Properties

Label 3249.2.a.bi
Level $3249$
Weight $2$
Character orbit 3249.a
Self dual yes
Analytic conductor $25.943$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,12,0,0,-6,0,0,-12,0,0,-18,0,0,-12,0,0,0,0,0,18,0,0,12, 0,0,6,0,0,-24,0,0,-30,0,0,-24,0,0,-42,0,0,18,0,0,-6,0,0,0,0,0,-60,0,0, 0,0,0,-24,0,0,-18,0,0,-30,0,0,0,0,0,-42,0,0,0,0,0,0,0,0,-54,0,0,-66,0, 0,-48,0,0,0,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.21415104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} + 45x^{2} - 51 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 171)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + ( - \beta_{3} - \beta_1) q^{5} + ( - \beta_{4} + \beta_{2} - 1) q^{7} + (\beta_{3} + \beta_1) q^{8} + ( - \beta_{4} - 4 \beta_{2} - 2) q^{10} + (\beta_{5} + \beta_1) q^{11}+ \cdots + (2 \beta_{5} - 5 \beta_{3} - 5 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{4} - 6 q^{7} - 12 q^{10} - 18 q^{13} - 12 q^{16} + 18 q^{22} + 12 q^{25} + 6 q^{28} - 24 q^{31} - 30 q^{34} - 24 q^{37} - 42 q^{40} + 18 q^{43} - 6 q^{46} - 60 q^{52} - 24 q^{58} - 18 q^{61}+ \cdots - 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 12x^{4} + 45x^{2} - 51 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 8\nu^{2} + 14 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 8\nu^{3} + 14\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 8\beta_{2} + 18 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 8\beta_{3} + 26\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.35204
−2.08502
−1.45623
1.45623
2.08502
2.35204
−2.35204 0 3.53209 3.60353 0 0.184793 −3.60353 0 −8.47565
1.2 −2.08502 0 2.34730 0.724119 0 1.22668 −0.724119 0 −1.50980
1.3 −1.45623 0 0.120615 −2.73682 0 −4.41147 2.73682 0 3.98545
1.4 1.45623 0 0.120615 2.73682 0 −4.41147 −2.73682 0 3.98545
1.5 2.08502 0 2.34730 −0.724119 0 1.22668 0.724119 0 −1.50980
1.6 2.35204 0 3.53209 −3.60353 0 0.184793 3.60353 0 −8.47565
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(19\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3249.2.a.bi 6
3.b odd 2 1 inner 3249.2.a.bi 6
19.b odd 2 1 3249.2.a.bj 6
19.e even 9 2 171.2.u.d 12
57.d even 2 1 3249.2.a.bj 6
57.l odd 18 2 171.2.u.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
171.2.u.d 12 19.e even 9 2
171.2.u.d 12 57.l odd 18 2
3249.2.a.bi 6 1.a even 1 1 trivial
3249.2.a.bi 6 3.b odd 2 1 inner
3249.2.a.bj 6 19.b odd 2 1
3249.2.a.bj 6 57.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3249))\):

\( T_{2}^{6} - 12T_{2}^{4} + 45T_{2}^{2} - 51 \) Copy content Toggle raw display
\( T_{5}^{6} - 21T_{5}^{4} + 108T_{5}^{2} - 51 \) Copy content Toggle raw display
\( T_{13}^{3} + 9T_{13}^{2} + 15T_{13} - 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 12 T^{4} + \cdots - 51 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 21 T^{4} + \cdots - 51 \) Copy content Toggle raw display
$7$ \( (T^{3} + 3 T^{2} - 6 T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} - 27 T^{4} + \cdots - 459 \) Copy content Toggle raw display
$13$ \( (T^{3} + 9 T^{2} + 15 T - 17)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} - 93 T^{4} + \cdots - 18411 \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 30 T^{4} + \cdots - 51 \) Copy content Toggle raw display
$29$ \( T^{6} - 93 T^{4} + \cdots - 14739 \) Copy content Toggle raw display
$31$ \( (T^{3} + 12 T^{2} + \cdots + 37)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 12 T^{2} + \cdots + 37)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 246 T^{4} + \cdots - 69819 \) Copy content Toggle raw display
$43$ \( (T^{3} - 9 T^{2} + 15 T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} - 183 T^{4} + \cdots - 143259 \) Copy content Toggle raw display
$53$ \( T^{6} - 120 T^{4} + \cdots - 51 \) Copy content Toggle raw display
$59$ \( T^{6} - 201 T^{4} + \cdots - 271779 \) Copy content Toggle raw display
$61$ \( (T^{3} + 9 T^{2} + \cdots - 179)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} - 48 T + 64)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} - 309 T^{4} + \cdots - 143259 \) Copy content Toggle raw display
$73$ \( (T^{3} - 57 T + 163)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 27 T^{2} + \cdots + 361)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 207 T^{4} + \cdots - 459 \) Copy content Toggle raw display
$89$ \( T^{6} - 300 T^{4} + \cdots - 605931 \) Copy content Toggle raw display
$97$ \( (T^{3} - 21 T - 17)^{2} \) Copy content Toggle raw display
show more
show less