Properties

Label 3249.2.a.be.1.3
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,0,0,-4,0,0,0,0,0,4,0,0,4,0,0,0,0,0,24,0,0,4,0,0,-28, 0,0,28,0,0,0,0,0,4,0,0,-24,0,0,-4,0,0,24,0,0,0,0,0,4,0,0,-24,0,0,48,0, 0,20,0,0,-20,0,0,28,0,0,24,0,0,20,0,0,0,0,0,28,0,0,48,0,0,-48,0,0,48,0, 0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.27648.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 171)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.741964\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.741964 q^{2} -1.44949 q^{4} +3.30136 q^{5} +1.44949 q^{7} -2.55940 q^{8} +2.44949 q^{10} -1.81743 q^{11} +1.00000 q^{13} +1.07547 q^{14} +1.00000 q^{16} -6.60272 q^{17} -4.78529 q^{20} -1.34847 q^{22} +4.78529 q^{23} +5.89898 q^{25} +0.741964 q^{26} -2.10102 q^{28} +9.57058 q^{29} +4.55051 q^{31} +5.86076 q^{32} -4.89898 q^{34} +4.78529 q^{35} +5.89898 q^{37} -8.44949 q^{40} +2.96786 q^{41} -8.34847 q^{43} +2.63435 q^{44} +3.55051 q^{46} +2.96786 q^{47} -4.89898 q^{49} +4.37683 q^{50} -1.44949 q^{52} +3.30136 q^{53} -6.00000 q^{55} -3.70982 q^{56} +7.10102 q^{58} +8.42015 q^{59} +5.00000 q^{61} +3.37631 q^{62} +2.34847 q^{64} +3.30136 q^{65} +14.3485 q^{67} +9.57058 q^{68} +3.55051 q^{70} -9.57058 q^{71} +5.00000 q^{73} +4.37683 q^{74} -2.63435 q^{77} +14.3485 q^{79} +3.30136 q^{80} +2.20204 q^{82} +3.63487 q^{83} -21.7980 q^{85} -6.19426 q^{86} +4.65153 q^{88} -16.5068 q^{89} +1.44949 q^{91} -6.93623 q^{92} +2.20204 q^{94} -12.8990 q^{97} -3.63487 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 4 q^{7} + 4 q^{13} + 4 q^{16} + 24 q^{22} + 4 q^{25} - 28 q^{28} + 28 q^{31} + 4 q^{37} - 24 q^{40} - 4 q^{43} + 24 q^{46} + 4 q^{52} - 24 q^{55} + 48 q^{58} + 20 q^{61} - 20 q^{64} + 28 q^{67}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.741964 0.524648 0.262324 0.964980i \(-0.415511\pi\)
0.262324 + 0.964980i \(0.415511\pi\)
\(3\) 0 0
\(4\) −1.44949 −0.724745
\(5\) 3.30136 1.47641 0.738207 0.674575i \(-0.235673\pi\)
0.738207 + 0.674575i \(0.235673\pi\)
\(6\) 0 0
\(7\) 1.44949 0.547856 0.273928 0.961750i \(-0.411677\pi\)
0.273928 + 0.961750i \(0.411677\pi\)
\(8\) −2.55940 −0.904883
\(9\) 0 0
\(10\) 2.44949 0.774597
\(11\) −1.81743 −0.547977 −0.273988 0.961733i \(-0.588343\pi\)
−0.273988 + 0.961733i \(0.588343\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 1.07547 0.287431
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −6.60272 −1.60139 −0.800697 0.599069i \(-0.795538\pi\)
−0.800697 + 0.599069i \(0.795538\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) −4.78529 −1.07002
\(21\) 0 0
\(22\) −1.34847 −0.287495
\(23\) 4.78529 0.997801 0.498901 0.866659i \(-0.333737\pi\)
0.498901 + 0.866659i \(0.333737\pi\)
\(24\) 0 0
\(25\) 5.89898 1.17980
\(26\) 0.741964 0.145511
\(27\) 0 0
\(28\) −2.10102 −0.397056
