 6 57.32 even 18
171.2.u.a.28.1 6 19.3 odd 18
171.2.u.a.55.1 6 19.13 odd 18
912.2.bo.b.625.1 6 228.203 odd 18
912.2.bo.b.769.1 6 228.155 odd 18
1083.2.a.m.1.3 3 57.56 even 2
1083.2.a.n.1.1 3 3.2 odd 2
3249.2.a.w.1.1 3 19.18 odd 2
3249.2.a.x.1.3 3 1.1 even 1 trivial