Properties

Label 3249.2.a.w.1.2
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,3,0,-3,-3,0,6,3,0,3,6,0,-6,9,0,0,-3,0,3,-6,0,-6,12,0, -3,-9,0,24,9,0,-15,3,0,6,0,0,-9,6,0,-21,12,0,9,3,0,-12,9,0,-6,18,0,6,-3, 0,-12,15,0,-9,3,0,-3,15,0,-6,3,0,-3,9,0,-6,3,0,0,0,0,9,-3,0,21,15,0,-6, 18,0,-6,0,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.347296\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.347296 q^{2} -1.87939 q^{4} +1.34730 q^{5} -0.652704 q^{7} -1.34730 q^{8} +0.467911 q^{10} -3.94356 q^{11} +1.69459 q^{13} -0.226682 q^{14} +3.29086 q^{16} +3.83750 q^{17} -2.53209 q^{20} -1.36959 q^{22} +3.63816 q^{23} -3.18479 q^{25} +0.588526 q^{26} +1.22668 q^{28} -10.5175 q^{29} +6.46791 q^{31} +3.83750 q^{32} +1.33275 q^{34} -0.879385 q^{35} -2.94356 q^{37} -1.81521 q^{40} +1.50980 q^{41} -9.36959 q^{43} +7.41147 q^{44} +1.26352 q^{46} +12.7665 q^{47} -6.57398 q^{49} -1.10607 q^{50} -3.18479 q^{52} +10.8007 q^{53} -5.31315 q^{55} +0.879385 q^{56} -3.65270 q^{58} +2.77332 q^{59} +4.31315 q^{61} +2.24628 q^{62} -5.24897 q^{64} +2.28312 q^{65} +7.88713 q^{67} -7.21213 q^{68} -0.305407 q^{70} +5.36959 q^{71} +5.86484 q^{73} -1.02229 q^{74} +2.57398 q^{77} -3.12836 q^{79} +4.43376 q^{80} +0.524348 q^{82} +4.50980 q^{83} +5.17024 q^{85} -3.25402 q^{86} +5.31315 q^{88} +11.1334 q^{89} -1.10607 q^{91} -6.83750 q^{92} +4.43376 q^{94} +6.70233 q^{97} -2.28312 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} - 3 q^{7} - 3 q^{8} + 6 q^{10} + 3 q^{11} + 3 q^{13} + 6 q^{14} - 6 q^{16} + 9 q^{17} - 3 q^{20} + 3 q^{22} - 6 q^{23} - 6 q^{25} + 12 q^{26} - 3 q^{28} - 9 q^{29} + 24 q^{31} + 9 q^{32} - 15 q^{34}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.347296 0.245576 0.122788 0.992433i \(-0.460817\pi\)
0.122788 + 0.992433i \(0.460817\pi\)
\(3\) 0 0
\(4\) −1.87939 −0.939693
\(5\) 1.34730 0.602529 0.301265 0.953541i \(-0.402591\pi\)
0.301265 + 0.953541i \(0.402591\pi\)
\(6\) 0 0
\(7\) −0.652704 −0.246699 −0.123349 0.992363i \(-0.539364\pi\)
−0.123349 + 0.992363i \(0.539364\pi\)
\(8\) −1.34730 −0.476341
\(9\) 0 0
\(10\) 0.467911 0.147966
\(11\) −3.94356 −1.18903 −0.594514 0.804085i \(-0.702656\pi\)
−0.594514 + 0.804085i \(0.702656\pi\)
\(12\) 0 0
\(13\) 1.69459 0.469995 0.234998 0.971996i \(-0.424492\pi\)
0.234998 + 0.971996i \(0.424492\pi\)
\(14\) −0.226682 −0.0605832
\(15\) 0 0
\(16\) 3.29086 0.822715
\(17\) 3.83750 0.930730 0.465365 0.885119i \(-0.345923\pi\)
0.465365 + 0.885119i \(0.345923\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) −2.53209 −0.566192
\(21\) 0 0
\(22\) −1.36959 −0.291997
\(23\) 3.63816 0.758608 0.379304 0.925272i \(-0.376163\pi\)
0.379304 + 0.925272i \(0.376163\pi\)
\(24\) 0 0
\(25\) −3.18479 −0.636959
\(26\) 0.588526 0.115419
\(27\) 0 0
\(28\) 1.22668 0.231821
\(29\) −10.5175 −1.95306 −0.976529 0.215385i \(-0.930899\pi\)
−0.976529 + 0.215385i \(0.930899\pi\)
\(30\) 0 0
\(31\) 6.46791 1.16167 0.580836 0.814021i \(-0.302726\pi\)
0.580836 + 0.814021i \(0.302726\pi\)
\(32\) 3.83750 0.678380
\(33\) 0 0
\(34\) 1.33275 0.228564
\(35\) −0.879385 −0.148643
\(36\) 0 0
\(37\) −2.94356 −0.483919 −0.241959 0.970286i \(-0.577790\pi\)
−0.241959 + 0.970286i \(0.577790\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.81521 −0.287010
\(41\) 1.50980 0.235791 0.117896 0.993026i \(-0.462385\pi\)
0.117896 + 0.993026i \(0.462385\pi\)
\(42\) 0 0
\(43\) −9.36959 −1.42885 −0.714424 0.699713i \(-0.753311\pi\)
−0.714424 + 0.699713i \(0.753311\pi\)
\(44\) 7.41147 1.11732
\(45\) 0 0
\(46\) 1.26352 0.186296
\(47\) 12.7665 1.86219 0.931094 0.364781i \(-0.118856\pi\)
0.931094 + 0.364781i \(0.118856\pi\)
\(48\) 0 0
\(49\) −6.57398 −0.939140
\(50\) −1.10607 −0.156421
\(51\) 0 0
\(52\) −3.18479 −0.441651
\(53\) 10.8007 1.48358 0.741792 0.670630i \(-0.233976\pi\)
0.741792 + 0.670630i \(0.233976\pi\)
\(54\) 0 0
\(55\) −5.31315 −0.716425
\(56\) 0.879385 0.117513
\(57\) 0 0
\(58\) −3.65270 −0.479623
\(59\) 2.77332 0.361055 0.180528 0.983570i \(-0.442219\pi\)
0.180528 + 0.983570i \(0.442219\pi\)
\(60\) 0 0
\(61\) 4.31315 0.552242 0.276121 0.961123i \(-0.410951\pi\)
0.276121 + 0.961123i \(0.410951\pi\)
\(62\) 2.24628 0.285278
\(63\) 0 0
\(64\) −5.24897 −0.656121
\(65\) 2.28312 0.283186
\(66\) 0 0
\(67\) 7.88713 0.963566 0.481783 0.876291i \(-0.339989\pi\)
0.481783 + 0.876291i \(0.339989\pi\)
\(68\) −7.21213 −0.874600
\(69\) 0 0
\(70\) −0.305407 −0.0365032
\(71\) 5.36959 0.637253 0.318626 0.947880i \(-0.396779\pi\)
0.318626 + 0.947880i \(0.396779\pi\)
\(72\) 0 0