\(29\) 9.57058 1.77721 0.888606 0.458672i \(-0.151675\pi\)
0.888606 + 0.458672i \(0.151675\pi\)
\(30\) 0 0
\(31\) 4.55051 0.817296 0.408648 0.912692i \(-0.366000\pi\)
0.408648 + 0.912692i \(0.366000\pi\)
\(32\) 5.86076 1.03605
\(33\) 0 0
\(34\) −4.89898 −0.840168
\(35\) 4.78529 0.808861
\(36\) 0 0
\(37\) 5.89898 0.969786 0.484893 0.874573i \(-0.338858\pi\)
0.484893 + 0.874573i \(0.338858\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −8.44949 −1.33598
\(41\) 2.96786 0.463501 0.231751 0.972775i \(-0.425555\pi\)
0.231751 + 0.972775i \(0.425555\pi\)
\(42\) 0 0
\(43\) −8.34847 −1.27313 −0.636565 0.771223i \(-0.719645\pi\)
−0.636565 + 0.771223i \(0.719645\pi\)
\(44\) 2.63435 0.397143
\(45\) 0 0
\(46\) 3.55051 0.523494
\(47\) 2.96786 0.432906 0.216453 0.976293i \(-0.430551\pi\)
0.216453 + 0.976293i \(0.430551\pi\)
\(48\) 0 0
\(49\) −4.89898 −0.699854
\(50\) 4.37683 0.618977
\(51\) 0 0
\(52\) −1.44949 −0.201008
\(53\) 3.30136 0.453477 0.226738 0.973956i \(-0.427194\pi\)
0.226738 + 0.973956i \(0.427194\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) −3.70982 −0.495745
\(57\) 0 0
\(58\) 7.10102 0.932410
\(59\) 8.42015 1.09621 0.548105 0.836409i \(-0.315349\pi\)
0.548105 + 0.836409i \(0.315349\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 3.37631 0.428792
\(63\) 0 0
\(64\) 2.34847 0.293559
\(65\) 3.30136 0.409483
\(66\) 0 0
\(67\) 14.3485 1.75294 0.876472 0.481452i \(-0.159891\pi\)
0.876472 + 0.481452i \(0.159891\pi\)
\(68\) 9.57058 1.16060
\(69\) 0 0
\(70\) 3.55051 0.424367
\(71\) −9.57058 −1.13582 −0.567909 0.823091i \(-0.692248\pi\)
−0.567909 + 0.823091i \(0.692248\pi\)
\(72\) 0 0
\(73\) 5.00000 0.585206 0.292603 0.956234i \(-0.405479\pi\)
0.292603 + 0.956234i \(0.405479\pi\)
\(74\) 4.37683 0.508796
\(75\) 0 0
\(76\) 0 0
\(77\) −2.63435 −0.300212
\(78\) 0 0
\(79\) 14.3485 1.61433 0.807164 0.590327i \(-0.201001\pi\)
0.807164 + 0.590327i \(0.201001\pi\)
\(80\) 3.30136 0.369103
\(81\) 0 0
\(82\) 2.20204 0.243175
\(83\) 3.63487 0.398978 0.199489 0.979900i \(-0.436072\pi\)
0.199489 + 0.979900i \(0.436072\pi\)
\(84\) 0 0
\(85\) −21.7980 −2.36432
\(86\) −6.19426 −0.667944
\(87\) 0 0
\(88\) 4.65153 0.495855
\(89\) −16.5068 −1.74972 −0.874859 0.484378i \(-0.839046\pi\)
−0.874859 + 0.484378i \(0.839046\pi\)
\(90\) 0 0
\(91\) 1.44949 0.151948
\(92\) −6.93623 −0.723152
\(93\) 0 0
\(94\) 2.20204 0.227123
\(95\) 0 0
\(96\) 0 0
\(97\) −12.8990 −1.30969 −0.654846 0.755762i \(-0.727267\pi\)
−0.654846 + 0.755762i \(0.727267\pi\)
\(98\) −3.63487 −0.367177
\(99\) 0 0
\(100\) −8.55051 −0.855051
\(101\) 6.60272 0.656995 0.328498 0.944505i \(-0.393458\pi\)
0.328498 + 0.944505i \(0.393458\pi\)
\(102\) 0 0
\(103\) −1.44949 −0.142822 −0.0714112 0.997447i \(-0.522750\pi\)
−0.0714112 + 0.997447i \(0.522750\pi\)
\(104\) −2.55940 −0.250969
\(105\) 0 0
\(106\) 2.44949 0.237915
