Properties

Label 3249.2.a.w.1.1
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,3,0,-3,-3,0,6,3,0,3,6,0,-6,9,0,0,-3,0,3,-6,0,-6,12,0, -3,-9,0,24,9,0,-15,3,0,6,0,0,-9,6,0,-21,12,0,9,3,0,-12,9,0,-6,18,0,6,-3, 0,-12,15,0,-9,3,0,-3,15,0,-6,3,0,-3,9,0,-6,3,0,0,0,0,9,-3,0,21,15,0,-6, 18,0,-6,0,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.87939 q^{2} +1.53209 q^{4} -0.879385 q^{5} -2.87939 q^{7} +0.879385 q^{8} +1.65270 q^{10} +1.83750 q^{11} -2.75877 q^{13} +5.41147 q^{14} -4.71688 q^{16} +7.10607 q^{17} -1.34730 q^{20} -3.45336 q^{22} -6.59627 q^{23} -4.22668 q^{25} +5.18479 q^{26} -4.41147 q^{28} +3.12836 q^{29} +7.65270 q^{31} +7.10607 q^{32} -13.3550 q^{34} +2.53209 q^{35} +2.83750 q^{37} -0.773318 q^{40} -3.98545 q^{41} -11.4534 q^{43} +2.81521 q^{44} +12.3969 q^{46} -2.20708 q^{47} +1.29086 q^{49} +7.94356 q^{50} -4.22668 q^{52} -2.70233 q^{53} -1.61587 q^{55} -2.53209 q^{56} -5.87939 q^{58} +8.41147 q^{59} +0.615867 q^{61} -14.3824 q^{62} -3.92127 q^{64} +2.42602 q^{65} -3.67499 q^{67} +10.8871 q^{68} -4.75877 q^{70} +7.45336 q^{71} -10.0077 q^{73} -5.33275 q^{74} -5.29086 q^{77} +1.61081 q^{79} +4.14796 q^{80} +7.49020 q^{82} -0.985452 q^{83} -6.24897 q^{85} +21.5253 q^{86} +1.61587 q^{88} -17.0574 q^{89} +7.94356 q^{91} -10.1061 q^{92} +4.14796 q^{94} -5.90167 q^{97} -2.42602 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} - 3 q^{7} - 3 q^{8} + 6 q^{10} + 3 q^{11} + 3 q^{13} + 6 q^{14} - 6 q^{16} + 9 q^{17} - 3 q^{20} + 3 q^{22} - 6 q^{23} - 6 q^{25} + 12 q^{26} - 3 q^{28} - 9 q^{29} + 24 q^{31} + 9 q^{32} - 15 q^{34}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.87939 −1.32893 −0.664463 0.747321i \(-0.731340\pi\)
−0.664463 + 0.747321i \(0.731340\pi\)
\(3\) 0 0
\(4\) 1.53209 0.766044
\(5\) −0.879385 −0.393273 −0.196637 0.980476i \(-0.563002\pi\)
−0.196637 + 0.980476i \(0.563002\pi\)
\(6\) 0 0
\(7\) −2.87939 −1.08831 −0.544153 0.838986i \(-0.683149\pi\)
−0.544153 + 0.838986i \(0.683149\pi\)
\(8\) 0.879385 0.310910
\(9\) 0 0
\(10\) 1.65270 0.522631
\(11\) 1.83750 0.554026 0.277013 0.960866i \(-0.410655\pi\)
0.277013 + 0.960866i \(0.410655\pi\)
\(12\) 0 0
\(13\) −2.75877 −0.765145 −0.382573 0.923925i \(-0.624962\pi\)
−0.382573 + 0.923925i \(0.624962\pi\)
\(14\) 5.41147 1.44628
\(15\) 0 0
\(16\) −4.71688 −1.17922
\(17\) 7.10607 1.72347 0.861737 0.507355i \(-0.169377\pi\)
0.861737 + 0.507355i \(0.169377\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) −1.34730 −0.301265
\(21\) 0 0
\(22\) −3.45336 −0.736260
\(23\) −6.59627 −1.37542 −0.687708 0.725987i \(-0.741383\pi\)
−0.687708 + 0.725987i \(0.741383\pi\)
\(24\) 0 0
\(25\) −4.22668 −0.845336
\(26\) 5.18479 1.01682
\(27\) 0 0
\(28\) −4.41147 −0.833690
\(29\) 3.12836 0.580921 0.290461 0.956887i \(-0.406192\pi\)
0.290461 + 0.956887i \(0.406192\pi\)
\(30\) 0 0
\(31\) 7.65270 1.37447 0.687233 0.726437i \(-0.258825\pi\)
0.687233 + 0.726437i \(0.258825\pi\)
\(32\) 7.10607 1.25619
\(33\) 0 0
\(34\) −13.3550 −2.29037
\(35\) 2.53209 0.428001
\(36\) 0 0
\(37\) 2.83750 0.466481 0.233241 0.972419i \(-0.425067\pi\)
0.233241 + 0.972419i \(0.425067\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.773318 −0.122272
\(41\) −3.98545 −0.622423 −0.311212 0.950341i \(-0.600735\pi\)
−0.311212 + 0.950341i \(0.600735\pi\)
\(42\) 0 0
\(43\) −11.4534 −1.74662 −0.873311 0.487164i \(-0.838032\pi\)
−0.873311 + 0.487164i \(0.838032\pi\)
\(44\) 2.81521 0.424408
\(45\) 0 0
\(46\) 12.3969 1.82783
\(47\) −2.20708 −0.321936 −0.160968 0.986960i \(-0.551462\pi\)
−0.160968 + 0.986960i \(0.551462\pi\)
\(48\) 0 0
\(49\) 1.29086 0.184408
\(50\) 7.94356 1.12339
\(51\) 0 0
\(52\) −4.22668 −0.586135
\(53\) −2.70233 −0.371194 −0.185597 0.982626i \(-0.559422\pi\)
−0.185597 + 0.982626i \(0.559422\pi\)
\(54\) 0 0
\(55\) −1.61587 −0.217883
\(56\) −2.53209 −0.338365
\(57\) 0 0
\(58\) −5.87939 −0.772001
\(59\) 8.41147 1.09508 0.547540 0.836779i \(-0.315564\pi\)
0.547540 + 0.836779i \(0.315564\pi\)
\(60\) 0 0
\(61\) 0.615867 0.0788537 0.0394268 0.999222i \(-0.487447\pi\)
0.0394268 + 0.999222i \(0.487447\pi\)
\(62\) −14.3824 −1.82656
\(63\) 0 0
\(64\) −3.92127 −0.490159
\(65\) 2.42602 0.300911
\(66\) 0 0
\(67\) −3.67499 −0.448972 −0.224486 0.974477i \(-0.572070\pi\)
−0.224486 + 0.974477i \(0.572070\pi\)
\(68\) 10.8871 1.32026
\(69\) 0 0
\(70\) −4.75877 −0.568782
\(71\) 7.45336 0.884551 0.442276 0.896879i \(-0.354171\pi\)
0.442276 + 0.896879i \(0.354171\pi\)
\(72\) 0 0
\(73\) −10.0077 −1.17132 −0.585659 0.810558i \(-0.699164\pi\)
