Properties

Label 3249.2.a.bj.1.6
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,12,0,0,-6,0,0,12,0,0,18,0,0,-12,0,0,0,0,0,-18,0,0,12,0, 0,6,0,0,24,0,0,30,0,0,24,0,0,42,0,0,18,0,0,6,0,0,0,0,0,60,0,0,0,0,0,-24, 0,0,-18,0,0,-30,0,0,0,0,0,42,0,0,0,0,0,0,0,0,54,0,0,-66,0,0,-48,0,0,0, 0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.21415104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} + 45x^{2} - 51 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 171)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.35204\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35204 q^{2} +3.53209 q^{4} +3.60353 q^{5} +0.184793 q^{7} +3.60353 q^{8} +8.47565 q^{10} -3.16889 q^{11} +6.06418 q^{13} +0.434639 q^{14} +1.41147 q^{16} -3.31984 q^{17} +12.7280 q^{20} -7.45336 q^{22} +4.42039 q^{23} +7.98545 q^{25} +14.2632 q^{26} +0.652704 q^{28} -7.58928 q^{29} +7.41147 q^{31} -3.88722 q^{32} -7.80840 q^{34} +0.665906 q^{35} +1.77332 q^{37} +12.9855 q^{40} +2.21930 q^{41} +6.75877 q^{43} -11.1928 q^{44} +10.3969 q^{46} +4.80260 q^{47} -6.96585 q^{49} +18.7821 q^{50} +21.4192 q^{52} -0.150949 q^{53} -11.4192 q^{55} +0.665906 q^{56} -17.8503 q^{58} -7.15464 q^{59} -5.92127 q^{61} +17.4321 q^{62} -11.9659 q^{64} +21.8525 q^{65} -1.38919 q^{67} -11.7260 q^{68} +1.56624 q^{70} +9.02594 q^{71} -8.70233 q^{73} +4.17091 q^{74} -0.585588 q^{77} +2.87164 q^{79} +5.08629 q^{80} +5.21987 q^{82} -7.30559 q^{83} -11.9632 q^{85} +15.8969 q^{86} -11.4192 q^{88} -7.33981 q^{89} +1.12061 q^{91} +15.6132 q^{92} +11.2959 q^{94} +0.837496 q^{97} -16.3840 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{4} - 6 q^{7} + 12 q^{10} + 18 q^{13} - 12 q^{16} - 18 q^{22} + 12 q^{25} + 6 q^{28} + 24 q^{31} + 30 q^{34} + 24 q^{37} + 42 q^{40} + 18 q^{43} + 6 q^{46} + 60 q^{52} - 24 q^{58} - 18 q^{61}+ \cdots + 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.35204 1.66314 0.831571 0.555418i \(-0.187442\pi\)
0.831571 + 0.555418i \(0.187442\pi\)
\(3\) 0 0
\(4\) 3.53209 1.76604
\(5\) 3.60353 1.61155 0.805775 0.592222i \(-0.201749\pi\)
0.805775 + 0.592222i \(0.201749\pi\)
\(6\) 0 0
\(7\) 0.184793 0.0698450 0.0349225 0.999390i \(-0.488882\pi\)
0.0349225 + 0.999390i \(0.488882\pi\)
\(8\) 3.60353 1.27404
\(9\) 0 0
\(10\) 8.47565 2.68024
\(11\) −3.16889 −0.955457 −0.477729 0.878507i \(-0.658540\pi\)
−0.477729 + 0.878507i \(0.658540\pi\)
\(12\) 0 0
\(13\) 6.06418 1.68190 0.840950 0.541113i \(-0.181997\pi\)
0.840950 + 0.541113i \(0.181997\pi\)
\(14\) 0.434639 0.116162
\(15\) 0 0
\(16\) 1.41147 0.352869
\(17\) −3.31984 −0.805180 −0.402590 0.915380i \(-0.631890\pi\)
−0.402590 + 0.915380i \(0.631890\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 12.7280 2.84607
\(21\) 0 0
\(22\) −7.45336 −1.58906
\(23\) 4.42039 0.921715 0.460857 0.887474i \(-0.347542\pi\)
0.460857 + 0.887474i \(0.347542\pi\)
\(24\) 0 0
\(25\) 7.98545 1.59709
\(26\) 14.2632 2.79724
\(27\) 0 0
\(28\) 0.652704 0.123349
\(29\) −7.58928 −1.40929 −0.704647 0.709558i \(-0.748895\pi\)
−0.704647 + 0.709558i \(0.748895\pi\)
\(30\) 0 0
\(31\) 7.41147 1.33114 0.665570 0.746335i \(-0.268188\pi\)
0.665570 + 0.746335i \(0.268188\pi\)
\(32\) −3.88722 −0.687171
\(33\) 0 0
\(34\) −7.80840 −1.33913
\(35\) 0.665906 0.112559
\(36\) 0 0
\(37\) 1.77332 0.291532 0.145766 0.989319i \(-0.453435\pi\)
0.145766 + 0.989319i \(0.453435\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 12.9855 2.05318
\(41\) 2.21930 0.346596 0.173298 0.984869i \(-0.444558\pi\)
0.173298 + 0.984869i \(0.444558\pi\)
\(42\) 0 0
\(43\) 6.75877 1.03070 0.515351 0.856979i \(-0.327661\pi\)
0.515351 + 0.856979i \(0.327661\pi\)
\(44\) −11.1928 −1.68738
\(45\) 0 0
\(46\) 10.3969 1.53294
\(47\) 4.80260 0.700532 0.350266 0.936650i \(-0.386091\pi\)
0.350266 + 0.936650i \(0.386091\pi\)
\(48\) 0 0
\(49\) −6.96585 −0.995122
\(50\) 18.7821 2.65619
\(51\) 0 0
\(52\) 21.4192 2.97031
\(53\) −0.150949 −0.0207344 −0.0103672 0.999946i \(-0.503300\pi\)
−0.0103672 + 0.999946i \(0.503300\pi\)
\(54\) 0 0
\(55\) −11.4192 −1.53977
\(56\) 0.665906 0.0889854
\(57\) 0 0
\(58\) −17.8503 −2.34386
\(59\) −7.15464 −0.931455 −0.465728 0.884928i \(-0.654207\pi\)
−0.465728 + 0.884928i \(0.654207\pi\)
\(60\) 0 0
\(61\) −5.92127 −0.758141 −0.379071 0.925368i \(-0.623756\pi\)
−0.379071 + 0.925368i \(0.623756\pi\)
\(62\) 17.4321 2.21388
\(63\) 0 0
\(64\) −11.9659 −1.49573
\(65\) 21.8525 2.71046
\(66\) 0 0
\(67\) −1.38919 −0.169716 −0.0848580 0.996393i \(-0.527044\pi\)
−0.0848580 + 0.996393i \(0.527044\pi\)
