Properties

Label 3249.2.a.bj.1.3
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,12,0,0,-6,0,0,12,0,0,18,0,0,-12,0,0,0,0,0,-18,0,0,12,0, 0,6,0,0,24,0,0,30,0,0,24,0,0,42,0,0,18,0,0,6,0,0,0,0,0,60,0,0,0,0,0,-24, 0,0,-18,0,0,-30,0,0,0,0,0,42,0,0,0,0,0,0,0,0,54,0,0,-66,0,0,-48,0,0,0, 0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.21415104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} + 45x^{2} - 51 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 171)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.45623\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.45623 q^{2} +0.120615 q^{4} +2.73682 q^{5} -4.41147 q^{7} +2.73682 q^{8} -3.98545 q^{10} +3.68731 q^{11} -0.758770 q^{13} +6.42413 q^{14} -4.22668 q^{16} -6.15503 q^{17} +0.330101 q^{20} -5.36959 q^{22} +0.505744 q^{23} +2.49020 q^{25} +1.10495 q^{26} -0.532089 q^{28} +3.18157 q^{29} +1.77332 q^{31} +0.681388 q^{32} +8.96316 q^{34} -12.0734 q^{35} +2.81521 q^{37} +7.49020 q^{40} +11.8043 q^{41} +2.30541 q^{43} +0.444744 q^{44} -0.736482 q^{46} -8.14947 q^{47} +12.4611 q^{49} -3.62631 q^{50} -0.0915189 q^{52} -9.84235 q^{53} +10.0915 q^{55} -12.0734 q^{56} -4.63310 q^{58} +9.60570 q^{59} -7.24897 q^{61} -2.58236 q^{62} +7.46110 q^{64} -2.07662 q^{65} -6.12836 q^{67} -0.742388 q^{68} +17.5817 q^{70} +2.83028 q^{71} +4.80066 q^{73} -4.09960 q^{74} -16.2665 q^{77} +16.5175 q^{79} -11.5677 q^{80} -17.1898 q^{82} -0.236643 q^{83} -16.8452 q^{85} -3.35721 q^{86} +10.0915 q^{88} +7.78691 q^{89} +3.34730 q^{91} +0.0610002 q^{92} +11.8675 q^{94} -4.94356 q^{97} -18.1463 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{4} - 6 q^{7} + 12 q^{10} + 18 q^{13} - 12 q^{16} - 18 q^{22} + 12 q^{25} + 6 q^{28} + 24 q^{31} + 30 q^{34} + 24 q^{37} + 42 q^{40} + 18 q^{43} + 6 q^{46} + 60 q^{52} - 24 q^{58} - 18 q^{61}+ \cdots + 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45623 −1.02971 −0.514856 0.857277i \(-0.672155\pi\)
−0.514856 + 0.857277i \(0.672155\pi\)
\(3\) 0 0
\(4\) 0.120615 0.0603074
\(5\) 2.73682 1.22394 0.611972 0.790879i \(-0.290376\pi\)
0.611972 + 0.790879i \(0.290376\pi\)
\(6\) 0 0
\(7\) −4.41147 −1.66738 −0.833690 0.552232i \(-0.813776\pi\)
−0.833690 + 0.552232i \(0.813776\pi\)
\(8\) 2.73682 0.967613
\(9\) 0 0
\(10\) −3.98545 −1.26031
\(11\) 3.68731 1.11177 0.555883 0.831260i \(-0.312380\pi\)
0.555883 + 0.831260i \(0.312380\pi\)
\(12\) 0 0
\(13\) −0.758770 −0.210445 −0.105223 0.994449i \(-0.533555\pi\)
−0.105223 + 0.994449i \(0.533555\pi\)
\(14\) 6.42413 1.71692
\(15\) 0 0
\(16\) −4.22668 −1.05667
\(17\) −6.15503 −1.49281 −0.746407 0.665489i \(-0.768223\pi\)
−0.746407 + 0.665489i \(0.768223\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0.330101 0.0738129
\(21\) 0 0
\(22\) −5.36959 −1.14480
\(23\) 0.505744 0.105455 0.0527275 0.998609i \(-0.483209\pi\)
0.0527275 + 0.998609i \(0.483209\pi\)
\(24\) 0 0
\(25\) 2.49020 0.498040
\(26\) 1.10495 0.216698
\(27\) 0 0
\(28\) −0.532089 −0.100555
\(29\) 3.18157 0.590802 0.295401 0.955373i \(-0.404547\pi\)
0.295401 + 0.955373i \(0.404547\pi\)
\(30\) 0 0
\(31\) 1.77332 0.318497 0.159249 0.987238i \(-0.449093\pi\)
0.159249 + 0.987238i \(0.449093\pi\)
\(32\) 0.681388 0.120453
\(33\) 0 0
\(34\) 8.96316 1.53717
\(35\) −12.0734 −2.04078
\(36\) 0 0
\(37\) 2.81521 0.462817 0.231409 0.972857i \(-0.425667\pi\)
0.231409 + 0.972857i \(0.425667\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 7.49020 1.18430
\(41\) 11.8043 1.84353 0.921763 0.387754i \(-0.126749\pi\)
0.921763 + 0.387754i \(0.126749\pi\)
\(42\) 0 0
\(43\) 2.30541 0.351571 0.175786 0.984428i \(-0.443753\pi\)
0.175786 + 0.984428i \(0.443753\pi\)
\(44\) 0.444744 0.0670477
\(45\) 0 0
\(46\) −0.736482 −0.108588
\(47\) −8.14947 −1.18872 −0.594361 0.804198i \(-0.702595\pi\)
−0.594361 + 0.804198i \(0.702595\pi\)
\(48\) 0 0
\(49\) 12.4611 1.78016
\(50\) −3.62631 −0.512838
\(51\) 0 0
\(52\) −0.0915189 −0.0126914
\(53\) −9.84235 −1.35195 −0.675975 0.736925i \(-0.736277\pi\)
−0.675975 + 0.736925i \(0.736277\pi\)
\(54\) 0 0
\(55\) 10.0915 1.36074
\(56\) −12.0734 −1.61338
\(57\) 0 0
\(58\) −4.63310 −0.608356
\(59\) 9.60570 1.25056 0.625278 0.780402i \(-0.284986\pi\)
0.625278 + 0.780402i \(0.284986\pi\)
\(60\) 0 0
\(61\) −7.24897 −0.928136 −0.464068 0.885800i \(-0.653611\pi\)
−0.464068 + 0.885800i \(0.653611\pi\)
\(62\) −2.58236 −0.327961
\(63\) 0 0
\(64\) 7.46110 0.932638
\(65\) −2.07662 −0.257573
\(66\) 0 0
\(67\) −6.12836 −0.748698 −0.374349 0.927288i \(-0.622134\pi\)
−0.374349 + 0.927288i \(0.622134\pi\)