\(73\) 5.86484 0.686427 0.343214 0.939257i \(-0.388485\pi\)
0.343214 + 0.939257i \(0.388485\pi\)
\(74\) −1.02229 −0.118839
\(75\) 0 0
\(76\) 0 0
\(77\) 2.57398 0.293332
\(78\) 0 0
\(79\) −3.12836 −0.351967 −0.175984 0.984393i \(-0.556311\pi\)
−0.175984 + 0.984393i \(0.556311\pi\)
\(80\) 4.43376 0.495710
\(81\) 0 0
\(82\) 0.524348 0.0579046
\(83\) 4.50980 0.495015 0.247507 0.968886i \(-0.420389\pi\)
0.247507 + 0.968886i \(0.420389\pi\)
\(84\) 0 0
\(85\) 5.17024 0.560792
\(86\) −3.25402 −0.350890
\(87\) 0 0
\(88\) 5.31315 0.566383
\(89\) 11.1334 1.18014 0.590069 0.807352i \(-0.299100\pi\)
0.590069 + 0.807352i \(0.299100\pi\)
\(90\) 0 0
\(91\) −1.10607 −0.115947
\(92\) −6.83750 −0.712858
\(93\) 0 0
\(94\) 4.43376 0.457308
\(95\) 0 0
\(96\) 0 0
\(97\) 6.70233 0.680519 0.340259 0.940332i \(-0.389485\pi\)
0.340259 + 0.940332i \(0.389485\pi\)
\(98\) −2.28312 −0.230630
\(99\) 0 0
\(100\) 5.98545 0.598545
\(101\) 1.93582 0.192622 0.0963108 0.995351i \(-0.469296\pi\)
0.0963108 + 0.995351i \(0.469296\pi\)
\(102\) 0 0
\(103\) 1.03684 0.102163 0.0510813 0.998694i \(-0.483733\pi\)
0.0510813 + 0.998694i \(0.483733\pi\)
\(104\) −2.28312 −0.223878
\(105\) 0 0
\(106\) 3.75103 0.364332
\(107\) 12.2121 1.18059 0.590296 0.807187i \(-0.299011\pi\)
0.590296 + 0.807187i \(0.299011\pi\)
\(108\) 0 0
\(109\) −4.02734 −0.385749 −0.192875 0.981223i \(-0.561781\pi\)
−0.192875 + 0.981223i \(0.561781\pi\)
\(110\) −1.84524 −0.175936
\(111\) 0 0
\(112\) −2.14796 −0.202963
\(113\) 13.1925 1.24105 0.620525 0.784187i \(-0.286920\pi\)
0.620525 + 0.784187i \(0.286920\pi\)
\(114\) 0 0
\(115\) 4.90167 0.457083
\(116\) 19.7665 1.83527
\(117\) 0 0
\(118\) 0.963163 0.0886664
\(119\) −2.50475 −0.229610
\(120\) 0 0
\(121\) 4.55169 0.413790
\(122\) 1.49794 0.135617
\(123\) 0 0
\(124\) −12.1557 −1.09161
\(125\) −11.0273 −0.986315
\(126\) 0 0
\(127\) 13.2490 1.17566 0.587828 0.808986i \(-0.299983\pi\)
0.587828 + 0.808986i \(0.299983\pi\)
\(128\) −9.49794 −0.839507
\(129\) 0 0
\(130\) 0.792919 0.0695436
\(131\) −17.1780 −1.50085 −0.750424 0.660957i \(-0.770151\pi\)
−0.750424 + 0.660957i \(0.770151\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.73917 0.236628
\(135\) 0 0
\(136\) −5.17024 −0.443345
\(137\) 10.5466 0.901060 0.450530 0.892761i \(-0.351235\pi\)
0.450530 + 0.892761i \(0.351235\pi\)
\(138\) 0 0
\(139\) 10.7811 0.914438 0.457219 0.889354i \(-0.348846\pi\)
0.457219 + 0.889354i \(0.348846\pi\)
\(140\) 1.65270 0.139679
\(141\) 0 0
\(142\) 1.86484 0.156494
\(143\) −6.68273 −0.558838
\(144\) 0 0
\(145\) −14.1702 −1.17677
\(146\) 2.03684 0.168570
\(147\) 0 0
\(148\) 5.53209 0.454735
\(149\) 19.7520 1.61814 0.809072 0.587710i \(-0.199970\pi\)
0.809072 + 0.587710i \(0.199970\pi\)
\(150\) 0 0
\(151\) 3.10607 0.252768 0.126384 0.991981i \(-0.459663\pi\)
0.126384 + 0.991981i \(0.459663\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0.893933 0.0720352
\(155\) 8.71419 0.699941
\(156\) 0 0
\(157\) 0.736482 0.0587776 0.0293888 0.999568i \(-0.490644\pi\)
0.0293888 + 0.999568i \(0.490644\pi\)
\(158\) −1.08647 −0.0864346
\(159\) 0 0
\(160\) 5.17024 0.408744
\(161\) −2.37464 −0.187148
\(162\) 0 0
\(163\) −12.6236 −0.988757 −0.494379 0.869247i \(-0.664604\pi\)
−0.494379 + 0.869247i \(0.664604\pi\)
\(164\) −2.83750 −0.221571
\(165\) 0 0
\(166\) 1.56624 0.121564
\(167\) 5.51754 0.426960 0.213480 0.976947i \(-0.431520\pi\)
0.213480 + 0.976947i \(0.431520\pi\)
\(168\) 0 0
\(169\) −10.1284 −0.779104
\(170\) 1.79561 0.137717
\(171\) 0 0
\(172\) 17.6091 1.34268
\(173\) −12.9290 −0.982975 −0.491487 0.870885i \(-0.663547\pi\)
−0.491487 + 0.870885i \(0.663547\pi\)
\(174\) 0 0
\(175\) 2.07873 0.157137
\(176\) −12.9777 −0.978232
\(177\) 0 0
\(178\) 3.86659 0.289813
\(179\) 15.0865 1.12762 0.563808 0.825906i \(-0.309336\pi\)
0.563808 + 0.825906i \(0.309336\pi\)
\(180\) 0 0
\(181\) −18.6827 −1.38868 −0.694338 0.719649i \(-0.744303\pi\)
−0.694338 + 0.719649i \(0.744303\pi\)
\(182\) −0.384133 −0.0284738
\(183\) 0 0
\(184\) −4.90167 −0.361356
\(185\) −3.96585 −0.291575
\(186\) 0 0
\(187\) −15.1334 −1.10666
\(188\) −23.9932 −1.74988
\(189\) 0 0
\(190\) 0 0
\(191\) 8.55169 0.618779 0.309389 0.950935i \(-0.399875\pi\)
0.309389 + 0.950935i \(0.399875\pi\)
\(192\) 0 0
\(193\) 16.9590 1.22074 0.610369 0.792117i \(-0.291021\pi\)
0.610369 + 0.792117i \(0.291021\pi\)
\(194\) 2.32770 0.167119
\(195\) 0 0
\(196\) 12.3550 0.882503
\(197\) −4.51754 −0.321861 −0.160931 0.986966i \(-0.551450\pi\)
−0.160931 + 0.986966i \(0.551450\pi\)