\(68\) −11.7260 −1.42198
\(69\) 0 0
\(70\) 1.56624 0.187201
\(71\) 9.02594 1.07118 0.535591 0.844477i \(-0.320089\pi\)
0.535591 + 0.844477i \(0.320089\pi\)
\(72\) 0 0
\(73\) −8.70233 −1.01853 −0.509266 0.860609i \(-0.670083\pi\)
−0.509266 + 0.860609i \(0.670083\pi\)
\(74\) 4.17091 0.484859
\(75\) 0 0
\(76\) 0 0
\(77\) −0.585588 −0.0667339
\(78\) 0 0
\(79\) 2.87164 0.323085 0.161543 0.986866i \(-0.448353\pi\)
0.161543 + 0.986866i \(0.448353\pi\)
\(80\) 5.08629 0.568665
\(81\) 0 0
\(82\) 5.21987 0.576439
\(83\) −7.30559 −0.801893 −0.400946 0.916102i \(-0.631319\pi\)
−0.400946 + 0.916102i \(0.631319\pi\)
\(84\) 0 0
\(85\) −11.9632 −1.29759
\(86\) 15.8969 1.71421
\(87\) 0 0
\(88\) −11.4192 −1.21729
\(89\) −7.33981 −0.778018 −0.389009 0.921234i \(-0.627183\pi\)
−0.389009 + 0.921234i \(0.627183\pi\)
\(90\) 0 0
\(91\) 1.12061 0.117472
\(92\) 15.6132 1.62779
\(93\) 0 0
\(94\) 11.2959 1.16508
\(95\) 0 0
\(96\) 0 0
\(97\) 0.837496 0.0850349 0.0425174 0.999096i \(-0.486462\pi\)
0.0425174 + 0.999096i \(0.486462\pi\)
\(98\) −16.3840 −1.65503
\(99\) 0 0
\(100\) 28.2053 2.82053
\(101\) −4.32186 −0.430041 −0.215021 0.976609i \(-0.568982\pi\)
−0.215021 + 0.976609i \(0.568982\pi\)
\(102\) 0 0
\(103\) 6.85710 0.675650 0.337825 0.941209i \(-0.390309\pi\)
0.337825 + 0.941209i \(0.390309\pi\)
\(104\) 21.8525 2.14281
\(105\) 0 0
\(106\) −0.355037 −0.0344843
\(107\) 11.9111 1.15149 0.575747 0.817628i \(-0.304711\pi\)
0.575747 + 0.817628i \(0.304711\pi\)
\(108\) 0 0
\(109\) −6.61587 −0.633685 −0.316843 0.948478i \(-0.602623\pi\)
−0.316843 + 0.948478i \(0.602623\pi\)
\(110\) −26.8584 −2.56085
\(111\) 0 0
\(112\) 0.260830 0.0246461
\(113\) −5.57336 −0.524297 −0.262149 0.965027i \(-0.584431\pi\)
−0.262149 + 0.965027i \(0.584431\pi\)
\(114\) 0 0
\(115\) 15.9290 1.48539
\(116\) −26.8060 −2.48888
\(117\) 0 0
\(118\) −16.8280 −1.54914
\(119\) −0.613482 −0.0562378
\(120\) 0 0
\(121\) −0.958111 −0.0871010
\(122\) −13.9271 −1.26090
\(123\) 0 0
\(124\) 26.1780 2.35085
\(125\) 10.7582 0.962241
\(126\) 0 0
\(127\) −4.81790 −0.427519 −0.213760 0.976886i \(-0.568571\pi\)
−0.213760 + 0.976886i \(0.568571\pi\)
\(128\) −20.3697 −1.80044
\(129\) 0 0
\(130\) 51.3979 4.50789
\(131\) −15.6132 −1.36413 −0.682066 0.731291i \(-0.738918\pi\)
−0.682066 + 0.731291i \(0.738918\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.26742 −0.282262
\(135\) 0 0
\(136\) −11.9632 −1.02583
\(137\) 5.38819 0.460344 0.230172 0.973150i \(-0.426071\pi\)
0.230172 + 0.973150i \(0.426071\pi\)
\(138\) 0 0
\(139\) −22.9786 −1.94902 −0.974512 0.224337i \(-0.927978\pi\)
−0.974512 + 0.224337i \(0.927978\pi\)
\(140\) 2.35204 0.198784
\(141\) 0 0
\(142\) 21.2294 1.78153
\(143\) −19.2167 −1.60698
\(144\) 0 0
\(145\) −27.3482 −2.27115
\(146\) −20.4682 −1.69396
\(147\) 0 0
\(148\) 6.26352 0.514858
\(149\) −15.0276 −1.23111 −0.615555 0.788094i \(-0.711068\pi\)
−0.615555 + 0.788094i \(0.711068\pi\)
\(150\) 0 0
\(151\) 14.7219 1.19805 0.599027 0.800729i \(-0.295554\pi\)
0.599027 + 0.800729i \(0.295554\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −1.37733 −0.110988
\(155\) 26.7075 2.14520
\(156\) 0 0
\(157\) −8.79561 −0.701966 −0.350983 0.936382i \(-0.614152\pi\)
−0.350983 + 0.936382i \(0.614152\pi\)
\(158\) 6.75422 0.537337
\(159\) 0 0
\(160\) −14.0077 −1.10741
\(161\) 0.816855 0.0643772
\(162\) 0 0
\(163\) 0.908481 0.0711577 0.0355789 0.999367i \(-0.488673\pi\)
0.0355789 + 0.999367i \(0.488673\pi\)
\(164\) 7.83876 0.612104
\(165\) 0 0
\(166\) −17.1830 −1.33366
\(167\) 14.4141 1.11540 0.557700 0.830043i \(-0.311684\pi\)
0.557700 + 0.830043i \(0.311684\pi\)
\(168\) 0 0
\(169\) 23.7743 1.82879
\(170\) −28.1378 −2.15807
\(171\) 0 0
\(172\) 23.8726 1.82027
\(173\) 4.28765 0.325984 0.162992 0.986627i \(-0.447886\pi\)
0.162992 + 0.986627i \(0.447886\pi\)
\(174\) 0 0
\(175\) 1.47565 0.111549
\(176\) −4.47281 −0.337151
\(177\) 0 0
\(178\) −17.2635 −1.29396
\(179\) 0.0461008 0.00344574 0.00172287 0.999999i \(-0.499452\pi\)
0.00172287 + 0.999999i \(0.499452\pi\)
\(180\) 0 0
\(181\) 3.11381 0.231447 0.115724 0.993281i \(-0.463081\pi\)
0.115724 + 0.993281i \(0.463081\pi\)
\(182\) 2.63573 0.195373
\(183\) 0 0
\(184\) 15.9290 1.17430
\(185\) 6.39021 0.469818
\(186\) 0 0
\(187\) 10.5202 0.769315
\(188\) 16.9632 1.23717
\(189\) 0 0
\(190\) 0 0
\(191\) −23.9550 −1.73333 −0.866663 0.498895i \(-0.833739\pi\)
−0.866663 + 0.498895i \(0.833739\pi\)
\(192\) 0 0
\(193\) −5.69965 −0.410269 −0.205135 0.978734i \(-0.565763\pi\)