\(68\) −0.742388 −0.0900278
\(69\) 0 0
\(70\) 17.5817 2.10142
\(71\) 2.83028 0.335893 0.167946 0.985796i \(-0.446286\pi\)
0.167946 + 0.985796i \(0.446286\pi\)
\(72\) 0 0
\(73\) 4.80066 0.561875 0.280937 0.959726i \(-0.409355\pi\)
0.280937 + 0.959726i \(0.409355\pi\)
\(74\) −4.09960 −0.476569
\(75\) 0 0
\(76\) 0 0
\(77\) −16.2665 −1.85374
\(78\) 0 0
\(79\) 16.5175 1.85837 0.929184 0.369617i \(-0.120511\pi\)
0.929184 + 0.369617i \(0.120511\pi\)
\(80\) −11.5677 −1.29331
\(81\) 0 0
\(82\) −17.1898 −1.89830
\(83\) −0.236643 −0.0259750 −0.0129875 0.999916i \(-0.504134\pi\)
−0.0129875 + 0.999916i \(0.504134\pi\)
\(84\) 0 0
\(85\) −16.8452 −1.82712
\(86\) −3.35721 −0.362017
\(87\) 0 0
\(88\) 10.0915 1.07576
\(89\) 7.78691 0.825411 0.412705 0.910865i \(-0.364584\pi\)
0.412705 + 0.910865i \(0.364584\pi\)
\(90\) 0 0
\(91\) 3.34730 0.350892
\(92\) 0.0610002 0.00635971
\(93\) 0 0
\(94\) 11.8675 1.22404
\(95\) 0 0
\(96\) 0 0
\(97\) −4.94356 −0.501943 −0.250971 0.967995i \(-0.580750\pi\)
−0.250971 + 0.967995i \(0.580750\pi\)
\(98\) −18.1463 −1.83305
\(99\) 0 0
\(100\) 0.300355 0.0300355
\(101\) −5.74275 −0.571425 −0.285712 0.958315i \(-0.592230\pi\)
−0.285712 + 0.958315i \(0.592230\pi\)
\(102\) 0 0
\(103\) 15.0077 1.47876 0.739378 0.673290i \(-0.235120\pi\)
0.739378 + 0.673290i \(0.235120\pi\)
\(104\) −2.07662 −0.203629
\(105\) 0 0
\(106\) 14.3327 1.39212
\(107\) 2.56118 0.247599 0.123799 0.992307i \(-0.460492\pi\)
0.123799 + 0.992307i \(0.460492\pi\)
\(108\) 0 0
\(109\) −10.3131 −0.987820 −0.493910 0.869513i \(-0.664433\pi\)
−0.493910 + 0.869513i \(0.664433\pi\)
\(110\) −14.6956 −1.40117
\(111\) 0 0
\(112\) 18.6459 1.76187
\(113\) −9.93580 −0.934682 −0.467341 0.884077i \(-0.654788\pi\)
−0.467341 + 0.884077i \(0.654788\pi\)
\(114\) 0 0
\(115\) 1.38413 0.129071
\(116\) 0.383744 0.0356297
\(117\) 0 0
\(118\) −13.9881 −1.28771
\(119\) 27.1528 2.48909
\(120\) 0 0
\(121\) 2.59627 0.236024
\(122\) 10.5562 0.955713
\(123\) 0 0
\(124\) 0.213888 0.0192077
\(125\) −6.86888 −0.614371
\(126\) 0 0
\(127\) 14.8949 1.32171 0.660853 0.750515i \(-0.270195\pi\)
0.660853 + 0.750515i \(0.270195\pi\)
\(128\) −12.2279 −1.08080
\(129\) 0 0
\(130\) 3.02404 0.265226
\(131\) −0.0610002 −0.00532962 −0.00266481 0.999996i \(-0.500848\pi\)
−0.00266481 + 0.999996i \(0.500848\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.92431 0.770943
\(135\) 0 0
\(136\) −16.8452 −1.44447
\(137\) 8.11701 0.693483 0.346742 0.937961i \(-0.387288\pi\)
0.346742 + 0.937961i \(0.387288\pi\)
\(138\) 0 0
\(139\) 3.88444 0.329474 0.164737 0.986338i \(-0.447323\pi\)
0.164737 + 0.986338i \(0.447323\pi\)
\(140\) −1.45623 −0.123074
\(141\) 0 0
\(142\) −4.12155 −0.345873
\(143\) −2.79782 −0.233966
\(144\) 0 0
\(145\) 8.70739 0.723109
\(146\) −6.99088 −0.578569
\(147\) 0 0
\(148\) 0.339556 0.0279113
\(149\) 16.2055 1.32760 0.663802 0.747908i \(-0.268942\pi\)
0.663802 + 0.747908i \(0.268942\pi\)
\(150\) 0 0
\(151\) 15.1506 1.23294 0.616471 0.787378i \(-0.288562\pi\)
0.616471 + 0.787378i \(0.288562\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 23.6878 1.90882
\(155\) 4.85326 0.389823
\(156\) 0 0
\(157\) 0.539830 0.0430831 0.0215415 0.999768i \(-0.493143\pi\)
0.0215415 + 0.999768i \(0.493143\pi\)
\(158\) −24.0534 −1.91358
\(159\) 0 0
\(160\) 1.86484 0.147428
\(161\) −2.23108 −0.175834
\(162\) 0 0
\(163\) 9.67230 0.757593 0.378797 0.925480i \(-0.376338\pi\)
0.378797 + 0.925480i \(0.376338\pi\)
\(164\) 1.42378 0.111178
\(165\) 0 0
\(166\) 0.344608 0.0267468
\(167\) 10.9473 0.847127 0.423563 0.905866i \(-0.360779\pi\)
0.423563 + 0.905866i \(0.360779\pi\)
\(168\) 0 0
\(169\) −12.4243 −0.955713
\(170\) 24.5306 1.88141
\(171\) 0 0
\(172\) 0.278066 0.0212023
\(173\) 13.7663 1.04663 0.523316 0.852139i \(-0.324695\pi\)
0.523316 + 0.852139i \(0.324695\pi\)
\(174\) 0 0
\(175\) −10.9855 −0.830422
\(176\) −15.5851 −1.17477
\(177\) 0 0
\(178\) −11.3396 −0.849936
\(179\) −20.3163 −1.51852 −0.759258 0.650790i \(-0.774438\pi\)
−0.759258 + 0.650790i \(0.774438\pi\)
\(180\) 0 0
\(181\) −16.0273 −1.19130 −0.595651 0.803243i \(-0.703106\pi\)
−0.595651 + 0.803243i \(0.703106\pi\)
\(182\) −4.87444 −0.361318
\(183\) 0 0
\(184\) 1.38413 0.102040
\(185\) 7.70472 0.566463
\(186\) 0 0
\(187\) −22.6955 −1.65966
\(188\) −0.982946 −0.0716887
\(189\) 0 0
\(190\) 0 0
\(191\) 8.13820 0.588859 0.294430 0.955673i \(-0.404870\pi\)
0.294430 + 0.955673i \(0.404870\pi\)
\(192\) 0 0
\(193\) −16.5057 −1.18810 −0.594052 0.804426i \(-0.702473\pi\)