\(198\) 0 0
\(199\) −8.04694 −0.570433 −0.285216 0.958463i \(-0.592065\pi\)
−0.285216 + 0.958463i \(0.592065\pi\)
\(200\) 4.29086 0.303410
\(201\) 0 0
\(202\) 0.672304 0.0473031
\(203\) 6.86484 0.481817
\(204\) 0 0
\(205\) 2.03415 0.142071
\(206\) 0.360090 0.0250886
\(207\) 0 0
\(208\) 5.57667 0.386672
\(209\) 0 0
\(210\) 0 0
\(211\) 20.0838 1.38262 0.691312 0.722556i \(-0.257033\pi\)
0.691312 + 0.722556i \(0.257033\pi\)
\(212\) −20.2986 −1.39411
\(213\) 0 0
\(214\) 4.24123 0.289924
\(215\) −12.6236 −0.860923
\(216\) 0 0
\(217\) −4.22163 −0.286583
\(218\) −1.39868 −0.0947306
\(219\) 0 0
\(220\) 9.98545 0.673219
\(221\) 6.50299 0.437439
\(222\) 0 0
\(223\) 19.5895 1.31181 0.655904 0.754845i \(-0.272288\pi\)
0.655904 + 0.754845i \(0.272288\pi\)
\(224\) −2.50475 −0.167355
\(225\) 0 0
\(226\) 4.58172 0.304771
\(227\) 18.4979 1.22775 0.613876 0.789403i \(-0.289610\pi\)
0.613876 + 0.789403i \(0.289610\pi\)
\(228\) 0 0
\(229\) −28.1634 −1.86109 −0.930546 0.366175i \(-0.880667\pi\)
−0.930546 + 0.366175i \(0.880667\pi\)
\(230\) 1.70233 0.112249
\(231\) 0 0
\(232\) 14.1702 0.930322
\(233\) −0.155697 −0.0102000 −0.00510001 0.999987i \(-0.501623\pi\)
−0.00510001 + 0.999987i \(0.501623\pi\)
\(234\) 0 0
\(235\) 17.2003 1.12202
\(236\) −5.21213 −0.339281
\(237\) 0 0
\(238\) −0.869890 −0.0563866
\(239\) −6.63041 −0.428886 −0.214443 0.976737i \(-0.568794\pi\)
−0.214443 + 0.976737i \(0.568794\pi\)
\(240\) 0 0
\(241\) −5.26083 −0.338880 −0.169440 0.985541i \(-0.554196\pi\)
−0.169440 + 0.985541i \(0.554196\pi\)
\(242\) 1.58079 0.101617
\(243\) 0 0
\(244\) −8.10607 −0.518938
\(245\) −8.85710 −0.565859
\(246\) 0 0
\(247\) 0 0
\(248\) −8.71419 −0.553352
\(249\) 0 0
\(250\) −3.82976 −0.242215
\(251\) −14.8152 −0.935128 −0.467564 0.883959i \(-0.654868\pi\)
−0.467564 + 0.883959i \(0.654868\pi\)
\(252\) 0 0
\(253\) −14.3473 −0.902007
\(254\) 4.60132 0.288712
\(255\) 0 0
\(256\) 7.19934 0.449959
\(257\) 19.1634 1.19538 0.597691 0.801726i \(-0.296085\pi\)
0.597691 + 0.801726i \(0.296085\pi\)
\(258\) 0 0
\(259\) 1.92127 0.119382
\(260\) −4.29086 −0.266108
\(261\) 0 0
\(262\) −5.96585 −0.368572
\(263\) 16.4979 1.01731 0.508653 0.860971i \(-0.330144\pi\)
0.508653 + 0.860971i \(0.330144\pi\)
\(264\) 0 0
\(265\) 14.5517 0.893903
\(266\) 0 0
\(267\) 0 0
\(268\) −14.8229 −0.905456
\(269\) −4.21213 −0.256818 −0.128409 0.991721i \(-0.540987\pi\)
−0.128409 + 0.991721i \(0.540987\pi\)
\(270\) 0 0
\(271\) 9.16250 0.556582 0.278291 0.960497i \(-0.410232\pi\)
0.278291 + 0.960497i \(0.410232\pi\)
\(272\) 12.6287 0.765725
\(273\) 0 0
\(274\) 3.66281 0.221278
\(275\) 12.5594 0.757362
\(276\) 0 0
\(277\) −22.4953 −1.35161 −0.675804 0.737081i \(-0.736204\pi\)
−0.675804 + 0.737081i \(0.736204\pi\)
\(278\) 3.74422 0.224564
\(279\) 0 0
\(280\) 1.18479 0.0708049
\(281\) 23.5280 1.40356 0.701781 0.712393i \(-0.252389\pi\)
0.701781 + 0.712393i \(0.252389\pi\)
\(282\) 0 0
\(283\) 26.7469 1.58994 0.794969 0.606650i \(-0.207487\pi\)
0.794969 + 0.606650i \(0.207487\pi\)
\(284\) −10.0915 −0.598821
\(285\) 0 0
\(286\) −2.32089 −0.137237
\(287\) −0.985452 −0.0581694
\(288\) 0 0
\(289\) −2.27362 −0.133743
\(290\) −4.92127 −0.288987
\(291\) 0 0
\(292\) −11.0223 −0.645031
\(293\) 0.207081 0.0120978 0.00604891 0.999982i \(-0.498075\pi\)
0.00604891 + 0.999982i \(0.498075\pi\)
\(294\) 0 0
\(295\) 3.73648 0.217546
\(296\) 3.96585 0.230510
\(297\) 0 0
\(298\) 6.85978 0.397377
\(299\) 6.16519 0.356542
\(300\) 0 0
\(301\) 6.11556 0.352495
\(302\) 1.07873 0.0620737
\(303\) 0 0
\(304\) 0 0
\(305\) 5.81109 0.332742
\(306\) 0 0
\(307\) 15.3182 0.874256 0.437128 0.899399i \(-0.355996\pi\)
0.437128 + 0.899399i \(0.355996\pi\)
\(308\) −4.83750 −0.275642
\(309\) 0 0
\(310\) 3.02641 0.171888
\(311\) −15.6432 −0.887045 −0.443522 0.896263i \(-0.646271\pi\)
−0.443522 + 0.896263i \(0.646271\pi\)
\(312\) 0 0
\(313\) 10.1625 0.574419 0.287209 0.957868i \(-0.407272\pi\)
0.287209 + 0.957868i \(0.407272\pi\)
\(314\) 0.255777 0.0144344
\(315\) 0 0
\(316\) 5.87939 0.330741
\(317\) 7.64765 0.429535 0.214767 0.976665i \(-0.431101\pi\)
0.214767 + 0.976665i \(0.431101\pi\)
\(318\) 0 0
\(319\) 41.4766 2.32224
\(320\) −7.07192 −0.395332
\(321\) 0 0
\(322\) −0.824703 −0.0459589
\(323\) 0 0
\(324\) 0 0
\(325\) −5.39693 −0.299368
\(326\) −4.38413 −0.242815
\(327\) 0 0
\(328\) −2.03415 −0.112317
\(329\) −8.33275 −0.459399
\(330\) 0 0
\(331\) −4.10607 −0.225690 −0.112845 0.993613i \(-0.535996\pi\)
−0.112845 + 0.993613i \(0.535996\pi\)
\(332\) −8.47565 −0.465162