\(107\) −12.5384 −1.21214 −0.606068 0.795413i \(-0.707254\pi\)
−0.606068 + 0.795413i \(0.707254\pi\)
\(108\) 0 0
\(109\) −0.898979 −0.0861066 −0.0430533 0.999073i \(-0.513709\pi\)
−0.0430533 + 0.999073i \(0.513709\pi\)
\(110\) −4.45178 −0.424461
\(111\) 0 0
\(112\) 1.44949 0.136964
\(113\) 6.26922 0.589758 0.294879 0.955535i \(-0.404721\pi\)
0.294879 + 0.955535i \(0.404721\pi\)
\(114\) 0 0
\(115\) 15.7980 1.47317
\(116\) −13.8725 −1.28802
\(117\) 0 0
\(118\) 6.24745 0.575124
\(119\) −9.57058 −0.877333
\(120\) 0 0
\(121\) −7.69694 −0.699722
\(122\) 3.70982 0.335871
\(123\) 0 0
\(124\) −6.59592 −0.592331
\(125\) 2.96786 0.265453
\(126\) 0 0
\(127\) 13.7980 1.22437 0.612185 0.790714i \(-0.290291\pi\)
0.612185 + 0.790714i \(0.290291\pi\)
\(128\) −9.97903 −0.882030
\(129\) 0 0
\(130\) 2.44949 0.214834
\(131\) 16.8403 1.47134 0.735672 0.677338i \(-0.236866\pi\)
0.735672 + 0.677338i \(0.236866\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.6460 0.919678
\(135\) 0 0
\(136\) 16.8990 1.44908
\(137\) −16.8403 −1.43876 −0.719382 0.694614i \(-0.755575\pi\)
−0.719382 + 0.694614i \(0.755575\pi\)
\(138\) 0 0
\(139\) 12.3485 1.04738 0.523692 0.851908i \(-0.324554\pi\)
0.523692 + 0.851908i \(0.324554\pi\)
\(140\) −6.93623 −0.586218
\(141\) 0 0
\(142\) −7.10102 −0.595904
\(143\) −1.81743 −0.151981
\(144\) 0 0
\(145\) 31.5959 2.62390
\(146\) 3.70982 0.307027
\(147\) 0 0
\(148\) −8.55051 −0.702848
\(149\) 6.93623 0.568238 0.284119 0.958789i \(-0.408299\pi\)
0.284119 + 0.958789i \(0.408299\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −1.95459 −0.157506
\(155\) 15.0229 1.20667
\(156\) 0 0
\(157\) 13.6969 1.09313 0.546567 0.837415i \(-0.315934\pi\)
0.546567 + 0.837415i \(0.315934\pi\)
\(158\) 10.6460 0.846954
\(159\) 0 0
\(160\) 19.3485 1.52963
\(161\) 6.93623 0.546651
\(162\) 0 0
\(163\) −4.55051 −0.356423 −0.178212 0.983992i \(-0.557031\pi\)
−0.178212 + 0.983992i \(0.557031\pi\)
\(164\) −4.30188 −0.335920
\(165\) 0 0
\(166\) 2.69694 0.209323
\(167\) −12.0550 −0.932845 −0.466423 0.884562i \(-0.654457\pi\)
−0.466423 + 0.884562i \(0.654457\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) −16.1733 −1.24044
\(171\) 0 0
\(172\) 12.1010 0.922694
\(173\) −9.57058 −0.727637 −0.363819 0.931470i \(-0.618527\pi\)
−0.363819 + 0.931470i \(0.618527\pi\)
\(174\) 0 0
\(175\) 8.55051 0.646358
\(176\) −1.81743 −0.136994
\(177\) 0 0
\(178\) −12.2474 −0.917985
\(179\) 17.9907 1.34469 0.672345 0.740238i \(-0.265287\pi\)
0.672345 + 0.740238i \(0.265287\pi\)
\(180\) 0 0
\(181\) 11.1010 0.825132 0.412566 0.910928i \(-0.364633\pi\)
0.412566 + 0.910928i \(0.364633\pi\)
\(182\) 1.07547 0.0797191
\(183\) 0 0
\(184\) −12.2474 −0.902894
\(185\) 19.4747 1.43181
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) −4.30188 −0.313747
\(189\) 0 0
\(190\) 0 0