−0.205135 + 0.978734i \(0.565763\pi\)
\(194\) 1.96982 0.141425
\(195\) 0 0
\(196\) −24.6040 −1.75743
\(197\) −2.58331 −0.184053 −0.0920265 0.995757i \(-0.529334\pi\)
−0.0920265 + 0.995757i \(0.529334\pi\)
\(198\) 0 0
\(199\) 17.2618 1.22365 0.611827 0.790992i \(-0.290435\pi\)
0.611827 + 0.790992i \(0.290435\pi\)
\(200\) 28.7758 2.03476
\(201\) 0 0
\(202\) −10.1652 −0.715220
\(203\) −1.40244 −0.0984322
\(204\) 0 0
\(205\) 7.99731 0.558556
\(206\) 16.1282 1.12370
\(207\) 0 0
\(208\) 8.55943 0.593490
\(209\) 0 0
\(210\) 0 0
\(211\) 4.61081 0.317422 0.158711 0.987325i \(-0.449266\pi\)
0.158711 + 0.987325i \(0.449266\pi\)
\(212\) −0.533164 −0.0366179
\(213\) 0 0
\(214\) 28.0155 1.91510
\(215\) 24.3555 1.66103
\(216\) 0 0
\(217\) 1.36959 0.0929735
\(218\) −15.5608 −1.05391
\(219\) 0 0
\(220\) −40.3337 −2.71930
\(221\) −20.1321 −1.35423
\(222\) 0 0
\(223\) 17.9213 1.20010 0.600049 0.799964i \(-0.295148\pi\)
0.600049 + 0.799964i \(0.295148\pi\)
\(224\) −0.718330 −0.0479954
\(225\) 0 0
\(226\) −13.1088 −0.871981
\(227\) 26.5223 1.76035 0.880174 0.474650i \(-0.157426\pi\)
0.880174 + 0.474650i \(0.157426\pi\)
\(228\) 0 0
\(229\) −3.36959 −0.222668 −0.111334 0.993783i \(-0.535512\pi\)
−0.111334 + 0.993783i \(0.535512\pi\)
\(230\) 37.4657 2.47041
\(231\) 0 0
\(232\) −27.3482 −1.79550
\(233\) 18.3475 1.20198 0.600991 0.799256i \(-0.294773\pi\)
0.600991 + 0.799256i \(0.294773\pi\)
\(234\) 0 0
\(235\) 17.3063 1.12894
\(236\) −25.2708 −1.64499
\(237\) 0 0
\(238\) −1.44293 −0.0935315
\(239\) −9.59332 −0.620540 −0.310270 0.950648i \(-0.600420\pi\)
−0.310270 + 0.950648i \(0.600420\pi\)
\(240\) 0 0
\(241\) −6.12836 −0.394762 −0.197381 0.980327i \(-0.563244\pi\)
−0.197381 + 0.980327i \(0.563244\pi\)
\(242\) −2.25351 −0.144861
\(243\) 0 0
\(244\) −20.9145 −1.33891
\(245\) −25.1017 −1.60369
\(246\) 0 0
\(247\) 0 0
\(248\) 26.7075 1.69593
\(249\) 0 0
\(250\) 25.3037 1.60034
\(251\) −22.1019 −1.39506 −0.697531 0.716555i \(-0.745718\pi\)
−0.697531 + 0.716555i \(0.745718\pi\)
\(252\) 0 0
\(253\) −14.0077 −0.880659
\(254\) −11.3319 −0.711025
\(255\) 0 0
\(256\) −23.9786 −1.49867
\(257\) −16.9171 −1.05526 −0.527631 0.849474i \(-0.676919\pi\)
−0.527631 + 0.849474i \(0.676919\pi\)
\(258\) 0 0
\(259\) 0.327696 0.0203620
\(260\) 77.1849 4.78680
\(261\) 0 0
\(262\) −36.7229 −2.26875
\(263\) 8.07635 0.498009 0.249004 0.968502i \(-0.419897\pi\)
0.249004 + 0.968502i \(0.419897\pi\)
\(264\) 0 0
\(265\) −0.543948 −0.0334145
\(266\) 0 0
\(267\) 0 0
\(268\) −4.90673 −0.299726
\(269\) −11.0419 −0.673234 −0.336617 0.941642i \(-0.609283\pi\)
−0.336617 + 0.941642i \(0.609283\pi\)
\(270\) 0 0
\(271\) −2.02229 −0.122845 −0.0614226 0.998112i \(-0.519564\pi\)
−0.0614226 + 0.998112i \(0.519564\pi\)
\(272\) −4.68587 −0.284123
\(273\) 0 0
\(274\) 12.6732 0.765618
\(275\) −25.3051 −1.52595
\(276\) 0 0
\(277\) 20.8057 1.25009 0.625047 0.780587i \(-0.285080\pi\)
0.625047 + 0.780587i \(0.285080\pi\)
\(278\) −54.0467 −3.24150
\(279\) 0 0
\(280\) 2.39961 0.143404
\(281\) 8.32582 0.496677 0.248338 0.968673i \(-0.420116\pi\)
0.248338 + 0.968673i \(0.420116\pi\)
\(282\) 0 0
\(283\) 11.1625 0.663542 0.331771 0.943360i \(-0.392354\pi\)
0.331771 + 0.943360i \(0.392354\pi\)
\(284\) 31.8804 1.89176
\(285\) 0 0
\(286\) −45.1985 −2.67264
\(287\) 0.410110 0.0242080
\(288\) 0 0
\(289\) −5.97864 −0.351685
\(290\) −64.3241 −3.77724
\(291\) 0 0
\(292\) −30.7374 −1.79877
\(293\) −3.88722 −0.227094 −0.113547 0.993533i \(-0.536221\pi\)
−0.113547 + 0.993533i \(0.536221\pi\)
\(294\) 0 0
\(295\) −25.7820 −1.50109
\(296\) 6.39021 0.371424
\(297\) 0 0
\(298\) −35.3455 −2.04751
\(299\) 26.8060 1.55023
\(300\) 0 0
\(301\) 1.24897 0.0719895
\(302\) 34.6266 1.99254
\(303\) 0 0
\(304\) 0 0
\(305\) −21.3375 −1.22178
\(306\) 0 0
\(307\) −17.1361 −0.978009 −0.489004 0.872281i \(-0.662640\pi\)
−0.489004 + 0.872281i \(0.662640\pi\)
\(308\) −2.06835 −0.117855
\(309\) 0 0
\(310\) 62.8171 3.56777
\(311\) −6.67390 −0.378442 −0.189221 0.981934i \(-0.560596\pi\)
−0.189221 + 0.981934i \(0.560596\pi\)
\(312\) 0 0
\(313\) −21.4757 −1.21388 −0.606938 0.794749i \(-0.707602\pi\)
−0.606938 + 0.794749i \(0.707602\pi\)
\(314\) −20.6876 −1.16747
\(315\) 0 0
\(316\) 10.1429 0.570583
\(317\) −33.5260 −1.88301 −0.941504 0.337000i \(-0.890588\pi\)
−0.941504 + 0.337000i \(0.890588\pi\)
\(318\) 0 0
\(319\) 24.0496 1.34652
\(320\) −43.1193 −2.41044
\(321\) 0 0
\(322\) 1.92127 0.107068
\(323\) 0 0
\(324\) 0 0
\(325\) 48.4252 2.68615
\(326\) 2.13678 0.118345
\(327\) 0 0