\(333\) 0 0
\(334\) 1.91622 0.104851
\(335\) 10.6263 0.580577
\(336\) 0 0
\(337\) −12.0915 −0.658667 −0.329334 0.944214i \(-0.606824\pi\)
−0.329334 + 0.944214i \(0.606824\pi\)
\(338\) −3.51754 −0.191329
\(339\) 0 0
\(340\) −9.71688 −0.526972
\(341\) −25.5066 −1.38126
\(342\) 0 0
\(343\) 8.85978 0.478383
\(344\) 12.6236 0.680619
\(345\) 0 0
\(346\) −4.49020 −0.241395
\(347\) 4.14290 0.222403 0.111201 0.993798i \(-0.464530\pi\)
0.111201 + 0.993798i \(0.464530\pi\)
\(348\) 0 0
\(349\) −0.0392007 −0.00209837 −0.00104918 0.999999i \(-0.500334\pi\)
−0.00104918 + 0.999999i \(0.500334\pi\)
\(350\) 0.721934 0.0385890
\(351\) 0 0
\(352\) −15.1334 −0.806613
\(353\) −7.16250 −0.381222 −0.190611 0.981666i \(-0.561047\pi\)
−0.190611 + 0.981666i \(0.561047\pi\)
\(354\) 0 0
\(355\) 7.23442 0.383963
\(356\) −20.9240 −1.10897
\(357\) 0 0
\(358\) 5.23947 0.276915
\(359\) 20.4415 1.07886 0.539431 0.842030i \(-0.318640\pi\)
0.539431 + 0.842030i \(0.318640\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −6.48845 −0.341025
\(363\) 0 0
\(364\) 2.07873 0.108955
\(365\) 7.90167 0.413593
\(366\) 0 0
\(367\) −1.59533 −0.0832757 −0.0416379 0.999133i \(-0.513258\pi\)
−0.0416379 + 0.999133i \(0.513258\pi\)
\(368\) 11.9727 0.624118
\(369\) 0 0
\(370\) −1.37733 −0.0716038
\(371\) −7.04963 −0.365999
\(372\) 0 0
\(373\) −12.8520 −0.665454 −0.332727 0.943023i \(-0.607969\pi\)
−0.332727 + 0.943023i \(0.607969\pi\)
\(374\) −5.25578 −0.271770
\(375\) 0 0
\(376\) −17.2003 −0.887036
\(377\) −17.8229 −0.917929
\(378\) 0 0
\(379\) −15.7023 −0.806575 −0.403287 0.915073i \(-0.632132\pi\)
−0.403287 + 0.915073i \(0.632132\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.96997 0.151957
\(383\) 16.4483 0.840469 0.420235 0.907415i \(-0.361948\pi\)
0.420235 + 0.907415i \(0.361948\pi\)
\(384\) 0 0
\(385\) 3.46791 0.176741
\(386\) 5.88981 0.299784
\(387\) 0 0
\(388\) −12.5963 −0.639479
\(389\) −7.53302 −0.381939 −0.190970 0.981596i \(-0.561163\pi\)
−0.190970 + 0.981596i \(0.561163\pi\)
\(390\) 0 0
\(391\) 13.9614 0.706059
\(392\) 8.85710 0.447351
\(393\) 0 0
\(394\) −1.56893 −0.0790413
\(395\) −4.21482 −0.212071
\(396\) 0 0
\(397\) −11.2189 −0.563062 −0.281531 0.959552i \(-0.590842\pi\)
−0.281531 + 0.959552i \(0.590842\pi\)
\(398\) −2.79467 −0.140084
\(399\) 0 0
\(400\) −10.4807 −0.524035
\(401\) −24.2550 −1.21123 −0.605617 0.795756i \(-0.707074\pi\)
−0.605617 + 0.795756i \(0.707074\pi\)
\(402\) 0 0
\(403\) 10.9605 0.545980
\(404\) −3.63816 −0.181005
\(405\) 0 0
\(406\) 2.38413 0.118323
\(407\) 11.6081 0.575393
\(408\) 0 0
\(409\) 26.2841 1.29966 0.649831 0.760078i \(-0.274840\pi\)
0.649831 + 0.760078i \(0.274840\pi\)
\(410\) 0.706452 0.0348892
\(411\) 0 0
\(412\) −1.94862 −0.0960014
\(413\) −1.81016 −0.0890719
\(414\) 0 0
\(415\) 6.07604 0.298261
\(416\) 6.50299 0.318835
\(417\) 0 0
\(418\) 0 0
\(419\) −13.2226 −0.645964 −0.322982 0.946405i \(-0.604685\pi\)
−0.322982 + 0.946405i \(0.604685\pi\)
\(420\) 0 0
\(421\) −37.0360 −1.80502 −0.902512 0.430664i \(-0.858280\pi\)
−0.902512 + 0.430664i \(0.858280\pi\)
\(422\) 6.97502 0.339539
\(423\) 0 0
\(424\) −14.5517 −0.706693
\(425\) −12.2216 −0.592836
\(426\) 0 0
\(427\) −2.81521 −0.136237
\(428\) −22.9513 −1.10939
\(429\) 0 0
\(430\) −4.38413 −0.211422
\(431\) −9.47296 −0.456297 −0.228148 0.973626i \(-0.573267\pi\)
−0.228148 + 0.973626i \(0.573267\pi\)
\(432\) 0 0
\(433\) −22.5226 −1.08237 −0.541183 0.840905i \(-0.682024\pi\)
−0.541183 + 0.840905i \(0.682024\pi\)
\(434\) −1.46616 −0.0703778
\(435\) 0 0
\(436\) 7.56893 0.362486
\(437\) 0 0
\(438\) 0 0
\(439\) −33.2327 −1.58611 −0.793054 0.609151i \(-0.791510\pi\)
−0.793054 + 0.609151i \(0.791510\pi\)
\(440\) 7.15839 0.341263
\(441\) 0 0
\(442\) 2.25847 0.107424
\(443\) −30.6290 −1.45523 −0.727613 0.685987i \(-0.759371\pi\)
−0.727613 + 0.685987i \(0.759371\pi\)
\(444\) 0 0
\(445\) 15.0000 0.711068
\(446\) 6.80335 0.322148
\(447\) 0 0
\(448\) 3.42602 0.161864
\(449\) −15.0925 −0.712257 −0.356128 0.934437i \(-0.615903\pi\)
−0.356128 + 0.934437i \(0.615903\pi\)
\(450\) 0 0
\(451\) −5.95399 −0.280363
\(452\) −24.7939 −1.16620
\(453\) 0 0
\(454\) 6.42427 0.301506
\(455\) −1.49020 −0.0698616
\(456\) 0 0
\(457\) 19.8462 0.928365 0.464182 0.885740i \(-0.346348\pi\)
0.464182 + 0.885740i \(0.346348\pi\)
\(458\) −9.78106 −0.457039
\(459\) 0 0
\(460\) −9.21213 −0.429518
\(461\) 34.7648 1.61916 0.809578 0.587012i \(-0.199696\pi\)
0.809578 + 0.587012i \(0.199696\pi\)
\(462\) 0 0
\(463\) −3.42602 −0.159221 −0.0796104 0.996826i \(-0.525368\pi\)