−0.594052 + 0.804426i \(0.702473\pi\)
\(194\) 7.19898 0.516857
\(195\) 0 0
\(196\) 1.50299 0.107357
\(197\) 19.9538 1.42165 0.710824 0.703370i \(-0.248322\pi\)
0.710824 + 0.703370i \(0.248322\pi\)
\(198\) 0 0
\(199\) −1.59358 −0.112966 −0.0564829 0.998404i \(-0.517989\pi\)
−0.0564829 + 0.998404i \(0.517989\pi\)
\(200\) 6.81524 0.481910
\(201\) 0 0
\(202\) 8.36278 0.588403
\(203\) −14.0354 −0.985092
\(204\) 0 0
\(205\) 32.3063 2.25637
\(206\) −21.8548 −1.52269
\(207\) 0 0
\(208\) 3.20708 0.222371
\(209\) 0 0
\(210\) 0 0
\(211\) −0.128356 −0.00883636 −0.00441818 0.999990i \(-0.501406\pi\)
−0.00441818 + 0.999990i \(0.501406\pi\)
\(212\) −1.18713 −0.0815326
\(213\) 0 0
\(214\) −3.72967 −0.254955
\(215\) 6.30949 0.430304
\(216\) 0 0
\(217\) −7.82295 −0.531056
\(218\) 15.0183 1.01717
\(219\) 0 0
\(220\) 1.21719 0.0820627
\(221\) 4.67026 0.314156
\(222\) 0 0
\(223\) 19.2490 1.28901 0.644503 0.764602i \(-0.277064\pi\)
0.644503 + 0.764602i \(0.277064\pi\)
\(224\) −3.00592 −0.200842
\(225\) 0 0
\(226\) 14.4688 0.962453
\(227\) 3.03447 0.201405 0.100702 0.994917i \(-0.467891\pi\)
0.100702 + 0.994917i \(0.467891\pi\)
\(228\) 0 0
\(229\) 5.82295 0.384791 0.192396 0.981317i \(-0.438374\pi\)
0.192396 + 0.981317i \(0.438374\pi\)
\(230\) −2.01562 −0.132906
\(231\) 0 0
\(232\) 8.70739 0.571668
\(233\) −10.0504 −0.658427 −0.329213 0.944256i \(-0.606784\pi\)
−0.329213 + 0.944256i \(0.606784\pi\)
\(234\) 0 0
\(235\) −22.3037 −1.45493
\(236\) 1.15859 0.0754177
\(237\) 0 0
\(238\) −39.5408 −2.56305
\(239\) 4.00614 0.259136 0.129568 0.991571i \(-0.458641\pi\)
0.129568 + 0.991571i \(0.458641\pi\)
\(240\) 0 0
\(241\) 7.51754 0.484247 0.242124 0.970245i \(-0.422156\pi\)
0.242124 + 0.970245i \(0.422156\pi\)
\(242\) −3.78077 −0.243037
\(243\) 0 0
\(244\) −0.874333 −0.0559734
\(245\) 34.1038 2.17881
\(246\) 0 0
\(247\) 0 0
\(248\) 4.85326 0.308182
\(249\) 0 0
\(250\) 10.0027 0.632626
\(251\) −2.52872 −0.159612 −0.0798058 0.996810i \(-0.525430\pi\)
−0.0798058 + 0.996810i \(0.525430\pi\)
\(252\) 0 0
\(253\) 1.86484 0.117241
\(254\) −21.6904 −1.36098
\(255\) 0 0
\(256\) 2.88444 0.180277
\(257\) −19.3334 −1.20598 −0.602992 0.797747i \(-0.706025\pi\)
−0.602992 + 0.797747i \(0.706025\pi\)
\(258\) 0 0
\(259\) −12.4192 −0.771692
\(260\) −0.250471 −0.0155336
\(261\) 0 0
\(262\) 0.0888306 0.00548797
\(263\) 18.3219 1.12978 0.564889 0.825167i \(-0.308919\pi\)
0.564889 + 0.825167i \(0.308919\pi\)
\(264\) 0 0
\(265\) −26.9368 −1.65471
\(266\) 0 0
\(267\) 0 0
\(268\) −0.739170 −0.0451520
\(269\) 10.2871 0.627215 0.313607 0.949553i \(-0.398462\pi\)
0.313607 + 0.949553i \(0.398462\pi\)
\(270\) 0 0
\(271\) 8.35504 0.507532 0.253766 0.967266i \(-0.418331\pi\)
0.253766 + 0.967266i \(0.418331\pi\)
\(272\) 26.0154 1.57741
\(273\) 0 0
\(274\) −11.8203 −0.714088
\(275\) 9.18214 0.553704
\(276\) 0 0
\(277\) 28.3432 1.70298 0.851488 0.524374i \(-0.175700\pi\)
0.851488 + 0.524374i \(0.175700\pi\)
\(278\) −5.65665 −0.339263
\(279\) 0 0
\(280\) −33.0428 −1.97469
\(281\) 22.9273 1.36773 0.683863 0.729611i \(-0.260299\pi\)
0.683863 + 0.729611i \(0.260299\pi\)
\(282\) 0 0
\(283\) 16.9436 1.00719 0.503595 0.863940i \(-0.332010\pi\)
0.503595 + 0.863940i \(0.332010\pi\)
\(284\) 0.341374 0.0202568
\(285\) 0 0
\(286\) 4.07428 0.240917
\(287\) −52.0745 −3.07386
\(288\) 0 0
\(289\) 20.8844 1.22850
\(290\) −12.6800 −0.744594
\(291\) 0 0
\(292\) 0.579030 0.0338852
\(293\) 0.681388 0.0398071 0.0199035 0.999802i \(-0.493664\pi\)
0.0199035 + 0.999802i \(0.493664\pi\)
\(294\) 0 0
\(295\) 26.2891 1.53061
\(296\) 7.70472 0.447828
\(297\) 0 0
\(298\) −23.5990 −1.36705
\(299\) −0.383744 −0.0221925
\(300\) 0 0
\(301\) −10.1702 −0.586203
\(302\) −22.0629 −1.26958
\(303\) 0 0
\(304\) 0 0
\(305\) −19.8391 −1.13599
\(306\) 0 0
\(307\) 12.3824 0.706700 0.353350 0.935491i \(-0.385043\pi\)
0.353350 + 0.935491i \(0.385043\pi\)
\(308\) −1.96198 −0.111794
\(309\) 0 0
\(310\) −7.06748 −0.401406
\(311\) −4.28651 −0.243066 −0.121533 0.992587i \(-0.538781\pi\)
−0.121533 + 0.992587i \(0.538781\pi\)
\(312\) 0 0
\(313\) −9.01455 −0.509532 −0.254766 0.967003i \(-0.581999\pi\)
−0.254766 + 0.967003i \(0.581999\pi\)
\(314\) −0.786118 −0.0443632
\(315\) 0 0
\(316\) 1.99226 0.112073
\(317\) 16.4136 0.921879 0.460939 0.887432i \(-0.347513\pi\)
0.460939 + 0.887432i \(0.347513\pi\)
\(318\) 0 0
\(319\) 11.7314 0.656834
\(320\) 20.4197 1.14150
\(321\) 0 0
\(322\) 3.24897 0.181058
\(323\) 0 0
\(324\) 0 0
\(325\) −1.88949 −0.104810
\(326\) −14.0851 −0.780103
\(327\) 0 0
\(328\) 32.3063 1.78382