\(328\) 7.99731 0.441578
\(329\) 0.887485 0.0489286
\(330\) 0 0
\(331\) 24.0077 1.31958 0.659792 0.751448i \(-0.270644\pi\)
0.659792 + 0.751448i \(0.270644\pi\)
\(332\) −25.8040 −1.41618
\(333\) 0 0
\(334\) 33.9026 1.85507
\(335\) −5.00598 −0.273506
\(336\) 0 0
\(337\) 28.2814 1.54058 0.770292 0.637691i \(-0.220110\pi\)
0.770292 + 0.637691i \(0.220110\pi\)
\(338\) 55.9180 3.04154
\(339\) 0 0
\(340\) −42.2550 −2.29160
\(341\) −23.4862 −1.27185
\(342\) 0 0
\(343\) −2.58079 −0.139349
\(344\) 24.3555 1.31316
\(345\) 0 0
\(346\) 10.0847 0.542157
\(347\) −22.6232 −1.21448 −0.607239 0.794519i \(-0.707723\pi\)
−0.607239 + 0.794519i \(0.707723\pi\)
\(348\) 0 0
\(349\) 17.6304 0.943734 0.471867 0.881670i \(-0.343580\pi\)
0.471867 + 0.881670i \(0.343580\pi\)
\(350\) 3.47079 0.185522
\(351\) 0 0
\(352\) 12.3182 0.656562
\(353\) 25.6252 1.36389 0.681945 0.731404i \(-0.261134\pi\)
0.681945 + 0.731404i \(0.261134\pi\)
\(354\) 0 0
\(355\) 32.5253 1.72626
\(356\) −25.9249 −1.37401
\(357\) 0 0
\(358\) 0.108431 0.00573075
\(359\) 32.1942 1.69915 0.849573 0.527472i \(-0.176860\pi\)
0.849573 + 0.527472i \(0.176860\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 7.32380 0.384930
\(363\) 0 0
\(364\) 3.95811 0.207461
\(365\) −31.3591 −1.64141
\(366\) 0 0
\(367\) 19.2959 1.00724 0.503619 0.863926i \(-0.332001\pi\)
0.503619 + 0.863926i \(0.332001\pi\)
\(368\) 6.23926 0.325244
\(369\) 0 0
\(370\) 15.0300 0.781374
\(371\) −0.0278942 −0.00144819
\(372\) 0 0
\(373\) 15.2763 0.790977 0.395489 0.918471i \(-0.370575\pi\)
0.395489 + 0.918471i \(0.370575\pi\)
\(374\) 24.7440 1.27948
\(375\) 0 0
\(376\) 17.3063 0.892506
\(377\) −46.0228 −2.37029
\(378\) 0 0
\(379\) −20.9718 −1.07725 −0.538625 0.842545i \(-0.681056\pi\)
−0.538625 + 0.842545i \(0.681056\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −56.3432 −2.88277
\(383\) −4.95355 −0.253115 −0.126557 0.991959i \(-0.540393\pi\)
−0.126557 + 0.991959i \(0.540393\pi\)
\(384\) 0 0
\(385\) −2.11019 −0.107545
\(386\) −13.4058 −0.682337
\(387\) 0 0
\(388\) 2.95811 0.150175
\(389\) −32.9286 −1.66954 −0.834772 0.550596i \(-0.814401\pi\)
−0.834772 + 0.550596i \(0.814401\pi\)
\(390\) 0 0
\(391\) −14.6750 −0.742146
\(392\) −25.1017 −1.26783
\(393\) 0 0
\(394\) −6.07604 −0.306106
\(395\) 10.3481 0.520668
\(396\) 0 0
\(397\) −30.7766 −1.54463 −0.772317 0.635237i \(-0.780902\pi\)
−0.772317 + 0.635237i \(0.780902\pi\)
\(398\) 40.6003 2.03511
\(399\) 0 0
\(400\) 11.2713 0.563563
\(401\) 15.2771 0.762901 0.381451 0.924389i \(-0.375425\pi\)
0.381451 + 0.924389i \(0.375425\pi\)
\(402\) 0 0
\(403\) 44.9445 2.23884
\(404\) −15.2652 −0.759472
\(405\) 0 0
\(406\) −3.29860 −0.163707
\(407\) −5.61946 −0.278546
\(408\) 0 0
\(409\) 12.6450 0.625253 0.312627 0.949876i \(-0.398791\pi\)
0.312627 + 0.949876i \(0.398791\pi\)
\(410\) 18.8100 0.928959
\(411\) 0 0
\(412\) 24.2199 1.19323
\(413\) −1.32212 −0.0650575
\(414\) 0 0
\(415\) −26.3259 −1.29229
\(416\) −23.5728 −1.15575
\(417\) 0 0
\(418\) 0 0
\(419\) −23.2828 −1.13744 −0.568720 0.822531i \(-0.692561\pi\)
−0.568720 + 0.822531i \(0.692561\pi\)
\(420\) 0 0
\(421\) −22.8999 −1.11607 −0.558037 0.829816i \(-0.688445\pi\)
−0.558037 + 0.829816i \(0.688445\pi\)
\(422\) 10.8448 0.527917
\(423\) 0 0
\(424\) −0.543948 −0.0264165
\(425\) −26.5104 −1.28595
\(426\) 0 0
\(427\) −1.09421 −0.0529524
\(428\) 42.0712 2.03359
\(429\) 0 0
\(430\) 57.2850 2.76253
\(431\) 30.0552 1.44771 0.723855 0.689952i \(-0.242369\pi\)
0.723855 + 0.689952i \(0.242369\pi\)
\(432\) 0 0
\(433\) −5.52435 −0.265483 −0.132742 0.991151i \(-0.542378\pi\)
−0.132742 + 0.991151i \(0.542378\pi\)
\(434\) 3.22132 0.154628
\(435\) 0 0
\(436\) −23.3678 −1.11912
\(437\) 0 0
\(438\) 0 0
\(439\) 17.6527 0.842518 0.421259 0.906940i \(-0.361588\pi\)
0.421259 + 0.906940i \(0.361588\pi\)
\(440\) −41.1495 −1.96173
\(441\) 0 0
\(442\) −47.3515 −2.25228
\(443\) −8.41246 −0.399688 −0.199844 0.979828i \(-0.564044\pi\)
−0.199844 + 0.979828i \(0.564044\pi\)
\(444\) 0 0
\(445\) −26.4492 −1.25381
\(446\) 42.1515 1.99593
\(447\) 0 0
\(448\) −2.21120 −0.104469
\(449\) −14.9473 −0.705407 −0.352703 0.935735i \(-0.614737\pi\)
−0.352703 + 0.935735i \(0.614737\pi\)
\(450\) 0 0
\(451\) −7.03272 −0.331158
\(452\) −19.6856 −0.925932
\(453\) 0 0
\(454\) 62.3816 2.92771
\(455\) 4.03817 0.189312
\(456\) 0 0
\(457\) 31.2267 1.46072 0.730361 0.683061i \(-0.239352\pi\)
0.730361 + 0.683061i \(0.239352\pi\)
\(458\) −7.92540 −0.370329
\(459\) 0 0
\(460\) 56.2627 2.62326