−0.0796104 + 0.996826i \(0.525368\pi\)
\(464\) −34.6117 −1.60681
\(465\) 0 0
\(466\) −0.0540729 −0.00250488
\(467\) 11.3250 0.524059 0.262029 0.965060i \(-0.415608\pi\)
0.262029 + 0.965060i \(0.415608\pi\)
\(468\) 0 0
\(469\) −5.14796 −0.237711
\(470\) 5.97359 0.275541
\(471\) 0 0
\(472\) −3.73648 −0.171986
\(473\) 36.9495 1.69894
\(474\) 0 0
\(475\) 0 0
\(476\) 4.70739 0.215763
\(477\) 0 0
\(478\) −2.30272 −0.105324
\(479\) −11.5672 −0.528518 −0.264259 0.964452i \(-0.585127\pi\)
−0.264259 + 0.964452i \(0.585127\pi\)
\(480\) 0 0
\(481\) −4.98814 −0.227440
\(482\) −1.82707 −0.0832206
\(483\) 0 0
\(484\) −8.55438 −0.388835
\(485\) 9.03003 0.410033
\(486\) 0 0
\(487\) 11.7469 0.532303 0.266152 0.963931i \(-0.414248\pi\)
0.266152 + 0.963931i \(0.414248\pi\)
\(488\) −5.81109 −0.263056
\(489\) 0 0
\(490\) −3.07604 −0.138961
\(491\) −10.2540 −0.462758 −0.231379 0.972864i \(-0.574324\pi\)
−0.231379 + 0.972864i \(0.574324\pi\)
\(492\) 0 0
\(493\) −40.3610 −1.81777
\(494\) 0 0
\(495\) 0 0
\(496\) 21.2850 0.955724
\(497\) −3.50475 −0.157209
\(498\) 0 0
\(499\) −6.45842 −0.289118 −0.144559 0.989496i \(-0.546176\pi\)
−0.144559 + 0.989496i \(0.546176\pi\)
\(500\) 20.7246 0.926833
\(501\) 0 0
\(502\) −5.14527 −0.229645
\(503\) 18.3081 0.816318 0.408159 0.912911i \(-0.366171\pi\)
0.408159 + 0.912911i \(0.366171\pi\)
\(504\) 0 0
\(505\) 2.60813 0.116060
\(506\) −4.98276 −0.221511
\(507\) 0 0
\(508\) −24.8999 −1.10476
\(509\) −12.0692 −0.534959 −0.267480 0.963564i \(-0.586191\pi\)
−0.267480 + 0.963564i \(0.586191\pi\)
\(510\) 0 0
\(511\) −3.82800 −0.169341
\(512\) 21.4962 0.950006
\(513\) 0 0
\(514\) 6.65539 0.293557
\(515\) 1.39693 0.0615559
\(516\) 0 0
\(517\) −50.3455 −2.21419
\(518\) 0.667252 0.0293174
\(519\) 0 0
\(520\) −3.07604 −0.134893
\(521\) −28.5699 −1.25167 −0.625834 0.779956i \(-0.715241\pi\)
−0.625834 + 0.779956i \(0.715241\pi\)
\(522\) 0 0
\(523\) 18.6459 0.815328 0.407664 0.913132i \(-0.366343\pi\)
0.407664 + 0.913132i \(0.366343\pi\)
\(524\) 32.2841 1.41034
\(525\) 0 0
\(526\) 5.72967 0.249826
\(527\) 24.8206 1.08120
\(528\) 0 0
\(529\) −9.76382 −0.424514
\(530\) 5.05375 0.219521
\(531\) 0 0
\(532\) 0 0
\(533\) 2.55850 0.110821
\(534\) 0 0
\(535\) 16.4534 0.711341
\(536\) −10.6263 −0.458986
\(537\) 0 0
\(538\) −1.46286 −0.0630683
\(539\) 25.9249 1.11666
\(540\) 0 0
\(541\) −17.3628 −0.746484 −0.373242 0.927734i \(-0.621754\pi\)
−0.373242 + 0.927734i \(0.621754\pi\)
\(542\) 3.18210 0.136683
\(543\) 0 0
\(544\) 14.7264 0.631388
\(545\) −5.42602 −0.232425
\(546\) 0 0
\(547\) 5.05232 0.216022 0.108011 0.994150i \(-0.465552\pi\)
0.108011 + 0.994150i \(0.465552\pi\)
\(548\) −19.8212 −0.846719
\(549\) 0 0
\(550\) 4.36184 0.185990
\(551\) 0 0
\(552\) 0 0
\(553\) 2.04189 0.0868300
\(554\) −7.81252 −0.331922
\(555\) 0 0
\(556\) −20.2618 −0.859290
\(557\) 23.9763 1.01591 0.507954 0.861384i \(-0.330402\pi\)
0.507954 + 0.861384i \(0.330402\pi\)
\(558\) 0 0
\(559\) −15.8776 −0.671552
\(560\) −2.89393 −0.122291
\(561\) 0 0
\(562\) 8.17118 0.344680
\(563\) −42.6837 −1.79890 −0.899451 0.437022i \(-0.856033\pi\)
−0.899451 + 0.437022i \(0.856033\pi\)
\(564\) 0 0
\(565\) 17.7743 0.747768
\(566\) 9.28910 0.390450
\(567\) 0 0
\(568\) −7.23442 −0.303550
\(569\) −21.9358 −0.919598 −0.459799 0.888023i \(-0.652078\pi\)
−0.459799 + 0.888023i \(0.652078\pi\)
\(570\) 0 0
\(571\) −32.3063 −1.35198 −0.675989 0.736912i \(-0.736283\pi\)
−0.675989 + 0.736912i \(0.736283\pi\)
\(572\) 12.5594 0.525136
\(573\) 0 0
\(574\) −0.342244 −0.0142850
\(575\) −11.5868 −0.483202
\(576\) 0 0
\(577\) −46.8120 −1.94881 −0.974405 0.224800i \(-0.927827\pi\)
−0.974405 + 0.224800i \(0.927827\pi\)
\(578\) −0.789621 −0.0328439
\(579\) 0 0
\(580\) 26.6313 1.10581
\(581\) −2.94356 −0.122120
\(582\) 0 0
\(583\) −42.5931 −1.76403
\(584\) −7.90167 −0.326974
\(585\) 0 0
\(586\) 0.0719186 0.00297093
\(587\) 24.7820 1.02286 0.511431 0.859324i \(-0.329116\pi\)
0.511431 + 0.859324i \(0.329116\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 1.29767 0.0534241
\(591\) 0 0
\(592\) −9.68685 −0.398127
\(593\) 3.65364 0.150037 0.0750185 0.997182i \(-0.476098\pi\)
0.0750185 + 0.997182i \(0.476098\pi\)
\(594\) 0 0
\(595\) −3.37464 −0.138347
\(596\) −37.1215 −1.52056
\(597\) 0 0
\(598\) 2.14115 0.0875581
\(599\) −1.49701 −0.0611660 −0.0305830 0.999532i \(-0.509736\pi\)
−0.0305830 + 0.999532i \(0.509736\pi\)
\(600\) 0 0
\(601\) 23.8239 0.971796 0.485898 0.874015i \(-0.338493\pi\)
0.485898 + 0.874015i \(0.338493\pi\)