\(329\) 35.9512 1.98205
\(330\) 0 0
\(331\) 8.13516 0.447149 0.223574 0.974687i \(-0.428227\pi\)
0.223574 + 0.974687i \(0.428227\pi\)
\(332\) −0.0285427 −0.00156648
\(333\) 0 0
\(334\) −15.9418 −0.872297
\(335\) −16.7722 −0.916364
\(336\) 0 0
\(337\) 23.3577 1.27238 0.636188 0.771534i \(-0.280510\pi\)
0.636188 + 0.771534i \(0.280510\pi\)
\(338\) 18.0926 0.984109
\(339\) 0 0
\(340\) −2.03178 −0.110189
\(341\) 6.53878 0.354095
\(342\) 0 0
\(343\) −24.0915 −1.30082
\(344\) 6.30949 0.340185
\(345\) 0 0
\(346\) −20.0469 −1.07773
\(347\) −16.0087 −0.859389 −0.429695 0.902974i \(-0.641379\pi\)
−0.429695 + 0.902974i \(0.641379\pi\)
\(348\) 0 0
\(349\) 26.8229 1.43580 0.717900 0.696146i \(-0.245104\pi\)
0.717900 + 0.696146i \(0.245104\pi\)
\(350\) 15.9974 0.855096
\(351\) 0 0
\(352\) 2.51249 0.133916
\(353\) 33.6054 1.78864 0.894319 0.447430i \(-0.147661\pi\)
0.894319 + 0.447430i \(0.147661\pi\)
\(354\) 0 0
\(355\) 7.74598 0.411114
\(356\) 0.939216 0.0497784
\(357\) 0 0
\(358\) 29.5853 1.56363
\(359\) 7.73327 0.408146 0.204073 0.978956i \(-0.434582\pi\)
0.204073 + 0.978956i \(0.434582\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 23.3395 1.22670
\(363\) 0 0
\(364\) 0.403733 0.0211614
\(365\) 13.1386 0.687703
\(366\) 0 0
\(367\) 19.8675 1.03708 0.518538 0.855054i \(-0.326476\pi\)
0.518538 + 0.855054i \(0.326476\pi\)
\(368\) −2.13762 −0.111431
\(369\) 0 0
\(370\) −11.2199 −0.583293
\(371\) 43.4193 2.25422
\(372\) 0 0
\(373\) 1.91622 0.0992182 0.0496091 0.998769i \(-0.484202\pi\)
0.0496091 + 0.998769i \(0.484202\pi\)
\(374\) 33.0500 1.70897
\(375\) 0 0
\(376\) −22.3037 −1.15022
\(377\) −2.41408 −0.124331
\(378\) 0 0
\(379\) 27.2591 1.40020 0.700102 0.714043i \(-0.253138\pi\)
0.700102 + 0.714043i \(0.253138\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −11.8511 −0.606356
\(383\) −1.69288 −0.0865019 −0.0432510 0.999064i \(-0.513772\pi\)
−0.0432510 + 0.999064i \(0.513772\pi\)
\(384\) 0 0
\(385\) −44.5185 −2.26887
\(386\) 24.0361 1.22341
\(387\) 0 0
\(388\) −0.596267 −0.0302709
\(389\) 20.3873 1.03368 0.516838 0.856083i \(-0.327109\pi\)
0.516838 + 0.856083i \(0.327109\pi\)
\(390\) 0 0
\(391\) −3.11287 −0.157425
\(392\) 34.1038 1.72250
\(393\) 0 0
\(394\) −29.0574 −1.46389
\(395\) 45.2056 2.27454
\(396\) 0 0
\(397\) −27.3236 −1.37133 −0.685666 0.727917i \(-0.740489\pi\)
−0.685666 + 0.727917i \(0.740489\pi\)
\(398\) 2.32062 0.116322
\(399\) 0 0
\(400\) −10.5253 −0.526264
\(401\) −11.6001 −0.579283 −0.289642 0.957135i \(-0.593536\pi\)
−0.289642 + 0.957135i \(0.593536\pi\)
\(402\) 0 0
\(403\) −1.34554 −0.0670262
\(404\) −0.692660 −0.0344611
\(405\) 0 0
\(406\) 20.4388 1.01436
\(407\) 10.3805 0.514545
\(408\) 0 0
\(409\) 27.3327 1.35152 0.675759 0.737123i \(-0.263816\pi\)
0.675759 + 0.737123i \(0.263816\pi\)
\(410\) −47.0456 −2.32341
\(411\) 0 0
\(412\) 1.81016 0.0891799
\(413\) −42.3753 −2.08515
\(414\) 0 0
\(415\) −0.647651 −0.0317919
\(416\) −0.517017 −0.0253488
\(417\) 0 0
\(418\) 0 0
\(419\) 31.4605 1.53694 0.768472 0.639883i \(-0.221017\pi\)
0.768472 + 0.639883i \(0.221017\pi\)
\(420\) 0 0
\(421\) 2.63547 0.128445 0.0642224 0.997936i \(-0.479543\pi\)
0.0642224 + 0.997936i \(0.479543\pi\)
\(422\) 0.186916 0.00909891
\(423\) 0 0
\(424\) −26.9368 −1.30816
\(425\) −15.3273 −0.743481
\(426\) 0 0
\(427\) 31.9786 1.54756
\(428\) 0.308916 0.0149320
\(429\) 0 0
\(430\) −9.18809 −0.443089
\(431\) −32.4110 −1.56118 −0.780590 0.625043i \(-0.785082\pi\)
−0.780590 + 0.625043i \(0.785082\pi\)
\(432\) 0 0
\(433\) −17.9855 −0.864326 −0.432163 0.901796i \(-0.642249\pi\)
−0.432163 + 0.901796i \(0.642249\pi\)
\(434\) 11.3920 0.546835
\(435\) 0 0
\(436\) −1.24392 −0.0595729
\(437\) 0 0
\(438\) 0 0
\(439\) 16.4679 0.785971 0.392985 0.919545i \(-0.371442\pi\)
0.392985 + 0.919545i \(0.371442\pi\)
\(440\) 27.6187 1.31667
\(441\) 0 0
\(442\) −6.80098 −0.323490
\(443\) −29.9831 −1.42454 −0.712269 0.701907i \(-0.752332\pi\)
−0.712269 + 0.701907i \(0.752332\pi\)
\(444\) 0 0
\(445\) 21.3114 1.01026
\(446\) −28.0310 −1.32731
\(447\) 0 0
\(448\) −32.9145 −1.55506
\(449\) −12.1344 −0.572659 −0.286329 0.958131i \(-0.592435\pi\)
−0.286329 + 0.958131i \(0.592435\pi\)
\(450\) 0 0
\(451\) 43.5262 2.04957
\(452\) −1.19840 −0.0563682
\(453\) 0 0
\(454\) −4.41889 −0.207389
\(455\) 9.16096 0.429472
\(456\) 0 0
\(457\) 30.1848 1.41199 0.705993 0.708219i \(-0.250501\pi\)
0.705993 + 0.708219i \(0.250501\pi\)
\(458\) −8.47957 −0.396224
\(459\) 0 0
\(460\) 0.166947 0.00778394
\(461\) −24.1468 −1.12463 −0.562315 0.826923i \(-0.690089\pi\)