\(461\) 1.33181 0.0620287 0.0310143 0.999519i \(-0.490126\pi\)
0.0310143 + 0.999519i \(0.490126\pi\)
\(462\) 0 0
\(463\) −5.21719 −0.242463 −0.121232 0.992624i \(-0.538684\pi\)
−0.121232 + 0.992624i \(0.538684\pi\)
\(464\) −10.7121 −0.497296
\(465\) 0 0
\(466\) 43.1539 1.99907
\(467\) 20.5668 0.951716 0.475858 0.879522i \(-0.342138\pi\)
0.475858 + 0.879522i \(0.342138\pi\)
\(468\) 0 0
\(469\) −0.256711 −0.0118538
\(470\) 40.7052 1.87759
\(471\) 0 0
\(472\) −25.7820 −1.18671
\(473\) −21.4178 −0.984793
\(474\) 0 0
\(475\) 0 0
\(476\) −2.16687 −0.0993185
\(477\) 0 0
\(478\) −22.5639 −1.03205
\(479\) −15.6013 −0.712842 −0.356421 0.934325i \(-0.616003\pi\)
−0.356421 + 0.934325i \(0.616003\pi\)
\(480\) 0 0
\(481\) 10.7537 0.490327
\(482\) −14.4141 −0.656546
\(483\) 0 0
\(484\) −3.38413 −0.153824
\(485\) 3.01795 0.137038
\(486\) 0 0
\(487\) −22.2327 −1.00746 −0.503729 0.863862i \(-0.668039\pi\)
−0.503729 + 0.863862i \(0.668039\pi\)
\(488\) −21.3375 −0.965904
\(489\) 0 0
\(490\) −59.0401 −2.66716
\(491\) 32.3270 1.45889 0.729447 0.684037i \(-0.239777\pi\)
0.729447 + 0.684037i \(0.239777\pi\)
\(492\) 0 0
\(493\) 25.1952 1.13474
\(494\) 0 0
\(495\) 0 0
\(496\) 10.4611 0.469717
\(497\) 1.66793 0.0748167
\(498\) 0 0
\(499\) −4.19934 −0.187988 −0.0939941 0.995573i \(-0.529963\pi\)
−0.0939941 + 0.995573i \(0.529963\pi\)
\(500\) 37.9988 1.69936
\(501\) 0 0
\(502\) −51.9846 −2.32019
\(503\) −15.6314 −0.696970 −0.348485 0.937314i \(-0.613304\pi\)
−0.348485 + 0.937314i \(0.613304\pi\)
\(504\) 0 0
\(505\) −15.5740 −0.693033
\(506\) −32.9468 −1.46466
\(507\) 0 0
\(508\) −17.0172 −0.755018
\(509\) −43.5722 −1.93130 −0.965652 0.259840i \(-0.916330\pi\)
−0.965652 + 0.259840i \(0.916330\pi\)
\(510\) 0 0
\(511\) −1.60813 −0.0711393
\(512\) −15.6593 −0.692050
\(513\) 0 0
\(514\) −39.7897 −1.75505
\(515\) 24.7098 1.08884
\(516\) 0 0
\(517\) −15.2189 −0.669328
\(518\) 0.770754 0.0338650
\(519\) 0 0
\(520\) 78.7461 3.45324
\(521\) −7.97782 −0.349515 −0.174757 0.984612i \(-0.555914\pi\)
−0.174757 + 0.984612i \(0.555914\pi\)
\(522\) 0 0
\(523\) 11.7784 0.515032 0.257516 0.966274i \(-0.417096\pi\)
0.257516 + 0.966274i \(0.417096\pi\)
\(524\) −55.1472 −2.40912
\(525\) 0 0
\(526\) 18.9959 0.828260
\(527\) −24.6049 −1.07181
\(528\) 0 0
\(529\) −3.46017 −0.150442
\(530\) −1.27939 −0.0555731
\(531\) 0 0
\(532\) 0 0
\(533\) 13.4582 0.582940
\(534\) 0 0
\(535\) 42.9222 1.85569
\(536\) −5.00598 −0.216225
\(537\) 0 0
\(538\) −25.9709 −1.11969
\(539\) 22.0740 0.950796
\(540\) 0 0
\(541\) −3.08141 −0.132480 −0.0662402 0.997804i \(-0.521100\pi\)
−0.0662402 + 0.997804i \(0.521100\pi\)
\(542\) −4.75650 −0.204309
\(543\) 0 0
\(544\) 12.9050 0.553296
\(545\) −23.8405 −1.02121
\(546\) 0 0
\(547\) −12.0787 −0.516449 −0.258225 0.966085i \(-0.583137\pi\)
−0.258225 + 0.966085i \(0.583137\pi\)
\(548\) 19.0316 0.812988
\(549\) 0 0
\(550\) −59.5185 −2.53788
\(551\) 0 0
\(552\) 0 0
\(553\) 0.530658 0.0225659
\(554\) 48.9359 2.07909
\(555\) 0 0
\(556\) −81.1626 −3.44206
\(557\) 36.1960 1.53367 0.766836 0.641843i \(-0.221830\pi\)
0.766836 + 0.641843i \(0.221830\pi\)
\(558\) 0 0
\(559\) 40.9864 1.73354
\(560\) 0.939909 0.0397184
\(561\) 0 0
\(562\) 19.5827 0.826044
\(563\) 28.2951 1.19250 0.596248 0.802800i \(-0.296657\pi\)
0.596248 + 0.802800i \(0.296657\pi\)
\(564\) 0 0
\(565\) −20.0838 −0.844931
\(566\) 26.2546 1.10357
\(567\) 0 0
\(568\) 32.5253 1.36473
\(569\) −25.3757 −1.06380 −0.531902 0.846806i \(-0.678523\pi\)
−0.531902 + 0.846806i \(0.678523\pi\)
\(570\) 0 0
\(571\) 41.8025 1.74938 0.874691 0.484682i \(-0.161065\pi\)
0.874691 + 0.484682i \(0.161065\pi\)
\(572\) −67.8752 −2.83801
\(573\) 0 0
\(574\) 0.964594 0.0402614
\(575\) 35.2988 1.47206
\(576\) 0 0
\(577\) 35.2746 1.46850 0.734250 0.678880i \(-0.237534\pi\)
0.734250 + 0.678880i \(0.237534\pi\)
\(578\) −14.0620 −0.584902
\(579\) 0 0
\(580\) −96.5964 −4.01095
\(581\) −1.35002 −0.0560082
\(582\) 0 0
\(583\) 0.478340 0.0198108
\(584\) −31.3591 −1.29765
\(585\) 0 0
\(586\) −9.14290 −0.377690
\(587\) 23.4219 0.966724 0.483362 0.875421i \(-0.339416\pi\)
0.483362 + 0.875421i \(0.339416\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −60.6403 −2.49652
\(591\) 0 0
\(592\) 2.50299 0.102872
\(593\) −5.38187 −0.221007 −0.110503 0.993876i \(-0.535246\pi\)
−0.110503 + 0.993876i \(0.535246\pi\)
\(594\) 0 0
\(595\) −2.21070 −0.0906300
\(596\) −53.0789 −2.17420
\(597\) 0 0
\(598\) 63.0488 2.57826
\(599\) −39.0533 −1.59567 −0.797837 0.602873i \(-0.794022\pi\)
−0.797837 + 0.602873i \(0.794022\pi\)