\(602\) 2.12391 0.0865642
\(603\) 0 0
\(604\) −5.83750 −0.237524
\(605\) 6.13247 0.249321
\(606\) 0 0
\(607\) 16.4757 0.668726 0.334363 0.942444i \(-0.391479\pi\)
0.334363 + 0.942444i \(0.391479\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 2.01817 0.0817133
\(611\) 21.6340 0.875219
\(612\) 0 0
\(613\) 1.33368 0.0538669 0.0269335 0.999637i \(-0.491426\pi\)
0.0269335 + 0.999637i \(0.491426\pi\)
\(614\) 5.31996 0.214696
\(615\) 0 0
\(616\) −3.46791 −0.139726
\(617\) −36.1421 −1.45503 −0.727513 0.686094i \(-0.759324\pi\)
−0.727513 + 0.686094i \(0.759324\pi\)
\(618\) 0 0
\(619\) 19.3158 0.776369 0.388185 0.921582i \(-0.373102\pi\)
0.388185 + 0.921582i \(0.373102\pi\)
\(620\) −16.3773 −0.657729
\(621\) 0 0
\(622\) −5.43283 −0.217837
\(623\) −7.26682 −0.291139
\(624\) 0 0
\(625\) 1.06687 0.0426746
\(626\) 3.52940 0.141063
\(627\) 0 0
\(628\) −1.38413 −0.0552329
\(629\) −11.2959 −0.450397
\(630\) 0 0
\(631\) 28.5226 1.13547 0.567733 0.823213i \(-0.307821\pi\)
0.567733 + 0.823213i \(0.307821\pi\)
\(632\) 4.21482 0.167657
\(633\) 0 0
\(634\) 2.65600 0.105483
\(635\) 17.8503 0.708367
\(636\) 0 0
\(637\) −11.1402 −0.441391
\(638\) 14.4047 0.570286
\(639\) 0 0
\(640\) −12.7965 −0.505828
\(641\) 31.0019 1.22450 0.612250 0.790664i \(-0.290265\pi\)
0.612250 + 0.790664i \(0.290265\pi\)
\(642\) 0 0
\(643\) 23.6628 0.933170 0.466585 0.884476i \(-0.345484\pi\)
0.466585 + 0.884476i \(0.345484\pi\)
\(644\) 4.46286 0.175861
\(645\) 0 0
\(646\) 0 0
\(647\) −36.0865 −1.41871 −0.709353 0.704854i \(-0.751013\pi\)
−0.709353 + 0.704854i \(0.751013\pi\)
\(648\) 0 0
\(649\) −10.9368 −0.429305
\(650\) −1.87433 −0.0735174
\(651\) 0 0
\(652\) 23.7246 0.929128
\(653\) 37.4489 1.46549 0.732745 0.680504i \(-0.238239\pi\)
0.732745 + 0.680504i \(0.238239\pi\)
\(654\) 0 0
\(655\) −23.1438 −0.904305
\(656\) 4.96854 0.193989
\(657\) 0 0
\(658\) −2.89393 −0.112817
\(659\) −19.3310 −0.753029 −0.376514 0.926411i \(-0.622877\pi\)
−0.376514 + 0.926411i \(0.622877\pi\)
\(660\) 0 0
\(661\) −24.6236 −0.957747 −0.478874 0.877884i \(-0.658955\pi\)
−0.478874 + 0.877884i \(0.658955\pi\)
\(662\) −1.42602 −0.0554239
\(663\) 0 0
\(664\) −6.07604 −0.235796
\(665\) 0 0
\(666\) 0 0
\(667\) −38.2645 −1.48161
\(668\) −10.3696 −0.401211
\(669\) 0 0
\(670\) 3.69047 0.142575
\(671\) −17.0092 −0.656632
\(672\) 0 0
\(673\) 42.4347 1.63574 0.817869 0.575405i \(-0.195156\pi\)
0.817869 + 0.575405i \(0.195156\pi\)
\(674\) −4.19934 −0.161753
\(675\) 0 0
\(676\) 19.0351 0.732119
\(677\) −14.5963 −0.560980 −0.280490 0.959857i \(-0.590497\pi\)
−0.280490 + 0.959857i \(0.590497\pi\)
\(678\) 0 0
\(679\) −4.37464 −0.167883
\(680\) −6.96585 −0.267128
\(681\) 0 0
\(682\) −8.85835 −0.339204
\(683\) −17.8043 −0.681262 −0.340631 0.940197i \(-0.610641\pi\)
−0.340631 + 0.940197i \(0.610641\pi\)
\(684\) 0 0
\(685\) 14.2094 0.542915
\(686\) 3.07697 0.117479
\(687\) 0 0
\(688\) −30.8340 −1.17553
\(689\) 18.3027 0.697278
\(690\) 0 0
\(691\) 12.4730 0.474494 0.237247 0.971449i \(-0.423755\pi\)
0.237247 + 0.971449i \(0.423755\pi\)
\(692\) 24.2986 0.923694
\(693\) 0 0
\(694\) 1.43882 0.0546167
\(695\) 14.5253 0.550975
\(696\) 0 0
\(697\) 5.79385 0.219458
\(698\) −0.0136143 −0.000515308 0
\(699\) 0 0
\(700\) −3.90673 −0.147660
\(701\) 3.23349 0.122127 0.0610636 0.998134i \(-0.480551\pi\)
0.0610636 + 0.998134i \(0.480551\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 20.6996 0.780147
\(705\) 0 0
\(706\) −2.48751 −0.0936187
\(707\) −1.26352 −0.0475195
\(708\) 0 0
\(709\) −21.0256 −0.789632 −0.394816 0.918760i \(-0.629192\pi\)
−0.394816 + 0.918760i \(0.629192\pi\)
\(710\) 2.51249 0.0942920
\(711\) 0 0
\(712\) −15.0000 −0.562149
\(713\) 23.5313 0.881253
\(714\) 0 0
\(715\) −9.00362 −0.336716
\(716\) −28.3533 −1.05961
\(717\) 0 0
\(718\) 7.09926 0.264942
\(719\) 4.05232 0.151126 0.0755630 0.997141i \(-0.475925\pi\)
0.0755630 + 0.997141i \(0.475925\pi\)
\(720\) 0 0
\(721\) −0.676747 −0.0252034
\(722\) 0 0
\(723\) 0 0
\(724\) 35.1121 1.30493
\(725\) 33.4962 1.24402
\(726\) 0 0
\(727\) −40.9231 −1.51776 −0.758878 0.651233i \(-0.774252\pi\)
−0.758878 + 0.651233i \(0.774252\pi\)
\(728\) 1.49020 0.0552305
\(729\) 0 0
\(730\) 2.74422 0.101568
\(731\) −35.9557 −1.32987
\(732\) 0 0
\(733\) 7.26857 0.268471 0.134235 0.990949i \(-0.457142\pi\)
0.134235 + 0.990949i \(0.457142\pi\)
\(734\) −0.554053 −0.0204505
\(735\) 0 0
\(736\) 13.9614 0.514624
\(737\) −31.1034 −1.14571
\(738\) 0 0
\(739\) 4.65002 0.171054 0.0855268 0.996336i \(-0.472743\pi\)