−0.585659 + 0.810558i \(0.699164\pi\)
\(74\) −5.33275 −0.619919
\(75\) 0 0
\(76\) 0 0
\(77\) −5.29086 −0.602949
\(78\) 0 0
\(79\) 1.61081 0.181231 0.0906154 0.995886i \(-0.471117\pi\)
0.0906154 + 0.995886i \(0.471117\pi\)
\(80\) 4.14796 0.463756
\(81\) 0 0
\(82\) 7.49020 0.827154
\(83\) −0.985452 −0.108167 −0.0540837 0.998536i \(-0.517224\pi\)
−0.0540837 + 0.998536i \(0.517224\pi\)
\(84\) 0 0
\(85\) −6.24897 −0.677796
\(86\) 21.5253 2.32113
\(87\) 0 0
\(88\) 1.61587 0.172252
\(89\) −17.0574 −1.80808 −0.904039 0.427450i \(-0.859412\pi\)
−0.904039 + 0.427450i \(0.859412\pi\)
\(90\) 0 0
\(91\) 7.94356 0.832712
\(92\) −10.1061 −1.05363
\(93\) 0 0
\(94\) 4.14796 0.427829
\(95\) 0 0
\(96\) 0 0
\(97\) −5.90167 −0.599224 −0.299612 0.954061i \(-0.596857\pi\)
−0.299612 + 0.954061i \(0.596857\pi\)
\(98\) −2.42602 −0.245065
\(99\) 0 0
\(100\) −6.47565 −0.647565
\(101\) 4.30541 0.428404 0.214202 0.976789i \(-0.431285\pi\)
0.214202 + 0.976789i \(0.431285\pi\)
\(102\) 0 0
\(103\) 17.8084 1.75471 0.877357 0.479838i \(-0.159305\pi\)
0.877357 + 0.479838i \(0.159305\pi\)
\(104\) −2.42602 −0.237891
\(105\) 0 0
\(106\) 5.07873 0.493289
\(107\) −5.88713 −0.569130 −0.284565 0.958657i \(-0.591849\pi\)
−0.284565 + 0.958657i \(0.591849\pi\)
\(108\) 0 0
\(109\) 15.1138 1.44764 0.723820 0.689989i \(-0.242385\pi\)
0.723820 + 0.689989i \(0.242385\pi\)
\(110\) 3.03684 0.289551
\(111\) 0 0
\(112\) 13.5817 1.28335
\(113\) 6.08378 0.572314 0.286157 0.958183i \(-0.407622\pi\)
0.286157 + 0.958183i \(0.407622\pi\)
\(114\) 0 0
\(115\) 5.80066 0.540914
\(116\) 4.79292 0.445011
\(117\) 0 0
\(118\) −15.8084 −1.45528
\(119\) −20.4611 −1.87567
\(120\) 0 0
\(121\) −7.62361 −0.693055
\(122\) −1.15745 −0.104791
\(123\) 0 0
\(124\) 11.7246 1.05290
\(125\) 8.11381 0.725721
\(126\) 0 0
\(127\) 11.9213 1.05784 0.528921 0.848671i \(-0.322597\pi\)
0.528921 + 0.848671i \(0.322597\pi\)
\(128\) −6.84255 −0.604802
\(129\) 0 0
\(130\) −4.55943 −0.399888
\(131\) 2.39187 0.208979 0.104489 0.994526i \(-0.466679\pi\)
0.104489 + 0.994526i \(0.466679\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.90673 0.596650
\(135\) 0 0
\(136\) 6.24897 0.535845
\(137\) 21.8229 1.86446 0.932230 0.361866i \(-0.117860\pi\)
0.932230 + 0.361866i \(0.117860\pi\)
\(138\) 0 0
\(139\) 8.26857 0.701331 0.350666 0.936501i \(-0.385955\pi\)
0.350666 + 0.936501i \(0.385955\pi\)
\(140\) 3.87939 0.327868
\(141\) 0 0
\(142\) −14.0077 −1.17550
\(143\) −5.06923 −0.423910
\(144\) 0 0
\(145\) −2.75103 −0.228461
\(146\) 18.8084 1.55659
\(147\) 0 0
\(148\) 4.34730 0.357346
\(149\) −7.68273 −0.629394 −0.314697 0.949192i \(-0.601903\pi\)
−0.314697 + 0.949192i \(0.601903\pi\)
\(150\) 0 0
\(151\) −5.94356 −0.483680 −0.241840 0.970316i \(-0.577751\pi\)
−0.241840 + 0.970316i \(0.577751\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 9.94356 0.801275
\(155\) −6.72967 −0.540540
\(156\) 0 0
\(157\) −10.3969 −0.829765 −0.414883 0.909875i \(-0.636177\pi\)
−0.414883 + 0.909875i \(0.636177\pi\)
\(158\) −3.02734 −0.240842
\(159\) 0 0
\(160\) −6.24897 −0.494024
\(161\) 18.9932 1.49687
\(162\) 0 0
\(163\) 10.0719 0.788894 0.394447 0.918919i \(-0.370936\pi\)
0.394447 + 0.918919i \(0.370936\pi\)
\(164\) −6.10607 −0.476804
\(165\) 0 0
\(166\) 1.85204 0.143746
\(167\) −8.12836 −0.628991 −0.314496 0.949259i \(-0.601835\pi\)
−0.314496 + 0.949259i \(0.601835\pi\)
\(168\) 0 0
\(169\) −5.38919 −0.414553
\(170\) 11.7442 0.900741
\(171\) 0 0
\(172\) −17.5476 −1.33799
\(173\) 5.31315 0.403951 0.201976 0.979391i \(-0.435264\pi\)
0.201976 + 0.979391i \(0.435264\pi\)
\(174\) 0 0
\(175\) 12.1702 0.919984
\(176\) −8.66725 −0.653319
\(177\) 0 0
\(178\) 32.0574 2.40280
\(179\) 17.0273 1.27268 0.636342 0.771407i \(-0.280447\pi\)
0.636342 + 0.771407i \(0.280447\pi\)
\(180\) 0 0
\(181\) −17.0692 −1.26875 −0.634373 0.773027i \(-0.718742\pi\)
−0.634373 + 0.773027i \(0.718742\pi\)
\(182\) −14.9290 −1.10661
\(183\) 0 0
\(184\) −5.80066 −0.427630
\(185\) −2.49525 −0.183455
\(186\) 0 0
\(187\) 13.0574 0.954850
\(188\) −3.38144 −0.246617
\(189\) 0 0
\(190\) 0 0
\(191\) −3.62361 −0.262195 −0.131098 0.991369i \(-0.541850\pi\)
−0.131098 + 0.991369i \(0.541850\pi\)
\(192\) 0 0
\(193\) −5.12330 −0.368783 −0.184392 0.982853i \(-0.559032\pi\)
−0.184392 + 0.982853i \(0.559032\pi\)
\(194\) 11.0915 0.796325
\(195\) 0 0
\(196\) 1.97771 0.141265
\(197\) 9.12836 0.650368 0.325184 0.945651i \(-0.394574\pi\)
0.325184 + 0.945651i \(0.394574\pi\)
\(198\) 0 0