\(600\) 0 0
\(601\) 28.7965 1.17464 0.587318 0.809356i \(-0.300184\pi\)
0.587318 + 0.809356i \(0.300184\pi\)
\(602\) 2.93763 0.119729
\(603\) 0 0
\(604\) 51.9992 2.11582
\(605\) −3.45258 −0.140368
\(606\) 0 0
\(607\) 32.4766 1.31818 0.659092 0.752062i \(-0.270941\pi\)
0.659092 + 0.752062i \(0.270941\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −50.1867 −2.03200
\(611\) 29.1238 1.17822
\(612\) 0 0
\(613\) 34.1266 1.37836 0.689180 0.724590i \(-0.257971\pi\)
0.689180 + 0.724590i \(0.257971\pi\)
\(614\) −40.3048 −1.62657
\(615\) 0 0
\(616\) −2.11019 −0.0850218
\(617\) 17.8849 0.720020 0.360010 0.932948i \(-0.382773\pi\)
0.360010 + 0.932948i \(0.382773\pi\)
\(618\) 0 0
\(619\) −10.6628 −0.428574 −0.214287 0.976771i \(-0.568743\pi\)
−0.214287 + 0.976771i \(0.568743\pi\)
\(620\) 94.3332 3.78851
\(621\) 0 0
\(622\) −15.6973 −0.629404
\(623\) −1.35634 −0.0543407
\(624\) 0 0
\(625\) −1.15982 −0.0463926
\(626\) −50.5116 −2.01885
\(627\) 0 0
\(628\) −31.0669 −1.23970
\(629\) −5.88714 −0.234736
\(630\) 0 0
\(631\) −30.8607 −1.22855 −0.614273 0.789094i \(-0.710551\pi\)
−0.614273 + 0.789094i \(0.710551\pi\)
\(632\) 10.3481 0.411624
\(633\) 0 0
\(634\) −78.8545 −3.13171
\(635\) −17.3614 −0.688968
\(636\) 0 0
\(637\) −42.2422 −1.67370
\(638\) 56.5657 2.23946
\(639\) 0 0
\(640\) −73.4029 −2.90150
\(641\) −42.7553 −1.68873 −0.844367 0.535765i \(-0.820023\pi\)
−0.844367 + 0.535765i \(0.820023\pi\)
\(642\) 0 0
\(643\) −25.2550 −0.995958 −0.497979 0.867189i \(-0.665924\pi\)
−0.497979 + 0.867189i \(0.665924\pi\)
\(644\) 2.88520 0.113693
\(645\) 0 0
\(646\) 0 0
\(647\) 6.93939 0.272815 0.136408 0.990653i \(-0.456444\pi\)
0.136408 + 0.990653i \(0.456444\pi\)
\(648\) 0 0
\(649\) 22.6723 0.889966
\(650\) 113.898 4.46745
\(651\) 0 0
\(652\) 3.20884 0.125668
\(653\) 35.4840 1.38859 0.694297 0.719688i \(-0.255715\pi\)
0.694297 + 0.719688i \(0.255715\pi\)
\(654\) 0 0
\(655\) −56.2627 −2.19837
\(656\) 3.13248 0.122303
\(657\) 0 0
\(658\) 2.08740 0.0813753
\(659\) −30.6226 −1.19289 −0.596444 0.802655i \(-0.703420\pi\)
−0.596444 + 0.802655i \(0.703420\pi\)
\(660\) 0 0
\(661\) 6.67736 0.259719 0.129860 0.991532i \(-0.458547\pi\)
0.129860 + 0.991532i \(0.458547\pi\)
\(662\) 56.4671 2.19466
\(663\) 0 0
\(664\) −26.3259 −1.02164
\(665\) 0 0
\(666\) 0 0
\(667\) −33.5476 −1.29897
\(668\) 50.9120 1.96984
\(669\) 0 0
\(670\) −11.7743 −0.454879
\(671\) 18.7639 0.724372
\(672\) 0 0
\(673\) 3.68779 0.142154 0.0710768 0.997471i \(-0.477356\pi\)
0.0710768 + 0.997471i \(0.477356\pi\)
\(674\) 66.5189 2.56221
\(675\) 0 0
\(676\) 83.9728 3.22972
\(677\) 9.93500 0.381833 0.190916 0.981606i \(-0.438854\pi\)
0.190916 + 0.981606i \(0.438854\pi\)
\(678\) 0 0
\(679\) 0.154763 0.00593926
\(680\) −43.1097 −1.65318
\(681\) 0 0
\(682\) −55.2404 −2.11526
\(683\) −9.84280 −0.376624 −0.188312 0.982109i \(-0.560302\pi\)
−0.188312 + 0.982109i \(0.560302\pi\)
\(684\) 0 0
\(685\) 19.4165 0.741867
\(686\) −6.07011 −0.231758
\(687\) 0 0
\(688\) 9.53983 0.363703
\(689\) −0.915379 −0.0348732
\(690\) 0 0
\(691\) −12.2763 −0.467013 −0.233506 0.972355i \(-0.575020\pi\)
−0.233506 + 0.972355i \(0.575020\pi\)
\(692\) 15.1443 0.575702
\(693\) 0 0
\(694\) −53.2107 −2.01985
\(695\) −82.8043 −3.14095
\(696\) 0 0
\(697\) −7.36772 −0.279072
\(698\) 41.4674 1.56957
\(699\) 0 0
\(700\) 5.21213 0.197000
\(701\) −9.34605 −0.352995 −0.176498 0.984301i \(-0.556477\pi\)
−0.176498 + 0.984301i \(0.556477\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 37.9185 1.42911
\(705\) 0 0
\(706\) 60.2714 2.26834
\(707\) −0.798648 −0.0300363
\(708\) 0 0
\(709\) −30.7006 −1.15298 −0.576492 0.817103i \(-0.695579\pi\)
−0.576492 + 0.817103i \(0.695579\pi\)
\(710\) 76.5007 2.87102
\(711\) 0 0
\(712\) −26.4492 −0.991227
\(713\) 32.7616 1.22693
\(714\) 0 0
\(715\) −69.2481 −2.58973
\(716\) 0.162832 0.00608532
\(717\) 0 0
\(718\) 75.7220 2.82592
\(719\) −5.18482 −0.193361 −0.0966806 0.995315i \(-0.530823\pi\)
−0.0966806 + 0.995315i \(0.530823\pi\)
\(720\) 0 0
\(721\) 1.26714 0.0471908
\(722\) 0 0
\(723\) 0 0
\(724\) 10.9982 0.408747
\(725\) −60.6038 −2.25077
\(726\) 0 0
\(727\) −15.6682 −0.581101 −0.290550 0.956860i \(-0.593838\pi\)
−0.290550 + 0.956860i \(0.593838\pi\)
\(728\) 4.03817 0.149665
\(729\) 0 0
\(730\) −73.7579 −2.72990
\(731\) −22.4381 −0.829901
\(732\) 0 0
\(733\) −26.2576 −0.969848 −0.484924 0.874556i \(-0.661153\pi\)
−0.484924 + 0.874556i \(0.661153\pi\)
\(734\) 45.3847 1.67518
\(735\) 0 0
\(736\) −17.1830 −0.633375