0.0855268 + 0.996336i \(0.472743\pi\)
\(740\) 7.45336 0.273991
\(741\) 0 0
\(742\) −2.44831 −0.0898803
\(743\) 2.68241 0.0984080 0.0492040 0.998789i \(-0.484332\pi\)
0.0492040 + 0.998789i \(0.484332\pi\)
\(744\) 0 0
\(745\) 26.6117 0.974979
\(746\) −4.46347 −0.163419
\(747\) 0 0
\(748\) 28.4415 1.03992
\(749\) −7.97090 −0.291250
\(750\) 0 0
\(751\) 32.4320 1.18346 0.591730 0.806136i \(-0.298445\pi\)
0.591730 + 0.806136i \(0.298445\pi\)
\(752\) 42.0128 1.53205
\(753\) 0 0
\(754\) −6.18984 −0.225421
\(755\) 4.18479 0.152300
\(756\) 0 0
\(757\) 4.75970 0.172994 0.0864972 0.996252i \(-0.472433\pi\)
0.0864972 + 0.996252i \(0.472433\pi\)
\(758\) −5.45336 −0.198075
\(759\) 0 0
\(760\) 0 0
\(761\) 30.2481 1.09649 0.548247 0.836316i \(-0.315295\pi\)
0.548247 + 0.836316i \(0.315295\pi\)
\(762\) 0 0
\(763\) 2.62866 0.0951639
\(764\) −16.0719 −0.581462
\(765\) 0 0
\(766\) 5.71244 0.206399
\(767\) 4.69965 0.169694
\(768\) 0 0
\(769\) 31.6049 1.13970 0.569852 0.821748i \(-0.307001\pi\)
0.569852 + 0.821748i \(0.307001\pi\)
\(770\) 1.20439 0.0434033
\(771\) 0 0
\(772\) −31.8726 −1.14712
\(773\) −46.3996 −1.66888 −0.834439 0.551100i \(-0.814208\pi\)
−0.834439 + 0.551100i \(0.814208\pi\)
\(774\) 0 0
\(775\) −20.5990 −0.739936
\(776\) −9.03003 −0.324159
\(777\) 0 0
\(778\) −2.61619 −0.0937950
\(779\) 0 0
\(780\) 0 0
\(781\) −21.1753 −0.757712
\(782\) 4.84875 0.173391
\(783\) 0 0
\(784\) −21.6340 −0.772644
\(785\) 0.992259 0.0354152
\(786\) 0 0
\(787\) −36.8489 −1.31352 −0.656760 0.754100i \(-0.728074\pi\)
−0.656760 + 0.754100i \(0.728074\pi\)
\(788\) 8.49020 0.302451
\(789\) 0 0
\(790\) −1.46379 −0.0520794
\(791\) −8.61081 −0.306165
\(792\) 0 0
\(793\) 7.30903 0.259551
\(794\) −3.89630 −0.138274
\(795\) 0 0
\(796\) 15.1233 0.536031
\(797\) −18.7939 −0.665712 −0.332856 0.942978i \(-0.608012\pi\)
−0.332856 + 0.942978i \(0.608012\pi\)
\(798\) 0 0
\(799\) 48.9914 1.73319
\(800\) −12.2216 −0.432100
\(801\) 0 0
\(802\) −8.42366 −0.297450
\(803\) −23.1284 −0.816182
\(804\) 0 0
\(805\) −3.19934 −0.112762
\(806\) 3.80653 0.134079
\(807\) 0 0
\(808\) −2.60813 −0.0917536
\(809\) −6.04551 −0.212549 −0.106274 0.994337i \(-0.533892\pi\)
−0.106274 + 0.994337i \(0.533892\pi\)
\(810\) 0 0
\(811\) 8.95367 0.314406 0.157203 0.987566i \(-0.449752\pi\)
0.157203 + 0.987566i \(0.449752\pi\)
\(812\) −12.9017 −0.452760
\(813\) 0 0
\(814\) 4.03146 0.141303
\(815\) −17.0077 −0.595755
\(816\) 0 0
\(817\) 0 0
\(818\) 9.12836 0.319165
\(819\) 0 0
\(820\) −3.82295 −0.133503
\(821\) −8.14384 −0.284222 −0.142111 0.989851i \(-0.545389\pi\)
−0.142111 + 0.989851i \(0.545389\pi\)
\(822\) 0 0
\(823\) −2.64321 −0.0921364 −0.0460682 0.998938i \(-0.514669\pi\)
−0.0460682 + 0.998938i \(0.514669\pi\)
\(824\) −1.39693 −0.0486642
\(825\) 0 0
\(826\) −0.628660 −0.0218739
\(827\) 36.7425 1.27766 0.638830 0.769348i \(-0.279419\pi\)
0.638830 + 0.769348i \(0.279419\pi\)
\(828\) 0 0
\(829\) −43.7434 −1.51927 −0.759636 0.650349i \(-0.774623\pi\)
−0.759636 + 0.650349i \(0.774623\pi\)
\(830\) 2.11019 0.0732456
\(831\) 0 0
\(832\) −8.89487 −0.308374
\(833\) −25.2276 −0.874085
\(834\) 0 0
\(835\) 7.43376 0.257256
\(836\) 0 0
\(837\) 0 0
\(838\) −4.59215 −0.158633
\(839\) −13.7820 −0.475807 −0.237904 0.971289i \(-0.576460\pi\)
−0.237904 + 0.971289i \(0.576460\pi\)
\(840\) 0 0
\(841\) 81.6187 2.81444
\(842\) −12.8625 −0.443270
\(843\) 0 0
\(844\) −37.7452 −1.29924
\(845\) −13.6459 −0.469433
\(846\) 0 0
\(847\) −2.97090 −0.102081
\(848\) 35.5435 1.22057
\(849\) 0 0
\(850\) −4.24453 −0.145586
\(851\) −10.7091 −0.367105
\(852\) 0 0
\(853\) 10.5695 0.361894 0.180947 0.983493i \(-0.442084\pi\)
0.180947 + 0.983493i \(0.442084\pi\)
\(854\) −0.977711 −0.0334566
\(855\) 0 0
\(856\) −16.4534 −0.562364
\(857\) −36.8571 −1.25901 −0.629507 0.776995i \(-0.716743\pi\)
−0.629507 + 0.776995i \(0.716743\pi\)
\(858\) 0 0
\(859\) −35.1138 −1.19807 −0.599034 0.800724i \(-0.704449\pi\)
−0.599034 + 0.800724i \(0.704449\pi\)
\(860\) 23.7246 0.809003
\(861\) 0 0
\(862\) −3.28993 −0.112055
\(863\) −3.01691 −0.102697 −0.0513484 0.998681i \(-0.516352\pi\)
−0.0513484 + 0.998681i \(0.516352\pi\)
\(864\) 0 0
\(865\) −17.4192 −0.592271
\(866\) −7.82201 −0.265803
\(867\) 0 0
\(868\) 7.93407 0.269300
\(869\) 12.3369 0.418500
\(870\) 0 0
\(871\) 13.3655 0.452872
\(872\) 5.42602 0.183748
\(873\) 0 0
\(874\) 0 0
\(875\) 7.19759 0.243323
\(876\) 0 0
\(877\) 58.1976 1.96519 0.982596 0.185753i \(-0.0594725\pi\)
0.982596 + 0.185753i \(0.0594725\pi\)
\(878\) −11.5416 −0.389510
\(879\) 0 0