\(199\) 22.0847 1.56554 0.782772 0.622309i \(-0.213805\pi\)
0.782772 + 0.622309i \(0.213805\pi\)
\(200\) −3.71688 −0.262823
\(201\) 0 0
\(202\) −8.09152 −0.569317
\(203\) −9.00774 −0.632219
\(204\) 0 0
\(205\) 3.50475 0.244782
\(206\) −33.4688 −2.33188
\(207\) 0 0
\(208\) 13.0128 0.902275
\(209\) 0 0
\(210\) 0 0
\(211\) 6.72369 0.462878 0.231439 0.972849i \(-0.425657\pi\)
0.231439 + 0.972849i \(0.425657\pi\)
\(212\) −4.14022 −0.284351
\(213\) 0 0
\(214\) 11.0642 0.756332
\(215\) 10.0719 0.686899
\(216\) 0 0
\(217\) −22.0351 −1.49584
\(218\) −28.4047 −1.92381
\(219\) 0 0
\(220\) −2.47565 −0.166908
\(221\) −19.6040 −1.31871
\(222\) 0 0
\(223\) −4.57667 −0.306476 −0.153238 0.988189i \(-0.548970\pi\)
−0.153238 + 0.988189i \(0.548970\pi\)
\(224\) −20.4611 −1.36712
\(225\) 0 0
\(226\) −11.4338 −0.760563
\(227\) 15.8425 1.05151 0.525753 0.850637i \(-0.323783\pi\)
0.525753 + 0.850637i \(0.323783\pi\)
\(228\) 0 0
\(229\) 3.86753 0.255573 0.127787 0.991802i \(-0.459213\pi\)
0.127787 + 0.991802i \(0.459213\pi\)
\(230\) −10.9017 −0.718835
\(231\) 0 0
\(232\) 2.75103 0.180614
\(233\) 23.7246 1.55425 0.777126 0.629345i \(-0.216677\pi\)
0.777126 + 0.629345i \(0.216677\pi\)
\(234\) 0 0
\(235\) 1.94087 0.126609
\(236\) 12.8871 0.838880
\(237\) 0 0
\(238\) 38.4543 2.49262
\(239\) −4.54664 −0.294097 −0.147049 0.989129i \(-0.546977\pi\)
−0.147049 + 0.989129i \(0.546977\pi\)
\(240\) 0 0
\(241\) −1.09327 −0.0704239 −0.0352120 0.999380i \(-0.511211\pi\)
−0.0352120 + 0.999380i \(0.511211\pi\)
\(242\) 14.3277 0.921019
\(243\) 0 0
\(244\) 0.943563 0.0604054
\(245\) −1.13516 −0.0725229
\(246\) 0 0
\(247\) 0 0
\(248\) 6.72967 0.427335
\(249\) 0 0
\(250\) −15.2490 −0.964430
\(251\) −13.7733 −0.869364 −0.434682 0.900584i \(-0.643139\pi\)
−0.434682 + 0.900584i \(0.643139\pi\)
\(252\) 0 0
\(253\) −12.1206 −0.762017
\(254\) −22.4047 −1.40579
\(255\) 0 0
\(256\) 20.7023 1.29390
\(257\) −12.8675 −0.802654 −0.401327 0.915935i \(-0.631451\pi\)
−0.401327 + 0.915935i \(0.631451\pi\)
\(258\) 0 0
\(259\) −8.17024 −0.507674
\(260\) 3.71688 0.230511
\(261\) 0 0
\(262\) −4.49525 −0.277718
\(263\) 13.8425 0.853568 0.426784 0.904354i \(-0.359646\pi\)
0.426784 + 0.904354i \(0.359646\pi\)
\(264\) 0 0
\(265\) 2.37639 0.145981
\(266\) 0 0
\(267\) 0 0
\(268\) −5.63041 −0.343932
\(269\) 13.8871 0.846713 0.423357 0.905963i \(-0.360852\pi\)
0.423357 + 0.905963i \(0.360852\pi\)
\(270\) 0 0
\(271\) 5.89393 0.358031 0.179015 0.983846i \(-0.442709\pi\)
0.179015 + 0.983846i \(0.442709\pi\)
\(272\) −33.5185 −2.03236
\(273\) 0 0
\(274\) −41.0137 −2.47773
\(275\) −7.76651 −0.468338
\(276\) 0 0
\(277\) −4.53890 −0.272716 −0.136358 0.990660i \(-0.543540\pi\)
−0.136358 + 0.990660i \(0.543540\pi\)
\(278\) −15.5398 −0.932017
\(279\) 0 0
\(280\) 2.22668 0.133070
\(281\) 17.0324 1.01607 0.508034 0.861337i \(-0.330373\pi\)
0.508034 + 0.861337i \(0.330373\pi\)
\(282\) 0 0
\(283\) 22.7638 1.35317 0.676584 0.736365i \(-0.263459\pi\)
0.676584 + 0.736365i \(0.263459\pi\)
\(284\) 11.4192 0.677606
\(285\) 0 0
\(286\) 9.52704 0.563345
\(287\) 11.4757 0.677386
\(288\) 0 0
\(289\) 33.4962 1.97036
\(290\) 5.17024 0.303607
\(291\) 0 0
\(292\) −15.3327 −0.897281
\(293\) 5.55943 0.324785 0.162393 0.986726i \(-0.448079\pi\)
0.162393 + 0.986726i \(0.448079\pi\)
\(294\) 0 0
\(295\) −7.39693 −0.430666
\(296\) 2.49525 0.145034
\(297\) 0 0
\(298\) 14.4388 0.836418
\(299\) 18.1976 1.05239
\(300\) 0 0
\(301\) 32.9786 1.90086
\(302\) 11.1702 0.642775
\(303\) 0 0
\(304\) 0 0
\(305\) −0.541584 −0.0310110
\(306\) 0 0
\(307\) −11.8307 −0.675213 −0.337607 0.941287i \(-0.609617\pi\)
−0.337607 + 0.941287i \(0.609617\pi\)
\(308\) −8.10607 −0.461886
\(309\) 0 0
\(310\) 12.6477 0.718338
\(311\) 18.0428 1.02311 0.511557 0.859249i \(-0.329069\pi\)
0.511557 + 0.859249i \(0.329069\pi\)
\(312\) 0 0
\(313\) 6.89393 0.389668 0.194834 0.980836i \(-0.437583\pi\)
0.194834 + 0.980836i \(0.437583\pi\)
\(314\) 19.5398 1.10270
\(315\) 0 0
\(316\) 2.46791 0.138831
\(317\) 33.3259 1.87177 0.935886 0.352304i \(-0.114602\pi\)
0.935886 + 0.352304i \(0.114602\pi\)
\(318\) 0 0
\(319\) 5.74834 0.321845
\(320\) 3.44831 0.192766
\(321\) 0 0
\(322\) −35.6955 −1.98923
\(323\) 0 0
\(324\) 0 0
\(325\) 11.6604 0.646805
\(326\) −18.9290 −1.04838
\(327\) 0 0
\(328\) −3.50475 −0.193517
\(329\) 6.35504 0.350365
\(330\) 0 0
\(331\) 4.94356 0.271723 0.135861 0.990728i \(-0.456620\pi\)
0.135861 + 0.990728i \(0.456620\pi\)
\(332\) −1.50980 −0.0828610
\(333\) 0 0