\(737\) 4.40218 0.162156
\(738\) 0 0
\(739\) −10.2257 −0.376160 −0.188080 0.982154i \(-0.560226\pi\)
−0.188080 + 0.982154i \(0.560226\pi\)
\(740\) 22.5708 0.829719
\(741\) 0 0
\(742\) −0.0656082 −0.00240855
\(743\) −36.3469 −1.33344 −0.666720 0.745309i \(-0.732302\pi\)
−0.666720 + 0.745309i \(0.732302\pi\)
\(744\) 0 0
\(745\) −54.1525 −1.98399
\(746\) 35.9305 1.31551
\(747\) 0 0
\(748\) 37.1584 1.35865
\(749\) 2.20109 0.0804261
\(750\) 0 0
\(751\) −34.5381 −1.26031 −0.630156 0.776468i \(-0.717009\pi\)
−0.630156 + 0.776468i \(0.717009\pi\)
\(752\) 6.77875 0.247196
\(753\) 0 0
\(754\) −108.247 −3.94214
\(755\) 53.0510 1.93072
\(756\) 0 0
\(757\) 8.08647 0.293908 0.146954 0.989143i \(-0.453053\pi\)
0.146954 + 0.989143i \(0.453053\pi\)
\(758\) −49.3266 −1.79162
\(759\) 0 0
\(760\) 0 0
\(761\) 22.1362 0.802435 0.401218 0.915983i \(-0.368587\pi\)
0.401218 + 0.915983i \(0.368587\pi\)
\(762\) 0 0
\(763\) −1.22256 −0.0442597
\(764\) −84.6113 −3.06113
\(765\) 0 0
\(766\) −11.6509 −0.420966
\(767\) −43.3870 −1.56661
\(768\) 0 0
\(769\) −8.03952 −0.289913 −0.144956 0.989438i \(-0.546304\pi\)
−0.144956 + 0.989438i \(0.546304\pi\)
\(770\) −4.96324 −0.178863
\(771\) 0 0
\(772\) −20.1317 −0.724554
\(773\) −10.9776 −0.394835 −0.197418 0.980319i \(-0.563256\pi\)
−0.197418 + 0.980319i \(0.563256\pi\)
\(774\) 0 0
\(775\) 59.1840 2.12595
\(776\) 3.01795 0.108338
\(777\) 0 0
\(778\) −77.4492 −2.77669
\(779\) 0 0
\(780\) 0 0
\(781\) −28.6023 −1.02347
\(782\) −34.5162 −1.23430
\(783\) 0 0
\(784\) −9.83212 −0.351147
\(785\) −31.6953 −1.13125
\(786\) 0 0
\(787\) −7.11617 −0.253664 −0.126832 0.991924i \(-0.540481\pi\)
−0.126832 + 0.991924i \(0.540481\pi\)
\(788\) −9.12447 −0.325046
\(789\) 0 0
\(790\) 24.3391 0.865945
\(791\) −1.02991 −0.0366196
\(792\) 0 0
\(793\) −35.9077 −1.27512
\(794\) −72.3878 −2.56895
\(795\) 0 0
\(796\) 60.9701 2.16103
\(797\) 43.6001 1.54439 0.772197 0.635383i \(-0.219158\pi\)
0.772197 + 0.635383i \(0.219158\pi\)
\(798\) 0 0
\(799\) −15.9439 −0.564054
\(800\) −31.0412 −1.09747
\(801\) 0 0
\(802\) 35.9323 1.26881
\(803\) 27.5768 0.973163
\(804\) 0 0
\(805\) 2.94356 0.103747
\(806\) 105.711 3.72352
\(807\) 0 0
\(808\) −15.5740 −0.547891
\(809\) −12.9496 −0.455283 −0.227641 0.973745i \(-0.573101\pi\)
−0.227641 + 0.973745i \(0.573101\pi\)
\(810\) 0 0
\(811\) 30.6509 1.07630 0.538150 0.842849i \(-0.319123\pi\)
0.538150 + 0.842849i \(0.319123\pi\)
\(812\) −4.95355 −0.173836
\(813\) 0 0
\(814\) −13.2172 −0.463262
\(815\) 3.27374 0.114674
\(816\) 0 0
\(817\) 0 0
\(818\) 29.7414 1.03989
\(819\) 0 0
\(820\) 28.2472 0.986436
\(821\) 18.7115 0.653035 0.326517 0.945191i \(-0.394125\pi\)
0.326517 + 0.945191i \(0.394125\pi\)
\(822\) 0 0
\(823\) −18.7178 −0.652462 −0.326231 0.945290i \(-0.605779\pi\)
−0.326231 + 0.945290i \(0.605779\pi\)
\(824\) 24.7098 0.860806
\(825\) 0 0
\(826\) −3.10969 −0.108200
\(827\) 38.9548 1.35459 0.677295 0.735712i \(-0.263152\pi\)
0.677295 + 0.735712i \(0.263152\pi\)
\(828\) 0 0
\(829\) 22.6860 0.787918 0.393959 0.919128i \(-0.371105\pi\)
0.393959 + 0.919128i \(0.371105\pi\)
\(830\) −61.9196 −2.14926
\(831\) 0 0
\(832\) −72.5631 −2.51567
\(833\) 23.1255 0.801252
\(834\) 0 0
\(835\) 51.9418 1.79752
\(836\) 0 0
\(837\) 0 0
\(838\) −54.7621 −1.89172
\(839\) −24.3030 −0.839034 −0.419517 0.907748i \(-0.637801\pi\)
−0.419517 + 0.907748i \(0.637801\pi\)
\(840\) 0 0
\(841\) 28.5972 0.986110
\(842\) −53.8615 −1.85619
\(843\) 0 0
\(844\) 16.2858 0.560581
\(845\) 85.6713 2.94718
\(846\) 0 0
\(847\) −0.177052 −0.00608357
\(848\) −0.213060 −0.00731651
\(849\) 0 0
\(850\) −62.3536 −2.13871
\(851\) 7.83876 0.268709
\(852\) 0 0
\(853\) 50.1361 1.71663 0.858314 0.513125i \(-0.171512\pi\)
0.858314 + 0.513125i \(0.171512\pi\)
\(854\) −2.57362 −0.0880674
\(855\) 0 0
\(856\) 42.9222 1.46705
\(857\) 20.0399 0.684550 0.342275 0.939600i \(-0.388802\pi\)
0.342275 + 0.939600i \(0.388802\pi\)
\(858\) 0 0
\(859\) 14.9094 0.508703 0.254351 0.967112i \(-0.418138\pi\)
0.254351 + 0.967112i \(0.418138\pi\)
\(860\) 86.0256 2.93345
\(861\) 0 0
\(862\) 70.6911 2.40775
\(863\) 21.1929 0.721414 0.360707 0.932679i \(-0.382535\pi\)
0.360707 + 0.932679i \(0.382535\pi\)
\(864\) 0 0
\(865\) 15.4507 0.525339
\(866\) −12.9935 −0.441537
\(867\) 0 0
\(868\) 4.83750 0.164195
\(869\) −9.09994 −0.308694
\(870\) 0 0
\(871\) −8.42427 −0.285445
\(872\) −23.8405 −0.807341
\(873\) 0 0
\(874\) 0 0
\(875\) 1.98803 0.0672077
\(876\) 0 0
\(877\) −50.5303 −1.70629 −0.853144 0.521675i \(-0.825307\pi\)