−0.562315 + 0.826923i \(0.690089\pi\)
\(462\) 0 0
\(463\) −7.11650 −0.330732 −0.165366 0.986232i \(-0.552880\pi\)
−0.165366 + 0.986232i \(0.552880\pi\)
\(464\) −13.4475 −0.624283
\(465\) 0 0
\(466\) 14.6358 0.677990
\(467\) 1.75388 0.0811597 0.0405799 0.999176i \(-0.487079\pi\)
0.0405799 + 0.999176i \(0.487079\pi\)
\(468\) 0 0
\(469\) 27.0351 1.24836
\(470\) 32.4793 1.49816
\(471\) 0 0
\(472\) 26.2891 1.21005
\(473\) 8.50075 0.390865
\(474\) 0 0
\(475\) 0 0
\(476\) 3.27502 0.150111
\(477\) 0 0
\(478\) −5.83387 −0.266835
\(479\) −12.3538 −0.564459 −0.282230 0.959347i \(-0.591074\pi\)
−0.282230 + 0.959347i \(0.591074\pi\)
\(480\) 0 0
\(481\) −2.13610 −0.0973976
\(482\) −10.9473 −0.498635
\(483\) 0 0
\(484\) 0.313148 0.0142340
\(485\) −13.5297 −0.614350
\(486\) 0 0
\(487\) 7.61318 0.344986 0.172493 0.985011i \(-0.444818\pi\)
0.172493 + 0.985011i \(0.444818\pi\)
\(488\) −19.8391 −0.898076
\(489\) 0 0
\(490\) −49.6631 −2.24355
\(491\) −5.52729 −0.249443 −0.124722 0.992192i \(-0.539804\pi\)
−0.124722 + 0.992192i \(0.539804\pi\)
\(492\) 0 0
\(493\) −19.5827 −0.881958
\(494\) 0 0
\(495\) 0 0
\(496\) −7.49525 −0.336547
\(497\) −12.4857 −0.560061
\(498\) 0 0
\(499\) −5.09833 −0.228232 −0.114116 0.993467i \(-0.536404\pi\)
−0.114116 + 0.993467i \(0.536404\pi\)
\(500\) −0.828488 −0.0370511
\(501\) 0 0
\(502\) 3.68241 0.164354
\(503\) −23.1639 −1.03283 −0.516414 0.856339i \(-0.672733\pi\)
−0.516414 + 0.856339i \(0.672733\pi\)
\(504\) 0 0
\(505\) −15.7169 −0.699392
\(506\) −2.71564 −0.120725
\(507\) 0 0
\(508\) 1.79654 0.0797086
\(509\) −9.10731 −0.403675 −0.201837 0.979419i \(-0.564691\pi\)
−0.201837 + 0.979419i \(0.564691\pi\)
\(510\) 0 0
\(511\) −21.1780 −0.936859
\(512\) 20.2553 0.895168
\(513\) 0 0
\(514\) 28.1539 1.24182
\(515\) 41.0735 1.80992
\(516\) 0 0
\(517\) −30.0496 −1.32158
\(518\) 18.0853 0.794621
\(519\) 0 0
\(520\) −5.68334 −0.249231
\(521\) −23.5589 −1.03213 −0.516067 0.856548i \(-0.672605\pi\)
−0.516067 + 0.856548i \(0.672605\pi\)
\(522\) 0 0
\(523\) 21.2567 0.929491 0.464746 0.885444i \(-0.346146\pi\)
0.464746 + 0.885444i \(0.346146\pi\)
\(524\) −0.00735753 −0.000321415 0
\(525\) 0 0
\(526\) −26.6810 −1.16335
\(527\) −10.9148 −0.475458
\(528\) 0 0
\(529\) −22.7442 −0.988879
\(530\) 39.2262 1.70388
\(531\) 0 0
\(532\) 0 0
\(533\) −8.95677 −0.387961
\(534\) 0 0
\(535\) 7.00950 0.303047
\(536\) −16.7722 −0.724450
\(537\) 0 0
\(538\) −14.9804 −0.645851
\(539\) 45.9480 1.97912
\(540\) 0 0
\(541\) 22.5553 0.969729 0.484864 0.874589i \(-0.338869\pi\)
0.484864 + 0.874589i \(0.338869\pi\)
\(542\) −12.1669 −0.522612
\(543\) 0 0
\(544\) −4.19396 −0.179815
\(545\) −28.2253 −1.20904
\(546\) 0 0
\(547\) −10.7510 −0.459681 −0.229840 0.973228i \(-0.573820\pi\)
−0.229840 + 0.973228i \(0.573820\pi\)
\(548\) 0.979031 0.0418221
\(549\) 0 0
\(550\) −13.3713 −0.570156
\(551\) 0 0
\(552\) 0 0
\(553\) −72.8667 −3.09861
\(554\) −41.2743 −1.75358
\(555\) 0 0
\(556\) 0.468521 0.0198697
\(557\) −29.3116 −1.24197 −0.620986 0.783822i \(-0.713268\pi\)
−0.620986 + 0.783822i \(0.713268\pi\)
\(558\) 0 0
\(559\) −1.74928 −0.0739864
\(560\) 51.0305 2.15643
\(561\) 0 0
\(562\) −33.3874 −1.40836
\(563\) 20.7075 0.872715 0.436358 0.899773i \(-0.356268\pi\)
0.436358 + 0.899773i \(0.356268\pi\)
\(564\) 0 0
\(565\) −27.1925 −1.14400
\(566\) −24.6738 −1.03712
\(567\) 0 0
\(568\) 7.74598 0.325014
\(569\) −29.0001 −1.21575 −0.607874 0.794034i \(-0.707977\pi\)
−0.607874 + 0.794034i \(0.707977\pi\)
\(570\) 0 0
\(571\) −33.5773 −1.40517 −0.702583 0.711602i \(-0.747970\pi\)
−0.702583 + 0.711602i \(0.747970\pi\)
\(572\) −0.337459 −0.0141099
\(573\) 0 0
\(574\) 75.8326 3.16519
\(575\) 1.25940 0.0525208
\(576\) 0 0
\(577\) 8.98309 0.373971 0.186985 0.982363i \(-0.440128\pi\)
0.186985 + 0.982363i \(0.440128\pi\)
\(578\) −30.4126 −1.26500
\(579\) 0 0
\(580\) 1.05024 0.0436088
\(581\) 1.04395 0.0433102
\(582\) 0 0
\(583\) −36.2918 −1.50305
\(584\) 13.1386 0.543677
\(585\) 0 0
\(586\) −0.992259 −0.0409899
\(587\) −9.32533 −0.384897 −0.192449 0.981307i \(-0.561643\pi\)
−0.192449 + 0.981307i \(0.561643\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −38.2831 −1.57609
\(591\) 0 0
\(592\) −11.8990 −0.489045
\(593\) 27.2787 1.12020 0.560101 0.828425i \(-0.310762\pi\)
0.560101 + 0.828425i \(0.310762\pi\)
\(594\) 0 0
\(595\) 74.3123 3.04651
\(596\) 1.95462 0.0800644
\(597\) 0 0
\(598\) 0.558821 0.0228519
\(599\) −13.8386 −0.565429 −0.282714 0.959204i \(-0.591235\pi\)
−0.282714 + 0.959204i \(0.591235\pi\)