\(334\) 15.2763 0.835883
\(335\) 3.23173 0.176568
\(336\) 0 0
\(337\) 9.41921 0.513097 0.256549 0.966531i \(-0.417415\pi\)
0.256549 + 0.966531i \(0.417415\pi\)
\(338\) 10.1284 0.550910
\(339\) 0 0
\(340\) −9.57398 −0.519222
\(341\) 14.0618 0.761490
\(342\) 0 0
\(343\) 16.4388 0.887613
\(344\) −10.0719 −0.543041
\(345\) 0 0
\(346\) −9.98545 −0.536821
\(347\) 11.8648 0.636938 0.318469 0.947933i \(-0.396831\pi\)
0.318469 + 0.947933i \(0.396831\pi\)
\(348\) 0 0
\(349\) 21.9418 1.17452 0.587259 0.809399i \(-0.300207\pi\)
0.587259 + 0.809399i \(0.300207\pi\)
\(350\) −22.8726 −1.22259
\(351\) 0 0
\(352\) 13.0574 0.695960
\(353\) −3.89393 −0.207253 −0.103627 0.994616i \(-0.533045\pi\)
−0.103627 + 0.994616i \(0.533045\pi\)
\(354\) 0 0
\(355\) −6.55438 −0.347870
\(356\) −26.1334 −1.38507
\(357\) 0 0
\(358\) −32.0009 −1.69130
\(359\) 12.0051 0.633602 0.316801 0.948492i \(-0.397391\pi\)
0.316801 + 0.948492i \(0.397391\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 32.0797 1.68607
\(363\) 0 0
\(364\) 12.1702 0.637894
\(365\) 8.80066 0.460648
\(366\) 0 0
\(367\) −26.8033 −1.39912 −0.699562 0.714572i \(-0.746621\pi\)
−0.699562 + 0.714572i \(0.746621\pi\)
\(368\) 31.1138 1.62192
\(369\) 0 0
\(370\) 4.68954 0.243798
\(371\) 7.78106 0.403972
\(372\) 0 0
\(373\) −28.5817 −1.47991 −0.739953 0.672659i \(-0.765152\pi\)
−0.739953 + 0.672659i \(0.765152\pi\)
\(374\) −24.5398 −1.26892
\(375\) 0 0
\(376\) −1.94087 −0.100093
\(377\) −8.63041 −0.444489
\(378\) 0 0
\(379\) −3.09833 −0.159150 −0.0795752 0.996829i \(-0.525356\pi\)
−0.0795752 + 0.996829i \(0.525356\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 6.81016 0.348438
\(383\) 28.6236 1.46260 0.731299 0.682057i \(-0.238914\pi\)
0.731299 + 0.682057i \(0.238914\pi\)
\(384\) 0 0
\(385\) 4.65270 0.237124
\(386\) 9.62866 0.490086
\(387\) 0 0
\(388\) −9.04189 −0.459032
\(389\) 22.4142 1.13644 0.568222 0.822876i \(-0.307632\pi\)
0.568222 + 0.822876i \(0.307632\pi\)
\(390\) 0 0
\(391\) −46.8735 −2.37050
\(392\) 1.13516 0.0573344
\(393\) 0 0
\(394\) −17.1557 −0.864292
\(395\) −1.41653 −0.0712732
\(396\) 0 0
\(397\) −13.7314 −0.689161 −0.344580 0.938757i \(-0.611979\pi\)
−0.344580 + 0.938757i \(0.611979\pi\)
\(398\) −41.5057 −2.08049
\(399\) 0 0
\(400\) 19.9368 0.996838
\(401\) 29.2867 1.46251 0.731255 0.682104i \(-0.238935\pi\)
0.731255 + 0.682104i \(0.238935\pi\)
\(402\) 0 0
\(403\) −21.1121 −1.05167
\(404\) 6.59627 0.328177
\(405\) 0 0
\(406\) 16.9290 0.840173
\(407\) 5.21389 0.258443
\(408\) 0 0
\(409\) −2.33544 −0.115480 −0.0577400 0.998332i \(-0.518389\pi\)
−0.0577400 + 0.998332i \(0.518389\pi\)
\(410\) −6.58677 −0.325297
\(411\) 0 0
\(412\) 27.2841 1.34419
\(413\) −24.2199 −1.19178
\(414\) 0 0
\(415\) 0.866592 0.0425393
\(416\) −19.6040 −0.961166
\(417\) 0 0
\(418\) 0 0
\(419\) −2.27362 −0.111074 −0.0555369 0.998457i \(-0.517687\pi\)
−0.0555369 + 0.998457i \(0.517687\pi\)
\(420\) 0 0
\(421\) 19.0182 0.926889 0.463444 0.886126i \(-0.346613\pi\)
0.463444 + 0.886126i \(0.346613\pi\)
\(422\) −12.6364 −0.615130
\(423\) 0 0
\(424\) −2.37639 −0.115408
\(425\) −30.0351 −1.45692
\(426\) 0 0
\(427\) −1.77332 −0.0858169
\(428\) −9.01960 −0.435979
\(429\) 0 0
\(430\) −18.9290 −0.912838
\(431\) 12.7939 0.616258 0.308129 0.951345i \(-0.400297\pi\)
0.308129 + 0.951345i \(0.400297\pi\)
\(432\) 0 0
\(433\) 14.5749 0.700426 0.350213 0.936670i \(-0.386109\pi\)
0.350213 + 0.936670i \(0.386109\pi\)
\(434\) 41.4124 1.98786
\(435\) 0 0
\(436\) 23.1557 1.10896
\(437\) 0 0
\(438\) 0 0
\(439\) 24.6195 1.17502 0.587512 0.809215i \(-0.300107\pi\)
0.587512 + 0.809215i \(0.300107\pi\)
\(440\) −1.42097 −0.0677421
\(441\) 0 0
\(442\) 36.8435 1.75247
\(443\) −38.5354 −1.83087 −0.915436 0.402464i \(-0.868154\pi\)
−0.915436 + 0.402464i \(0.868154\pi\)
\(444\) 0 0
\(445\) 15.0000 0.711068
\(446\) 8.60132 0.407284
\(447\) 0 0
\(448\) 11.2909 0.533443
\(449\) 35.1807 1.66028 0.830139 0.557556i \(-0.188261\pi\)
0.830139 + 0.557556i \(0.188261\pi\)
\(450\) 0 0
\(451\) −7.32325 −0.344839
\(452\) 9.32089 0.438418
\(453\) 0 0
\(454\) −29.7743 −1.39737
\(455\) −6.98545 −0.327483
\(456\) 0 0
\(457\) −13.7983 −0.645457 −0.322729 0.946492i \(-0.604600\pi\)
−0.322729 + 0.946492i \(0.604600\pi\)
\(458\) −7.26857 −0.339638
\(459\) 0 0
\(460\) 8.88713 0.414364
\(461\) −24.2722 −1.13047 −0.565234 0.824930i \(-0.691214\pi\)
−0.565234 + 0.824930i \(0.691214\pi\)
\(462\) 0 0
\(463\) −11.2909 −0.524731 −0.262365 0.964969i \(-0.584503\pi\)
−0.262365 + 0.964969i \(0.584503\pi\)