−0.853144 + 0.521675i \(0.825307\pi\)
\(878\) 41.5199 1.40123
\(879\) 0 0
\(880\) −16.1179 −0.543335
\(881\) 22.7378 0.766054 0.383027 0.923737i \(-0.374882\pi\)
0.383027 + 0.923737i \(0.374882\pi\)
\(882\) 0 0
\(883\) 37.7975 1.27199 0.635993 0.771695i \(-0.280591\pi\)
0.635993 + 0.771695i \(0.280591\pi\)
\(884\) −71.1084 −2.39164
\(885\) 0 0
\(886\) −19.7864 −0.664738
\(887\) 26.7536 0.898298 0.449149 0.893457i \(-0.351727\pi\)
0.449149 + 0.893457i \(0.351727\pi\)
\(888\) 0 0
\(889\) −0.890311 −0.0298601
\(890\) −62.2097 −2.08527
\(891\) 0 0
\(892\) 63.2995 2.11943
\(893\) 0 0
\(894\) 0 0
\(895\) 0.166126 0.00555297
\(896\) −3.76417 −0.125752
\(897\) 0 0
\(898\) −35.1566 −1.17319
\(899\) −56.2478 −1.87597
\(900\) 0 0
\(901\) 0.501126 0.0166949
\(902\) −16.5412 −0.550763
\(903\) 0 0
\(904\) −20.0838 −0.667977
\(905\) 11.2207 0.372989
\(906\) 0 0
\(907\) 16.8093 0.558145 0.279072 0.960270i \(-0.409973\pi\)
0.279072 + 0.960270i \(0.409973\pi\)
\(908\) 93.6792 3.10885
\(909\) 0 0
\(910\) 9.49794 0.314854
\(911\) −31.9168 −1.05745 −0.528726 0.848793i \(-0.677330\pi\)
−0.528726 + 0.848793i \(0.677330\pi\)
\(912\) 0 0
\(913\) 23.1506 0.766174
\(914\) 73.4464 2.42939
\(915\) 0 0
\(916\) −11.9017 −0.393242
\(917\) −2.88520 −0.0952778
\(918\) 0 0
\(919\) −14.9409 −0.492854 −0.246427 0.969161i \(-0.579257\pi\)
−0.246427 + 0.969161i \(0.579257\pi\)
\(920\) 57.4007 1.89245
\(921\) 0 0
\(922\) 3.13247 0.103163
\(923\) 54.7349 1.80162
\(924\) 0 0
\(925\) 14.1607 0.465603
\(926\) −12.2710 −0.403251
\(927\) 0 0
\(928\) 29.5012 0.968426
\(929\) 32.0775 1.05243 0.526214 0.850352i \(-0.323611\pi\)
0.526214 + 0.850352i \(0.323611\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 64.8049 2.12275
\(933\) 0 0
\(934\) 48.3738 1.58284
\(935\) 37.9100 1.23979
\(936\) 0 0
\(937\) −21.2567 −0.694426 −0.347213 0.937786i \(-0.612872\pi\)
−0.347213 + 0.937786i \(0.612872\pi\)
\(938\) −0.603795 −0.0197146
\(939\) 0 0
\(940\) 61.1275 1.99376
\(941\) 3.85301 0.125604 0.0628022 0.998026i \(-0.479996\pi\)
0.0628022 + 0.998026i \(0.479996\pi\)
\(942\) 0 0
\(943\) 9.81016 0.319463
\(944\) −10.0986 −0.328681
\(945\) 0 0
\(946\) −50.3756 −1.63785
\(947\) 12.1264 0.394055 0.197028 0.980398i \(-0.436871\pi\)
0.197028 + 0.980398i \(0.436871\pi\)
\(948\) 0 0
\(949\) −52.7725 −1.71307
\(950\) 0 0
\(951\) 0 0
\(952\) −2.21070 −0.0716493
\(953\) 23.0515 0.746713 0.373356 0.927688i \(-0.378207\pi\)
0.373356 + 0.927688i \(0.378207\pi\)
\(954\) 0 0
\(955\) −86.3228 −2.79334
\(956\) −33.8845 −1.09590
\(957\) 0 0
\(958\) −36.6949 −1.18556
\(959\) 0.995698 0.0321527
\(960\) 0 0
\(961\) 23.9299 0.771934
\(962\) 25.2932 0.815484
\(963\) 0 0
\(964\) −21.6459 −0.697167
\(965\) −20.5389 −0.661169
\(966\) 0 0
\(967\) −23.1652 −0.744942 −0.372471 0.928044i \(-0.621489\pi\)
−0.372471 + 0.928044i \(0.621489\pi\)
\(968\) −3.45258 −0.110970
\(969\) 0 0
\(970\) 7.09833 0.227914
\(971\) −31.5625 −1.01289 −0.506445 0.862272i \(-0.669041\pi\)
−0.506445 + 0.862272i \(0.669041\pi\)
\(972\) 0 0
\(973\) −4.24628 −0.136130
\(974\) −52.2921 −1.67555
\(975\) 0 0
\(976\) −8.35773 −0.267524
\(977\) 36.6306 1.17192 0.585958 0.810341i \(-0.300718\pi\)
0.585958 + 0.810341i \(0.300718\pi\)
\(978\) 0 0
\(979\) 23.2591 0.743363
\(980\) −88.6614 −2.83218
\(981\) 0 0
\(982\) 76.0343 2.42635
\(983\) −36.7291 −1.17148 −0.585739 0.810500i \(-0.699196\pi\)
−0.585739 + 0.810500i \(0.699196\pi\)
\(984\) 0 0
\(985\) −9.30903 −0.296610
\(986\) 59.2602 1.88723
\(987\) 0 0
\(988\) 0 0
\(989\) 29.8764 0.950014
\(990\) 0 0
\(991\) 14.8716 0.472413 0.236207 0.971703i \(-0.424096\pi\)
0.236207 + 0.971703i \(0.424096\pi\)
\(992\) −28.8101 −0.914720
\(993\) 0 0
\(994\) 3.92303 0.124431
\(995\) 62.2033 1.97198
\(996\) 0 0
\(997\) 17.6905 0.560263 0.280131 0.959962i \(-0.409622\pi\)
0.280131 + 0.959962i \(0.409622\pi\)
\(998\) −9.87701 −0.312651
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.bj.1.6 6
3.2 odd 2 inner 3249.2.a.bj.1.1 6
19.3 odd 18 171.2.u.d.28.1 12
19.13 odd 18 171.2.u.d.55.1 yes 12
19.18 odd 2 3249.2.a.bi.1.1 6
57.32 even 18 171.2.u.d.55.2 yes 12
57.41 even 18 171.2.u.d.28.2 yes 12
57.56 even 2 3249.2.a.bi.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.u.d.28.1 12 19.3 odd 18
171.2.u.d.28.2 yes 12 57.41 even 18
171.2.u.d.55.1 yes 12 19.13 odd 18
171.2.u.d.55.2 yes 12 57.32 even 18
3249.2.a.bi.1.1 6 19.18 odd 2
3249.2.a.bi.1.6 6 57.56 even 2
3249.2.a.bj.1.1 6 3.2 odd 2 inner
3249.2.a.bj.1.6 6 1.1 even 1 trivial