\(600\) 0 0
\(601\) −17.7793 −0.725233 −0.362616 0.931938i \(-0.618117\pi\)
−0.362616 + 0.931938i \(0.618117\pi\)
\(602\) 14.8102 0.603621
\(603\) 0 0
\(604\) 1.82739 0.0743555
\(605\) 7.10552 0.288881
\(606\) 0 0
\(607\) −17.2249 −0.699138 −0.349569 0.936911i \(-0.613672\pi\)
−0.349569 + 0.936911i \(0.613672\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 28.8904 1.16974
\(611\) 6.18358 0.250161
\(612\) 0 0
\(613\) 7.54933 0.304914 0.152457 0.988310i \(-0.451281\pi\)
0.152457 + 0.988310i \(0.451281\pi\)
\(614\) −18.0316 −0.727697
\(615\) 0 0
\(616\) −44.5185 −1.79370
\(617\) 26.9447 1.08475 0.542376 0.840136i \(-0.317525\pi\)
0.542376 + 0.840136i \(0.317525\pi\)
\(618\) 0 0
\(619\) −26.3509 −1.05913 −0.529566 0.848268i \(-0.677645\pi\)
−0.529566 + 0.848268i \(0.677645\pi\)
\(620\) 0.585375 0.0235092
\(621\) 0 0
\(622\) 6.24216 0.250288
\(623\) −34.3518 −1.37627
\(624\) 0 0
\(625\) −31.2499 −1.25000
\(626\) 13.1273 0.524672
\(627\) 0 0
\(628\) 0.0651114 0.00259823
\(629\) −17.3277 −0.690900
\(630\) 0 0
\(631\) 22.5381 0.897227 0.448613 0.893726i \(-0.351918\pi\)
0.448613 + 0.893726i \(0.351918\pi\)
\(632\) 45.2056 1.79818
\(633\) 0 0
\(634\) −23.9020 −0.949270
\(635\) 40.7646 1.61769
\(636\) 0 0
\(637\) −9.45512 −0.374625
\(638\) −17.0837 −0.676350
\(639\) 0 0
\(640\) −33.4655 −1.32284
\(641\) −11.3384 −0.447840 −0.223920 0.974608i \(-0.571885\pi\)
−0.223920 + 0.974608i \(0.571885\pi\)
\(642\) 0 0
\(643\) 14.9682 0.590289 0.295144 0.955453i \(-0.404632\pi\)
0.295144 + 0.955453i \(0.404632\pi\)
\(644\) −0.269101 −0.0106041
\(645\) 0 0
\(646\) 0 0
\(647\) −22.2346 −0.874132 −0.437066 0.899429i \(-0.643982\pi\)
−0.437066 + 0.899429i \(0.643982\pi\)
\(648\) 0 0
\(649\) 35.4192 1.39033
\(650\) 2.75154 0.107924
\(651\) 0 0
\(652\) 1.16662 0.0456885
\(653\) 3.07820 0.120459 0.0602296 0.998185i \(-0.480817\pi\)
0.0602296 + 0.998185i \(0.480817\pi\)
\(654\) 0 0
\(655\) −0.166947 −0.00652315
\(656\) −49.8931 −1.94800
\(657\) 0 0
\(658\) −52.3533 −2.04094
\(659\) 39.2474 1.52886 0.764430 0.644706i \(-0.223020\pi\)
0.764430 + 0.644706i \(0.223020\pi\)
\(660\) 0 0
\(661\) 27.8607 1.08366 0.541828 0.840489i \(-0.317732\pi\)
0.541828 + 0.840489i \(0.317732\pi\)
\(662\) −11.8467 −0.460435
\(663\) 0 0
\(664\) −0.647651 −0.0251337
\(665\) 0 0
\(666\) 0 0
\(667\) 1.60906 0.0623030
\(668\) 1.32040 0.0510880
\(669\) 0 0
\(670\) 24.4243 0.943592
\(671\) −26.7292 −1.03187
\(672\) 0 0
\(673\) −15.3105 −0.590175 −0.295087 0.955470i \(-0.595349\pi\)
−0.295087 + 0.955470i \(0.595349\pi\)
\(674\) −34.0143 −1.31018
\(675\) 0 0
\(676\) −1.49855 −0.0576365
\(677\) −40.0335 −1.53861 −0.769306 0.638880i \(-0.779398\pi\)
−0.769306 + 0.638880i \(0.779398\pi\)
\(678\) 0 0
\(679\) 21.8084 0.836930
\(680\) −46.1024 −1.76795
\(681\) 0 0
\(682\) −9.52198 −0.364616
\(683\) −0.599202 −0.0229278 −0.0114639 0.999934i \(-0.503649\pi\)
−0.0114639 + 0.999934i \(0.503649\pi\)
\(684\) 0 0
\(685\) 22.2148 0.848785
\(686\) 35.0829 1.33947
\(687\) 0 0
\(688\) −9.74422 −0.371495
\(689\) 7.46808 0.284511
\(690\) 0 0
\(691\) 1.08378 0.0412289 0.0206144 0.999788i \(-0.493438\pi\)
0.0206144 + 0.999788i \(0.493438\pi\)
\(692\) 1.66042 0.0631197
\(693\) 0 0
\(694\) 23.3123 0.884924
\(695\) 10.6310 0.403258
\(696\) 0 0
\(697\) −72.6560 −2.75204
\(698\) −39.0605 −1.47846
\(699\) 0 0
\(700\) −1.32501 −0.0500806
\(701\) −45.6179 −1.72296 −0.861482 0.507789i \(-0.830463\pi\)
−0.861482 + 0.507789i \(0.830463\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 27.5114 1.03688
\(705\) 0 0
\(706\) −48.9374 −1.84178
\(707\) 25.3340 0.952782
\(708\) 0 0
\(709\) −4.26621 −0.160221 −0.0801104 0.996786i \(-0.525527\pi\)
−0.0801104 + 0.996786i \(0.525527\pi\)
\(710\) −11.2799 −0.423329
\(711\) 0 0
\(712\) 21.3114 0.798678
\(713\) 0.896846 0.0335871
\(714\) 0 0
\(715\) −7.65715 −0.286361
\(716\) −2.45045 −0.0915777
\(717\) 0 0
\(718\) −11.2614 −0.420273
\(719\) 16.8047 0.626709 0.313354 0.949636i \(-0.398547\pi\)
0.313354 + 0.949636i \(0.398547\pi\)
\(720\) 0 0
\(721\) −66.2063 −2.46565
\(722\) 0 0
\(723\) 0 0
\(724\) −1.93313 −0.0718444
\(725\) 7.92274 0.294243
\(726\) 0 0
\(727\) 17.2618 0.640203 0.320102 0.947383i \(-0.396283\pi\)
0.320102 + 0.947383i \(0.396283\pi\)
\(728\) 9.16096 0.339528
\(729\) 0 0
\(730\) −19.1328 −0.708137
\(731\) −14.1899 −0.524831
\(732\) 0 0
\(733\) 38.2746 1.41370 0.706852 0.707362i \(-0.250115\pi\)
0.706852 + 0.707362i \(0.250115\pi\)
\(734\) −28.9317 −1.06789
\(735\) 0 0
\(736\) 0.344608 0.0127024