\(464\) −14.7561 −0.685034
\(465\) 0 0
\(466\) −44.5877 −2.06549
\(467\) 4.78787 0.221556 0.110778 0.993845i \(-0.464666\pi\)
0.110778 + 0.993845i \(0.464666\pi\)
\(468\) 0 0
\(469\) 10.5817 0.488618
\(470\) −3.64765 −0.168254
\(471\) 0 0
\(472\) 7.39693 0.340471
\(473\) −21.0455 −0.967674
\(474\) 0 0
\(475\) 0 0
\(476\) −31.3482 −1.43684
\(477\) 0 0
\(478\) 8.54488 0.390834
\(479\) 16.9094 0.772611 0.386305 0.922371i \(-0.373751\pi\)
0.386305 + 0.922371i \(0.373751\pi\)
\(480\) 0 0
\(481\) −7.82800 −0.356926
\(482\) 2.05468 0.0935882
\(483\) 0 0
\(484\) −11.6800 −0.530911
\(485\) 5.18984 0.235659
\(486\) 0 0
\(487\) 7.76382 0.351812 0.175906 0.984407i \(-0.443714\pi\)
0.175906 + 0.984407i \(0.443714\pi\)
\(488\) 0.541584 0.0245164
\(489\) 0 0
\(490\) 2.13341 0.0963775
\(491\) 14.5253 0.655517 0.327758 0.944762i \(-0.393707\pi\)
0.327758 + 0.944762i \(0.393707\pi\)
\(492\) 0 0
\(493\) 22.2303 1.00120
\(494\) 0 0
\(495\) 0 0
\(496\) −36.0969 −1.62080
\(497\) −21.4611 −0.962662
\(498\) 0 0
\(499\) 28.2695 1.26552 0.632758 0.774349i \(-0.281923\pi\)
0.632758 + 0.774349i \(0.281923\pi\)
\(500\) 12.4311 0.555935
\(501\) 0 0
\(502\) 25.8854 1.15532
\(503\) 38.0624 1.69712 0.848560 0.529100i \(-0.177470\pi\)
0.848560 + 0.529100i \(0.177470\pi\)
\(504\) 0 0
\(505\) −3.78611 −0.168480
\(506\) 22.7793 1.01266
\(507\) 0 0
\(508\) 18.2645 0.810354
\(509\) 13.7520 0.609545 0.304773 0.952425i \(-0.401420\pi\)
0.304773 + 0.952425i \(0.401420\pi\)
\(510\) 0 0
\(511\) 28.8161 1.27475
\(512\) −25.2226 −1.11469
\(513\) 0 0
\(514\) 24.1830 1.06667
\(515\) −15.6604 −0.690082
\(516\) 0 0
\(517\) −4.05550 −0.178361
\(518\) 15.3550 0.674662
\(519\) 0 0
\(520\) 2.13341 0.0935561
\(521\) −15.3942 −0.674434 −0.337217 0.941427i \(-0.609486\pi\)
−0.337217 + 0.941427i \(0.609486\pi\)
\(522\) 0 0
\(523\) 0.260830 0.0114053 0.00570265 0.999984i \(-0.498185\pi\)
0.00570265 + 0.999984i \(0.498185\pi\)
\(524\) 3.66456 0.160087
\(525\) 0 0
\(526\) −26.0155 −1.13433
\(527\) 54.3806 2.36886
\(528\) 0 0
\(529\) 20.5107 0.891771
\(530\) −4.46616 −0.193997
\(531\) 0 0
\(532\) 0 0
\(533\) 10.9949 0.476244
\(534\) 0 0
\(535\) 5.17705 0.223823
\(536\) −3.23173 −0.139590
\(537\) 0 0
\(538\) −26.0993 −1.12522
\(539\) 2.37195 0.102167
\(540\) 0 0
\(541\) 1.16519 0.0500955 0.0250478 0.999686i \(-0.492026\pi\)
0.0250478 + 0.999686i \(0.492026\pi\)
\(542\) −11.0770 −0.475797
\(543\) 0 0
\(544\) 50.4962 2.16501
\(545\) −13.2909 −0.569318
\(546\) 0 0
\(547\) 5.52259 0.236129 0.118065 0.993006i \(-0.462331\pi\)
0.118065 + 0.993006i \(0.462331\pi\)
\(548\) 33.4347 1.42826
\(549\) 0 0
\(550\) 14.5963 0.622387
\(551\) 0 0
\(552\) 0 0
\(553\) −4.63816 −0.197234
\(554\) 8.53033 0.362419
\(555\) 0 0
\(556\) 12.6682 0.537251
\(557\) 29.6560 1.25657 0.628283 0.777985i \(-0.283758\pi\)
0.628283 + 0.777985i \(0.283758\pi\)
\(558\) 0 0
\(559\) 31.5972 1.33642
\(560\) −11.9436 −0.504708
\(561\) 0 0
\(562\) −32.0104 −1.35028
\(563\) −12.3078 −0.518711 −0.259355 0.965782i \(-0.583510\pi\)
−0.259355 + 0.965782i \(0.583510\pi\)
\(564\) 0 0
\(565\) −5.34998 −0.225076
\(566\) −42.7820 −1.79826
\(567\) 0 0
\(568\) 6.55438 0.275016
\(569\) −24.3054 −1.01894 −0.509468 0.860490i \(-0.670158\pi\)
−0.509468 + 0.860490i \(0.670158\pi\)
\(570\) 0 0
\(571\) −7.99731 −0.334677 −0.167339 0.985899i \(-0.553517\pi\)
−0.167339 + 0.985899i \(0.553517\pi\)
\(572\) −7.76651 −0.324734
\(573\) 0 0
\(574\) −21.5672 −0.900196
\(575\) 27.8803 1.16269
\(576\) 0 0
\(577\) −11.6970 −0.486951 −0.243475 0.969907i \(-0.578287\pi\)
−0.243475 + 0.969907i \(0.578287\pi\)
\(578\) −62.9522 −2.61847
\(579\) 0 0
\(580\) −4.21482 −0.175011
\(581\) 2.83750 0.117719
\(582\) 0 0
\(583\) −4.96553 −0.205651
\(584\) −8.80066 −0.364174
\(585\) 0 0
\(586\) −10.4483 −0.431616
\(587\) −6.49289 −0.267990 −0.133995 0.990982i \(-0.542781\pi\)
−0.133995 + 0.990982i \(0.542781\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 13.9017 0.572323
\(591\) 0 0
\(592\) −13.3841 −0.550084
\(593\) −22.8821 −0.939654 −0.469827 0.882758i \(-0.655684\pi\)
−0.469827 + 0.882758i \(0.655684\pi\)
\(594\) 0 0
\(595\) 17.9932 0.737649
\(596\) −11.7706 −0.482144
\(597\) 0 0
\(598\) −34.2003 −1.39855
\(599\) −27.6040 −1.12787 −0.563935 0.825819i \(-0.690713\pi\)
−0.563935 + 0.825819i \(0.690713\pi\)
\(600\) 0 0
\(601\) −14.1310 −0.576417 −0.288209 0.957568i \(-0.593060\pi\)
−0.288209 + 0.957568i \(0.593060\pi\)
\(602\) −61.9796 −2.52610
\(603\) 0 0