\(880\) −17.4848 −0.589413
\(881\) −25.6382 −0.863771 −0.431886 0.901928i \(-0.642152\pi\)
−0.431886 + 0.901928i \(0.642152\pi\)
\(882\) 0 0
\(883\) 20.2189 0.680422 0.340211 0.940349i \(-0.389502\pi\)
0.340211 + 0.940349i \(0.389502\pi\)
\(884\) −12.2216 −0.411058
\(885\) 0 0
\(886\) −10.6373 −0.357368
\(887\) 21.1061 0.708672 0.354336 0.935118i \(-0.384707\pi\)
0.354336 + 0.935118i \(0.384707\pi\)
\(888\) 0 0
\(889\) −8.64765 −0.290033
\(890\) 5.20945 0.174621
\(891\) 0 0
\(892\) −36.8161 −1.23270
\(893\) 0 0
\(894\) 0 0
\(895\) 20.3259 0.679421
\(896\) 6.19934 0.207105
\(897\) 0 0
\(898\) −5.24155 −0.174913
\(899\) −68.0265 −2.26881
\(900\) 0 0
\(901\) 41.4475 1.38082
\(902\) −2.06780 −0.0688502
\(903\) 0 0
\(904\) −17.7743 −0.591163
\(905\) −25.1712 −0.836718
\(906\) 0 0
\(907\) 25.8289 0.857636 0.428818 0.903391i \(-0.358930\pi\)
0.428818 + 0.903391i \(0.358930\pi\)
\(908\) −34.7648 −1.15371
\(909\) 0 0
\(910\) −0.517541 −0.0171563
\(911\) −15.4415 −0.511600 −0.255800 0.966730i \(-0.582339\pi\)
−0.255800 + 0.966730i \(0.582339\pi\)
\(912\) 0 0
\(913\) −17.7847 −0.588587
\(914\) 6.89250 0.227984
\(915\) 0 0
\(916\) 52.9299 1.74885
\(917\) 11.2121 0.370257
\(918\) 0 0
\(919\) 9.26445 0.305606 0.152803 0.988257i \(-0.451170\pi\)
0.152803 + 0.988257i \(0.451170\pi\)
\(920\) −6.60401 −0.217728
\(921\) 0 0
\(922\) 12.0737 0.397625
\(923\) 9.09926 0.299506
\(924\) 0 0
\(925\) 9.37464 0.308236
\(926\) −1.18984 −0.0391007
\(927\) 0 0
\(928\) −40.3610 −1.32492
\(929\) 18.4029 0.603780 0.301890 0.953343i \(-0.402382\pi\)
0.301890 + 0.953343i \(0.402382\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.292614 0.00958489
\(933\) 0 0
\(934\) 3.93313 0.128696
\(935\) −20.3892 −0.666798
\(936\) 0 0
\(937\) 7.85204 0.256515 0.128258 0.991741i \(-0.459062\pi\)
0.128258 + 0.991741i \(0.459062\pi\)
\(938\) −1.78787 −0.0583759
\(939\) 0 0
\(940\) −32.3259 −1.05436
\(941\) 58.4374 1.90500 0.952502 0.304532i \(-0.0985000\pi\)
0.952502 + 0.304532i \(0.0985000\pi\)
\(942\) 0 0
\(943\) 5.49289 0.178873
\(944\) 9.12660 0.297046
\(945\) 0 0
\(946\) 12.8324 0.417219
\(947\) 36.0286 1.17077 0.585386 0.810755i \(-0.300943\pi\)
0.585386 + 0.810755i \(0.300943\pi\)
\(948\) 0 0
\(949\) 9.93851 0.322618
\(950\) 0 0
\(951\) 0 0
\(952\) 3.37464 0.109373
\(953\) −12.9976 −0.421035 −0.210517 0.977590i \(-0.567515\pi\)
−0.210517 + 0.977590i \(0.567515\pi\)
\(954\) 0 0
\(955\) 11.5217 0.372832
\(956\) 12.4611 0.403021
\(957\) 0 0
\(958\) −4.01724 −0.129791
\(959\) −6.88383 −0.222290
\(960\) 0 0
\(961\) 10.8339 0.349480
\(962\) −1.73236 −0.0558536
\(963\) 0 0
\(964\) 9.88713 0.318443
\(965\) 22.8489 0.735531
\(966\) 0 0
\(967\) 50.3141 1.61799 0.808996 0.587814i \(-0.200011\pi\)
0.808996 + 0.587814i \(0.200011\pi\)
\(968\) −6.13247 −0.197105
\(969\) 0 0
\(970\) 3.13610 0.100694
\(971\) 30.6973 0.985123 0.492561 0.870278i \(-0.336061\pi\)
0.492561 + 0.870278i \(0.336061\pi\)
\(972\) 0 0
\(973\) −7.03684 −0.225591
\(974\) 4.07966 0.130721
\(975\) 0 0
\(976\) 14.1940 0.454338
\(977\) 35.0806 1.12233 0.561164 0.827705i \(-0.310354\pi\)
0.561164 + 0.827705i \(0.310354\pi\)
\(978\) 0 0
\(979\) −43.9053 −1.40322
\(980\) 16.6459 0.531734
\(981\) 0 0
\(982\) −3.56118 −0.113642
\(983\) −18.7811 −0.599023 −0.299511 0.954093i \(-0.596824\pi\)
−0.299511 + 0.954093i \(0.596824\pi\)
\(984\) 0 0
\(985\) −6.08647 −0.193931
\(986\) −14.0172 −0.446400
\(987\) 0 0
\(988\) 0 0
\(989\) −34.0880 −1.08394
\(990\) 0 0
\(991\) −13.5371 −0.430021 −0.215011 0.976612i \(-0.568979\pi\)
−0.215011 + 0.976612i \(0.568979\pi\)
\(992\) 24.8206 0.788054
\(993\) 0 0
\(994\) −1.21719 −0.0386068
\(995\) −10.8416 −0.343702
\(996\) 0 0
\(997\) 6.90673 0.218738 0.109369 0.994001i \(-0.465117\pi\)
0.109369 + 0.994001i \(0.465117\pi\)
\(998\) −2.24298 −0.0710004
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.w.1.2 3
3.2 odd 2 1083.2.a.m.1.2 3
19.4 even 9 171.2.u.a.73.1 6
19.5 even 9 171.2.u.a.82.1 6
19.18 odd 2 3249.2.a.x.1.2 3
57.5 odd 18 57.2.i.a.25.1 yes 6
57.23 odd 18 57.2.i.a.16.1 6
57.56 even 2 1083.2.a.n.1.2 3
228.23 even 18 912.2.bo.b.529.1 6
228.119 even 18 912.2.bo.b.481.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.i.a.16.1 6 57.23 odd 18
57.2.i.a.25.1 yes 6 57.5 odd 18
171.2.u.a.73.1 6 19.4 even 9
171.2.u.a.82.1 6 19.5 even 9
912.2.bo.b.481.1 6 228.119 even 18
912.2.bo.b.529.1 6 228.23 even 18
1083.2.a.m.1.2 3 3.2 odd 2
1083.2.a.n.1.2 3 57.56 even 2
3249.2.a.w.1.2 3 1.1 even 1 trivial
3249.2.a.x.1.2 3 19.18 odd 2