\(737\) −22.5972 −0.832377
\(738\) 0 0
\(739\) −46.4243 −1.70774 −0.853872 0.520483i \(-0.825752\pi\)
−0.853872 + 0.520483i \(0.825752\pi\)
\(740\) 0.929303 0.0341619
\(741\) 0 0
\(742\) −63.2285 −2.32119
\(743\) 19.4692 0.714257 0.357128 0.934055i \(-0.383756\pi\)
0.357128 + 0.934055i \(0.383756\pi\)
\(744\) 0 0
\(745\) 44.3515 1.62491
\(746\) −2.79047 −0.102166
\(747\) 0 0
\(748\) −2.73742 −0.100090
\(749\) −11.2986 −0.412841
\(750\) 0 0
\(751\) −2.32264 −0.0847545 −0.0423772 0.999102i \(-0.513493\pi\)
−0.0423772 + 0.999102i \(0.513493\pi\)
\(752\) 34.4452 1.25609
\(753\) 0 0
\(754\) 3.51546 0.128026
\(755\) 41.4646 1.50905
\(756\) 0 0
\(757\) −9.11381 −0.331247 −0.165623 0.986189i \(-0.552964\pi\)
−0.165623 + 0.986189i \(0.552964\pi\)
\(758\) −39.6956 −1.44181
\(759\) 0 0
\(760\) 0 0
\(761\) −5.49483 −0.199187 −0.0995937 0.995028i \(-0.531754\pi\)
−0.0995937 + 0.995028i \(0.531754\pi\)
\(762\) 0 0
\(763\) 45.4962 1.64707
\(764\) 0.981587 0.0355126
\(765\) 0 0
\(766\) 2.46522 0.0890721
\(767\) −7.28852 −0.263173
\(768\) 0 0
\(769\) 21.1516 0.762745 0.381373 0.924421i \(-0.375451\pi\)
0.381373 + 0.924421i \(0.375451\pi\)
\(770\) 64.8293 2.33628
\(771\) 0 0
\(772\) −1.99083 −0.0716515
\(773\) 13.0736 0.470226 0.235113 0.971968i \(-0.424454\pi\)
0.235113 + 0.971968i \(0.424454\pi\)
\(774\) 0 0
\(775\) 4.41592 0.158624
\(776\) −13.5297 −0.485686
\(777\) 0 0
\(778\) −29.6886 −1.06439
\(779\) 0 0
\(780\) 0 0
\(781\) 10.4361 0.373434
\(782\) 4.53307 0.162102
\(783\) 0 0
\(784\) −52.6691 −1.88104
\(785\) 1.47742 0.0527313
\(786\) 0 0
\(787\) −20.7205 −0.738606 −0.369303 0.929309i \(-0.620404\pi\)
−0.369303 + 0.929309i \(0.620404\pi\)
\(788\) 2.40672 0.0857359
\(789\) 0 0
\(790\) −65.8299 −2.34212
\(791\) 43.8315 1.55847
\(792\) 0 0
\(793\) 5.50030 0.195322
\(794\) 39.7895 1.41208
\(795\) 0 0
\(796\) −0.192209 −0.00681267
\(797\) −34.3119 −1.21539 −0.607696 0.794170i \(-0.707906\pi\)
−0.607696 + 0.794170i \(0.707906\pi\)
\(798\) 0 0
\(799\) 50.1603 1.77454
\(800\) 1.69679 0.0599906
\(801\) 0 0
\(802\) 16.8925 0.596495
\(803\) 17.7015 0.624673
\(804\) 0 0
\(805\) −6.10607 −0.215211
\(806\) 1.95942 0.0690177
\(807\) 0 0
\(808\) −15.7169 −0.552918
\(809\) −48.3547 −1.70006 −0.850030 0.526734i \(-0.823416\pi\)
−0.850030 + 0.526734i \(0.823416\pi\)
\(810\) 0 0
\(811\) 16.5348 0.580615 0.290307 0.956933i \(-0.406242\pi\)
0.290307 + 0.956933i \(0.406242\pi\)
\(812\) −1.69288 −0.0594083
\(813\) 0 0
\(814\) −15.1165 −0.529833
\(815\) 26.4714 0.927252
\(816\) 0 0
\(817\) 0 0
\(818\) −39.8029 −1.39167
\(819\) 0 0
\(820\) 3.89662 0.136076
\(821\) −41.8086 −1.45913 −0.729564 0.683912i \(-0.760277\pi\)
−0.729564 + 0.683912i \(0.760277\pi\)
\(822\) 0 0
\(823\) 26.5303 0.924789 0.462395 0.886674i \(-0.346990\pi\)
0.462395 + 0.886674i \(0.346990\pi\)
\(824\) 41.0735 1.43086
\(825\) 0 0
\(826\) 61.7083 2.14711
\(827\) 19.0756 0.663323 0.331661 0.943399i \(-0.392391\pi\)
0.331661 + 0.943399i \(0.392391\pi\)
\(828\) 0 0
\(829\) −9.24359 −0.321043 −0.160522 0.987032i \(-0.551318\pi\)
−0.160522 + 0.987032i \(0.551318\pi\)
\(830\) 0.943131 0.0327366
\(831\) 0 0
\(832\) −5.66127 −0.196269
\(833\) −76.6985 −2.65745
\(834\) 0 0
\(835\) 29.9608 1.03684
\(836\) 0 0
\(837\) 0 0
\(838\) −45.8138 −1.58261
\(839\) 8.76986 0.302769 0.151385 0.988475i \(-0.451627\pi\)
0.151385 + 0.988475i \(0.451627\pi\)
\(840\) 0 0
\(841\) −18.8776 −0.650953
\(842\) −3.83785 −0.132261
\(843\) 0 0
\(844\) −0.0154816 −0.000532898 0
\(845\) −34.0030 −1.16974
\(846\) 0 0
\(847\) −11.4534 −0.393542
\(848\) 41.6005 1.42857
\(849\) 0 0
\(850\) 22.3201 0.765572
\(851\) 1.42378 0.0488064
\(852\) 0 0
\(853\) 20.6176 0.705934 0.352967 0.935636i \(-0.385173\pi\)
0.352967 + 0.935636i \(0.385173\pi\)
\(854\) −46.5684 −1.59354
\(855\) 0 0
\(856\) 7.00950 0.239580
\(857\) 35.9624 1.22845 0.614227 0.789130i \(-0.289468\pi\)
0.614227 + 0.789130i \(0.289468\pi\)
\(858\) 0 0
\(859\) −13.5672 −0.462906 −0.231453 0.972846i \(-0.574348\pi\)
−0.231453 + 0.972846i \(0.574348\pi\)
\(860\) 0.761018 0.0259505
\(861\) 0 0
\(862\) 47.1979 1.60757
\(863\) 45.3925 1.54518 0.772589 0.634906i \(-0.218961\pi\)
0.772589 + 0.634906i \(0.218961\pi\)
\(864\) 0 0
\(865\) 37.6759 1.28102
\(866\) 26.1910 0.890007
\(867\) 0 0
\(868\) −0.943563 −0.0320266
\(869\) 60.9053 2.06607
\(870\) 0 0
\(871\) 4.65002 0.157560
\(872\) −28.2253 −0.955828
\(873\) 0 0
\(874\) 0 0
\(875\) 30.3019 1.02439
\(876\) 0 0
\(877\) −34.1875 −1.15443 −0.577215 0.816592i \(-0.695860\pi\)