\(604\) −9.10607 −0.370521
\(605\) 6.70409 0.272560
\(606\) 0 0
\(607\) 9.50980 0.385991 0.192995 0.981200i \(-0.438180\pi\)
0.192995 + 0.981200i \(0.438180\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 1.01785 0.0412114
\(611\) 6.08883 0.246328
\(612\) 0 0
\(613\) −42.1165 −1.70107 −0.850535 0.525919i \(-0.823721\pi\)
−0.850535 + 0.525919i \(0.823721\pi\)
\(614\) 22.2344 0.897308
\(615\) 0 0
\(616\) −4.65270 −0.187463
\(617\) 28.9617 1.16596 0.582978 0.812488i \(-0.301887\pi\)
0.582978 + 0.812488i \(0.301887\pi\)
\(618\) 0 0
\(619\) 30.9195 1.24276 0.621380 0.783509i \(-0.286572\pi\)
0.621380 + 0.783509i \(0.286572\pi\)
\(620\) −10.3105 −0.414078
\(621\) 0 0
\(622\) −33.9094 −1.35964
\(623\) 49.1147 1.96774
\(624\) 0 0
\(625\) 13.9982 0.559930
\(626\) −12.9564 −0.517840
\(627\) 0 0
\(628\) −15.9290 −0.635637
\(629\) 20.1634 0.803969
\(630\) 0 0
\(631\) −8.57491 −0.341362 −0.170681 0.985326i \(-0.554597\pi\)
−0.170681 + 0.985326i \(0.554597\pi\)
\(632\) 1.41653 0.0563464
\(633\) 0 0
\(634\) −62.6323 −2.48745
\(635\) −10.4834 −0.416021
\(636\) 0 0
\(637\) −3.56118 −0.141099
\(638\) −10.8033 −0.427709
\(639\) 0 0
\(640\) 6.01724 0.237852
\(641\) −26.5229 −1.04759 −0.523796 0.851844i \(-0.675485\pi\)
−0.523796 + 0.851844i \(0.675485\pi\)
\(642\) 0 0
\(643\) −21.0137 −0.828700 −0.414350 0.910118i \(-0.635991\pi\)
−0.414350 + 0.910118i \(0.635991\pi\)
\(644\) 29.0993 1.14667
\(645\) 0 0
\(646\) 0 0
\(647\) −38.0273 −1.49501 −0.747505 0.664257i \(-0.768748\pi\)
−0.747505 + 0.664257i \(0.768748\pi\)
\(648\) 0 0
\(649\) 15.4561 0.606703
\(650\) −21.9145 −0.859556
\(651\) 0 0
\(652\) 15.4311 0.604328
\(653\) −33.1917 −1.29889 −0.649446 0.760408i \(-0.724999\pi\)
−0.649446 + 0.760408i \(0.724999\pi\)
\(654\) 0 0
\(655\) −2.10338 −0.0821858
\(656\) 18.7989 0.733974
\(657\) 0 0
\(658\) −11.9436 −0.465609
\(659\) 39.4201 1.53559 0.767795 0.640695i \(-0.221354\pi\)
0.767795 + 0.640695i \(0.221354\pi\)
\(660\) 0 0
\(661\) −1.92808 −0.0749937 −0.0374968 0.999297i \(-0.511938\pi\)
−0.0374968 + 0.999297i \(0.511938\pi\)
\(662\) −9.29086 −0.361100
\(663\) 0 0
\(664\) −0.866592 −0.0336303
\(665\) 0 0
\(666\) 0 0
\(667\) −20.6355 −0.799008
\(668\) −12.4534 −0.481835
\(669\) 0 0
\(670\) −6.07367 −0.234646
\(671\) 1.13165 0.0436870
\(672\) 0 0
\(673\) 13.3865 0.516012 0.258006 0.966143i \(-0.416935\pi\)
0.258006 + 0.966143i \(0.416935\pi\)
\(674\) −17.7023 −0.681868
\(675\) 0 0
\(676\) −8.25671 −0.317566
\(677\) −11.0419 −0.424374 −0.212187 0.977229i \(-0.568059\pi\)
−0.212187 + 0.977229i \(0.568059\pi\)
\(678\) 0 0
\(679\) 16.9932 0.652139
\(680\) −5.49525 −0.210733
\(681\) 0 0
\(682\) −26.4276 −1.01196
\(683\) 9.16014 0.350503 0.175252 0.984524i \(-0.443926\pi\)
0.175252 + 0.984524i \(0.443926\pi\)
\(684\) 0 0
\(685\) −19.1908 −0.733242
\(686\) −30.8949 −1.17957
\(687\) 0 0
\(688\) 54.0242 2.05965
\(689\) 7.45512 0.284017
\(690\) 0 0
\(691\) −9.79385 −0.372576 −0.186288 0.982495i \(-0.559646\pi\)
−0.186288 + 0.982495i \(0.559646\pi\)
\(692\) 8.14022 0.309445
\(693\) 0 0
\(694\) −22.2986 −0.846443
\(695\) −7.27126 −0.275815
\(696\) 0 0
\(697\) −28.3209 −1.07273
\(698\) −41.2371 −1.56085
\(699\) 0 0
\(700\) 18.6459 0.704749
\(701\) 18.2071 0.687672 0.343836 0.939030i \(-0.388274\pi\)
0.343836 + 0.939030i \(0.388274\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −7.20533 −0.271561
\(705\) 0 0
\(706\) 7.31820 0.275424
\(707\) −12.3969 −0.466234
\(708\) 0 0
\(709\) 42.1789 1.58406 0.792031 0.610481i \(-0.209024\pi\)
0.792031 + 0.610481i \(0.209024\pi\)
\(710\) 12.3182 0.462294
\(711\) 0 0
\(712\) −15.0000 −0.562149
\(713\) −50.4793 −1.89046
\(714\) 0 0
\(715\) 4.45781 0.166713
\(716\) 26.0874 0.974932
\(717\) 0 0
\(718\) −22.5621 −0.842011
\(719\) 4.52259 0.168664 0.0843321 0.996438i \(-0.473124\pi\)
0.0843321 + 0.996438i \(0.473124\pi\)
\(720\) 0 0
\(721\) −51.2772 −1.90966
\(722\) 0 0
\(723\) 0 0
\(724\) −26.1516 −0.971916
\(725\) −13.2226 −0.491074
\(726\) 0 0
\(727\) 26.6932 0.989995 0.494997 0.868895i \(-0.335169\pi\)
0.494997 + 0.868895i \(0.335169\pi\)
\(728\) 6.98545 0.258898
\(729\) 0 0
\(730\) −16.5398 −0.612167
\(731\) −81.3884 −3.01026
\(732\) 0 0
\(733\) −5.04963 −0.186512 −0.0932562 0.995642i \(-0.529728\pi\)
−0.0932562 + 0.995642i \(0.529728\pi\)
\(734\) 50.3738 1.85933
\(735\) 0 0
\(736\) −46.8735 −1.72778
\(737\) −6.75278 −0.248742
\(738\) 0 0
\(739\) −8.42427 −0.309892 −0.154946 0.987923i \(-0.549520\pi\)
−0.154946 + 0.987923i \(0.549520\pi\)
\(740\) −3.82295 −0.140534
\(741\) 0 0
\(742\) −14.6236 −0.536850
\(743\) −52.9846 −1.94382 −0.971909 0.235358i \(-0.924374\pi\)
−0.971909 + 0.235358i \(0.924374\pi\)
\(744\) 0 0
\(745\) 6.75608 0.247524
\(746\) 53.7161 1.96668
\(747\) 0 0
\(748\) 20.0051 0.731457
\(749\) 16.9513 0.619387
\(750\) 0 0
\(751\) −11.9172 −0.434863 −0.217432 0.976076i \(-0.569768\pi\)
−0.217432 + 0.976076i \(0.569768\pi\)
\(752\) 10.4105 0.379633
\(753\) 0 0
\(754\) 16.2199 0.590693
\(755\) 5.22668 0.190218
\(756\) 0 0
\(757\) −30.8256 −1.12038 −0.560188 0.828365i \(-0.689271\pi\)
−0.560188 + 0.828365i \(0.689271\pi\)
\(758\) 5.82295 0.211499
\(759\) 0 0
\(760\) 0 0
\(761\) −43.9053 −1.59157 −0.795783 0.605582i \(-0.792940\pi\)
−0.795783 + 0.605582i \(0.792940\pi\)
\(762\) 0 0
\(763\) −43.5185 −1.57547
\(764\) −5.55169 −0.200853
\(765\) 0 0
\(766\) −53.7948 −1.94368
\(767\) −23.2053 −0.837896
\(768\) 0 0
\(769\) −8.86247 −0.319589 −0.159794 0.987150i \(-0.551083\pi\)
−0.159794 + 0.987150i \(0.551083\pi\)
\(770\) −8.74422 −0.315120
\(771\) 0 0
\(772\) −7.84936 −0.282504
\(773\) −44.6432 −1.60570 −0.802852 0.596178i \(-0.796685\pi\)
−0.802852 + 0.596178i \(0.796685\pi\)
\(774\) 0 0
\(775\) −32.3455 −1.16189
\(776\) −5.18984 −0.186305
\(777\) 0 0
\(778\) −42.1248 −1.51025
\(779\) 0 0
\(780\) 0 0
\(781\) 13.6955 0.490064
\(782\) 88.0934 3.15021
\(783\) 0 0
\(784\) −6.08883 −0.217458
\(785\) 9.14290 0.326324
\(786\) 0 0
\(787\) −18.5054 −0.659645 −0.329822 0.944043i \(-0.606989\pi\)
−0.329822 + 0.944043i \(0.606989\pi\)
\(788\) 13.9855 0.498211
\(789\) 0 0
\(790\) 2.66220 0.0947168
\(791\) −17.5175 −0.622852
\(792\) 0 0
\(793\) −1.69904 −0.0603345
\(794\) 25.8066 0.915844
\(795\) 0 0
\(796\) 33.8357 1.19928
\(797\) 15.3209 0.542694 0.271347 0.962482i \(-0.412531\pi\)
0.271347 + 0.962482i \(0.412531\pi\)
\(798\) 0 0
\(799\) −15.6837 −0.554848
\(800\) −30.0351 −1.06190
\(801\) 0 0
\(802\) −55.0411 −1.94357
\(803\) −18.3892 −0.648940
\(804\) 0 0
\(805\) −16.7023 −0.588680
\(806\) 39.6777 1.39759
\(807\) 0 0
\(808\) 3.78611 0.133195
\(809\) 14.0960 0.495588 0.247794 0.968813i \(-0.420294\pi\)
0.247794 + 0.968813i \(0.420294\pi\)
\(810\) 0 0
\(811\) −43.7306 −1.53559 −0.767795 0.640696i \(-0.778646\pi\)
−0.767795 + 0.640696i \(0.778646\pi\)
\(812\) −13.8007 −0.484308
\(813\) 0 0
\(814\) −9.79890 −0.343451
\(815\) −8.85710 −0.310251
\(816\) 0 0
\(817\) 0 0
\(818\) 4.38919 0.153464
\(819\) 0 0
\(820\) 5.36959 0.187514
\(821\) 12.8966 0.450095 0.225048 0.974348i \(-0.427746\pi\)
0.225048 + 0.974348i \(0.427746\pi\)
\(822\) 0 0
\(823\) 31.0428 1.08208 0.541042 0.840995i \(-0.318030\pi\)
0.541042 + 0.840995i \(0.318030\pi\)
\(824\) 15.6604 0.545557
\(825\) 0 0
\(826\) 45.5185 1.58379
\(827\) −26.6049 −0.925144 −0.462572 0.886582i \(-0.653073\pi\)
−0.462572 + 0.886582i \(0.653073\pi\)
\(828\) 0 0
\(829\) 48.3664 1.67983 0.839917 0.542714i \(-0.182603\pi\)
0.839917 + 0.542714i \(0.182603\pi\)
\(830\) −1.62866 −0.0565316
\(831\) 0 0
\(832\) 10.8179 0.375043
\(833\) 9.17293 0.317823
\(834\) 0 0
\(835\) 7.14796 0.247365
\(836\) 0 0
\(837\) 0 0
\(838\) 4.27301 0.147609
\(839\) 17.4929 0.603922 0.301961 0.953320i \(-0.402359\pi\)
0.301961 + 0.953320i \(0.402359\pi\)
\(840\) 0 0
\(841\) −19.2134 −0.662531
\(842\) −35.7425 −1.23177
\(843\) 0 0
\(844\) 10.3013 0.354585
\(845\) 4.73917 0.163032
\(846\) 0 0
\(847\) 21.9513 0.754256
\(848\) 12.7466 0.437720
\(849\) 0 0
\(850\) 56.4475 1.93613
\(851\) −18.7169 −0.641606
\(852\) 0 0
\(853\) −56.6596 −1.93999 −0.969994 0.243128i \(-0.921827\pi\)
−0.969994 + 0.243128i \(0.921827\pi\)
\(854\) 3.33275 0.114044
\(855\) 0 0
\(856\) −5.17705 −0.176948
\(857\) −29.1352 −0.995238 −0.497619 0.867396i \(-0.665792\pi\)
−0.497619 + 0.867396i \(0.665792\pi\)
\(858\) 0 0
\(859\) −17.9135 −0.611202 −0.305601 0.952160i \(-0.598857\pi\)
−0.305601 + 0.952160i \(0.598857\pi\)
\(860\) 15.4311 0.526195
\(861\) 0 0
\(862\) −24.0446 −0.818962
\(863\) 23.2746 0.792275 0.396138 0.918191i \(-0.370350\pi\)
0.396138 + 0.918191i \(0.370350\pi\)
\(864\) 0 0
\(865\) −4.67230 −0.158863
\(866\) −27.3919 −0.930814
\(867\) 0 0
\(868\) −33.7597 −1.14588
\(869\) 2.95987 0.100407
\(870\) 0 0
\(871\) 10.1385 0.343529
\(872\) 13.2909 0.450085
\(873\) 0 0
\(874\) 0 0
\(875\) −23.3628 −0.789806
\(876\) 0 0
\(877\) 27.6372 0.933243 0.466621 0.884457i \(-0.345471\pi\)
0.466621 + 0.884457i \(0.345471\pi\)
\(878\) −46.2695 −1.56152
\(879\) 0 0
\(880\) 7.62185 0.256933