−0.577215 + 0.816592i \(0.695860\pi\)
\(878\) −23.9811 −0.809323
\(879\) 0 0
\(880\) −42.6536 −1.43785
\(881\) −20.3548 −0.685771 −0.342885 0.939377i \(-0.611404\pi\)
−0.342885 + 0.939377i \(0.611404\pi\)
\(882\) 0 0
\(883\) −46.0188 −1.54866 −0.774328 0.632785i \(-0.781912\pi\)
−0.774328 + 0.632785i \(0.781912\pi\)
\(884\) 0.563302 0.0189459
\(885\) 0 0
\(886\) 43.6623 1.46686
\(887\) −15.4631 −0.519200 −0.259600 0.965716i \(-0.583591\pi\)
−0.259600 + 0.965716i \(0.583591\pi\)
\(888\) 0 0
\(889\) −65.7083 −2.20379
\(890\) −31.0344 −1.04027
\(891\) 0 0
\(892\) 2.32171 0.0777366
\(893\) 0 0
\(894\) 0 0
\(895\) −55.6023 −1.85858
\(896\) 53.9430 1.80211
\(897\) 0 0
\(898\) 17.6705 0.589674
\(899\) 5.64193 0.188169
\(900\) 0 0
\(901\) 60.5800 2.01821
\(902\) −63.3843 −2.11047
\(903\) 0 0
\(904\) −27.1925 −0.904410
\(905\) −43.8640 −1.45809
\(906\) 0 0
\(907\) −37.2026 −1.23529 −0.617647 0.786456i \(-0.711914\pi\)
−0.617647 + 0.786456i \(0.711914\pi\)
\(908\) 0.366001 0.0121462
\(909\) 0 0
\(910\) −13.3405 −0.442233
\(911\) −46.5472 −1.54218 −0.771088 0.636728i \(-0.780287\pi\)
−0.771088 + 0.636728i \(0.780287\pi\)
\(912\) 0 0
\(913\) −0.872578 −0.0288781
\(914\) −43.9561 −1.45394
\(915\) 0 0
\(916\) 0.702333 0.0232058
\(917\) 0.269101 0.00888650
\(918\) 0 0
\(919\) −30.2003 −0.996215 −0.498108 0.867115i \(-0.665972\pi\)
−0.498108 + 0.867115i \(0.665972\pi\)
\(920\) 3.78813 0.124891
\(921\) 0 0
\(922\) 35.1634 1.15805
\(923\) −2.14753 −0.0706869
\(924\) 0 0
\(925\) 7.01043 0.230501
\(926\) 10.3633 0.340558
\(927\) 0 0
\(928\) 2.16788 0.0711642
\(929\) −10.1326 −0.332441 −0.166220 0.986089i \(-0.553156\pi\)
−0.166220 + 0.986089i \(0.553156\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.21223 −0.0397080
\(933\) 0 0
\(934\) −2.55405 −0.0835712
\(935\) −62.1136 −2.03133
\(936\) 0 0
\(937\) 6.03508 0.197158 0.0985788 0.995129i \(-0.468570\pi\)
0.0985788 + 0.995129i \(0.468570\pi\)
\(938\) −39.3694 −1.28546
\(939\) 0 0
\(940\) −2.69015 −0.0877430
\(941\) 7.34217 0.239348 0.119674 0.992813i \(-0.461815\pi\)
0.119674 + 0.992813i \(0.461815\pi\)
\(942\) 0 0
\(943\) 5.96997 0.194409
\(944\) −40.6002 −1.32143
\(945\) 0 0
\(946\) −12.3791 −0.402479
\(947\) 15.1901 0.493611 0.246806 0.969065i \(-0.420619\pi\)
0.246806 + 0.969065i \(0.420619\pi\)
\(948\) 0 0
\(949\) −3.64260 −0.118244
\(950\) 0 0
\(951\) 0 0
\(952\) 74.3123 2.40848
\(953\) −12.9629 −0.419910 −0.209955 0.977711i \(-0.567332\pi\)
−0.209955 + 0.977711i \(0.567332\pi\)
\(954\) 0 0
\(955\) 22.2728 0.720731
\(956\) 0.483200 0.0156278
\(957\) 0 0
\(958\) 17.9900 0.581231
\(959\) −35.8080 −1.15630
\(960\) 0 0
\(961\) −27.8553 −0.898559
\(962\) 3.11065 0.100292
\(963\) 0 0
\(964\) 0.906726 0.0292037
\(965\) −45.1731 −1.45417
\(966\) 0 0
\(967\) −4.63722 −0.149123 −0.0745615 0.997216i \(-0.523756\pi\)
−0.0745615 + 0.997216i \(0.523756\pi\)
\(968\) 7.10552 0.228380
\(969\) 0 0
\(970\) 19.7023 0.632604
\(971\) −11.7831 −0.378139 −0.189069 0.981964i \(-0.560547\pi\)
−0.189069 + 0.981964i \(0.560547\pi\)
\(972\) 0 0
\(973\) −17.1361 −0.549358
\(974\) −11.0866 −0.355236
\(975\) 0 0
\(976\) 30.6391 0.980733
\(977\) −22.8874 −0.732234 −0.366117 0.930569i \(-0.619313\pi\)
−0.366117 + 0.930569i \(0.619313\pi\)
\(978\) 0 0
\(979\) 28.7128 0.917664
\(980\) 4.11343 0.131399
\(981\) 0 0
\(982\) 8.04902 0.256855
\(983\) 28.1244 0.897030 0.448515 0.893775i \(-0.351953\pi\)
0.448515 + 0.893775i \(0.351953\pi\)
\(984\) 0 0
\(985\) 54.6100 1.74002
\(986\) 28.5169 0.908163
\(987\) 0 0
\(988\) 0 0
\(989\) 1.16595 0.0370750
\(990\) 0 0
\(991\) 28.5175 0.905890 0.452945 0.891539i \(-0.350373\pi\)
0.452945 + 0.891539i \(0.350373\pi\)
\(992\) 1.20832 0.0383641
\(993\) 0 0
\(994\) 18.1821 0.576701
\(995\) −4.36134 −0.138264
\(996\) 0 0
\(997\) −25.6168 −0.811292 −0.405646 0.914030i \(-0.632953\pi\)
−0.405646 + 0.914030i \(0.632953\pi\)
\(998\) 7.42435 0.235014
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.bj.1.3 6
3.2 odd 2 inner 3249.2.a.bj.1.4 6
19.14 odd 18 171.2.u.d.82.2 yes 12
19.15 odd 18 171.2.u.d.73.2 yes 12
19.18 odd 2 3249.2.a.bi.1.4 6
57.14 even 18 171.2.u.d.82.1 yes 12
57.53 even 18 171.2.u.d.73.1 12
57.56 even 2 3249.2.a.bi.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.u.d.73.1 12 57.53 even 18
171.2.u.d.73.2 yes 12 19.15 odd 18
171.2.u.d.82.1 yes 12 57.14 even 18
171.2.u.d.82.2 yes 12 19.14 odd 18
3249.2.a.bi.1.3 6 57.56 even 2
3249.2.a.bi.1.4 6 19.18 odd 2
3249.2.a.bj.1.3 6 1.1 even 1 trivial
3249.2.a.bj.1.4 6 3.2 odd 2 inner