\(881\) −15.4037 −0.518965 −0.259482 0.965748i \(-0.583552\pi\)
−0.259482 + 0.965748i \(0.583552\pi\)
\(882\) 0 0
\(883\) 22.7314 0.764974 0.382487 0.923961i \(-0.375068\pi\)
0.382487 + 0.923961i \(0.375068\pi\)
\(884\) −30.0351 −1.01019
\(885\) 0 0
\(886\) 72.4228 2.43309
\(887\) 12.0564 0.404816 0.202408 0.979301i \(-0.435123\pi\)
0.202408 + 0.979301i \(0.435123\pi\)
\(888\) 0 0
\(889\) −34.3259 −1.15126
\(890\) −28.1908 −0.944957
\(891\) 0 0
\(892\) −7.01186 −0.234774
\(893\) 0 0
\(894\) 0 0
\(895\) −14.9736 −0.500512
\(896\) 19.7023 0.658209
\(897\) 0 0
\(898\) −66.1180 −2.20639
\(899\) 23.9404 0.798456
\(900\) 0 0
\(901\) −19.2030 −0.639743
\(902\) 13.7632 0.458265
\(903\) 0 0
\(904\) 5.34998 0.177938
\(905\) 15.0104 0.498964
\(906\) 0 0
\(907\) −35.5776 −1.18133 −0.590667 0.806915i \(-0.701135\pi\)
−0.590667 + 0.806915i \(0.701135\pi\)
\(908\) 24.2722 0.805501
\(909\) 0 0
\(910\) 13.1284 0.435201
\(911\) −7.00505 −0.232088 −0.116044 0.993244i \(-0.537021\pi\)
−0.116044 + 0.993244i \(0.537021\pi\)
\(912\) 0 0
\(913\) −1.81076 −0.0599276
\(914\) 25.9323 0.857765
\(915\) 0 0
\(916\) 5.92539 0.195780
\(917\) −6.88713 −0.227433
\(918\) 0 0
\(919\) −8.36453 −0.275920 −0.137960 0.990438i \(-0.544055\pi\)
−0.137960 + 0.990438i \(0.544055\pi\)
\(920\) 5.10101 0.168175
\(921\) 0 0
\(922\) 45.6168 1.50231
\(923\) −20.5621 −0.676810
\(924\) 0 0
\(925\) −11.9932 −0.394334
\(926\) 21.2199 0.697328
\(927\) 0 0
\(928\) 22.2303 0.729745
\(929\) −50.8685 −1.66894 −0.834470 0.551053i \(-0.814226\pi\)
−0.834470 + 0.551053i \(0.814226\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 36.3482 1.19063
\(933\) 0 0
\(934\) −8.99825 −0.294432
\(935\) −11.4825 −0.375517
\(936\) 0 0
\(937\) 23.5817 0.770381 0.385191 0.922837i \(-0.374136\pi\)
0.385191 + 0.922837i \(0.374136\pi\)
\(938\) −19.8871 −0.649338
\(939\) 0 0
\(940\) 2.97359 0.0969879
\(941\) 44.6901 1.45686 0.728429 0.685122i \(-0.240251\pi\)
0.728429 + 0.685122i \(0.240251\pi\)
\(942\) 0 0
\(943\) 26.2891 0.856091
\(944\) −39.6759 −1.29134
\(945\) 0 0
\(946\) 39.5526 1.28597
\(947\) 42.1786 1.37062 0.685310 0.728251i \(-0.259667\pi\)
0.685310 + 0.728251i \(0.259667\pi\)
\(948\) 0 0
\(949\) 27.6091 0.896228
\(950\) 0 0
\(951\) 0 0
\(952\) −17.9932 −0.583163
\(953\) −51.7502 −1.67635 −0.838177 0.545399i \(-0.816378\pi\)
−0.838177 + 0.545399i \(0.816378\pi\)
\(954\) 0 0
\(955\) 3.18655 0.103114
\(956\) −6.96585 −0.225292
\(957\) 0 0
\(958\) −31.7793 −1.02674
\(959\) −62.8367 −2.02910
\(960\) 0 0
\(961\) 27.5639 0.889157
\(962\) 14.7118 0.474328
\(963\) 0 0
\(964\) −1.67499 −0.0539479
\(965\) 4.50536 0.145033
\(966\) 0 0
\(967\) 17.8544 0.574159 0.287080 0.957907i \(-0.407316\pi\)
0.287080 + 0.957907i \(0.407316\pi\)
\(968\) −6.70409 −0.215478
\(969\) 0 0
\(970\) −9.75372 −0.313173
\(971\) 41.5449 1.33324 0.666619 0.745398i \(-0.267741\pi\)
0.666619 + 0.745398i \(0.267741\pi\)
\(972\) 0 0
\(973\) −23.8084 −0.763262
\(974\) −14.5912 −0.467533
\(975\) 0 0
\(976\) −2.90497 −0.0929859
\(977\) −12.3527 −0.395197 −0.197599 0.980283i \(-0.563314\pi\)
−0.197599 + 0.980283i \(0.563314\pi\)
\(978\) 0 0
\(979\) −31.3429 −1.00172
\(980\) −1.73917 −0.0555558
\(981\) 0 0
\(982\) −27.2986 −0.871133
\(983\) −16.2686 −0.518887 −0.259443 0.965758i \(-0.583539\pi\)
−0.259443 + 0.965758i \(0.583539\pi\)
\(984\) 0 0
\(985\) −8.02734 −0.255772
\(986\) −41.7793 −1.33052
\(987\) 0 0
\(988\) 0 0
\(989\) 75.5494 2.40233
\(990\) 0 0
\(991\) 11.0993 0.352580 0.176290 0.984338i \(-0.443590\pi\)
0.176290 + 0.984338i \(0.443590\pi\)
\(992\) 54.3806 1.72659
\(993\) 0 0
\(994\) 40.3337 1.27931
\(995\) −19.4210 −0.615686
\(996\) 0 0
\(997\) −15.6459 −0.495511 −0.247755 0.968823i \(-0.579693\pi\)
−0.247755 + 0.968823i \(0.579693\pi\)
\(998\) −53.1293 −1.68178
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.w.1.1 3
3.2 odd 2 1083.2.a.m.1.3 3
19.6 even 9 171.2.u.a.55.1 6
19.16 even 9 171.2.u.a.28.1 6
19.18 odd 2 3249.2.a.x.1.3 3
57.35 odd 18 57.2.i.a.28.1 6
57.44 odd 18 57.2.i.a.55.1 yes 6
57.56 even 2 1083.2.a.n.1.1 3
228.35 even 18 912.2.bo.b.769.1 6
228.215 even 18 912.2.bo.b.625.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.i.a.28.1 6 57.35 odd 18
57.2.i.a.55.1 yes 6 57.44 odd 18
171.2.u.a.28.1 6 19.16 even 9
171.2.u.a.55.1 6 19.6 even 9
912.2.bo.b.625.1 6 228.215 even 18
912.2.bo.b.769.1 6 228.35 even 18
1083.2.a.m.1.3 3 3.2 odd 2
1083.2.a.n.1.1 3 57.56 even 2
3249.2.a.w.1.1 3 1.1 even 1 trivial
3249.2.a.x.1.3 3 19.18 odd 2