\(191\) −1.81743 −0.131505 −0.0657524 0.997836i \(-0.520945\pi\)
−0.0657524 + 0.997836i \(0.520945\pi\)
\(192\) 0 0
\(193\) 9.69694 0.698001 0.349000 0.937123i \(-0.386521\pi\)
0.349000 + 0.937123i \(0.386521\pi\)
\(194\) −9.57058 −0.687127
\(195\) 0 0
\(196\) 7.10102 0.507216
\(197\) −13.5389 −0.964610 −0.482305 0.876003i \(-0.660200\pi\)
−0.482305 + 0.876003i \(0.660200\pi\)
\(198\) 0 0
\(199\) −14.3485 −1.01714 −0.508568 0.861022i \(-0.669825\pi\)
−0.508568 + 0.861022i \(0.669825\pi\)
\(200\) −15.0978 −1.06758
\(201\) 0 0
\(202\) 4.89898 0.344691
\(203\) 13.8725 0.973655
\(204\) 0 0
\(205\) 9.79796 0.684319
\(206\) −1.07547 −0.0749315
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) 0 0
\(210\) 0 0
\(211\) −0.348469 −0.0239896 −0.0119948 0.999928i \(-0.503818\pi\)
−0.0119948 + 0.999928i \(0.503818\pi\)
\(212\) −4.78529 −0.328655
\(213\) 0 0
\(214\) −9.30306 −0.635944
\(215\) −27.5613 −1.87967
\(216\) 0 0
\(217\) 6.59592 0.447760
\(218\) −0.667010 −0.0451756
\(219\) 0 0
\(220\) 8.69694 0.586347
\(221\) −6.60272 −0.444147
\(222\) 0 0
\(223\) 14.3485 0.960845 0.480422 0.877037i \(-0.340483\pi\)
0.480422 + 0.877037i \(0.340483\pi\)
\(224\) 8.49511 0.567603
\(225\) 0 0
\(226\) 4.65153 0.309415
\(227\) 14.3559 0.952832 0.476416 0.879220i \(-0.341936\pi\)
0.476416 + 0.879220i \(0.341936\pi\)
\(228\) 0 0
\(229\) 8.79796 0.581385 0.290693 0.956816i \(-0.406114\pi\)
0.290693 + 0.956816i \(0.406114\pi\)
\(230\) 11.7215 0.772894
\(231\) 0 0
\(232\) −24.4949 −1.60817
\(233\) 0.667010 0.0436973 0.0218486 0.999761i \(-0.493045\pi\)
0.0218486 + 0.999761i \(0.493045\pi\)
\(234\) 0 0
\(235\) 9.79796 0.639148
\(236\) −12.2049 −0.794473
\(237\) 0 0
\(238\) −7.10102 −0.460291
\(239\) −14.3559 −0.928604 −0.464302 0.885677i \(-0.653695\pi\)
−0.464302 + 0.885677i \(0.653695\pi\)
\(240\) 0 0
\(241\) 19.0000 1.22390 0.611949 0.790897i \(-0.290386\pi\)
0.611949 + 0.790897i \(0.290386\pi\)
\(242\) −5.71085 −0.367107
\(243\) 0 0
\(244\) −7.24745 −0.463970
\(245\) −16.1733 −1.03327
\(246\) 0 0
\(247\) 0 0
\(248\) −11.6466 −0.739557
\(249\) 0 0
\(250\) 2.20204 0.139269
\(251\) 19.1412 1.20818 0.604089 0.796917i \(-0.293537\pi\)
0.604089 + 0.796917i \(0.293537\pi\)
\(252\) 0 0
\(253\) −8.69694 −0.546772
\(254\) 10.2376 0.642363
\(255\) 0 0
\(256\) −12.1010 −0.756314
\(257\) 6.93623 0.432670 0.216335 0.976319i \(-0.430590\pi\)
0.216335 + 0.976319i \(0.430590\pi\)
\(258\) 0 0
\(259\) 8.55051 0.531303
\(260\) −4.78529 −0.296771
\(261\) 0 0
\(262\) 12.4949 0.771937
\(263\) −15.5063 −0.956159 −0.478079 0.878317i \(-0.658667\pi\)
−0.478079 + 0.878317i \(0.658667\pi\)
\(264\) 0 0
\(265\) 10.8990 0.669519
\(266\) 0 0
\(267\) 0 0
\(268\) −20.7980 −1.27044
\(269\) −15.8398 −0.965769 −0.482885 0.875684i \(-0.660411\pi\)
−0.482885 + 0.875684i \(0.660411\pi\)
\(270\) 0 0
\(271\) −1.79796 −0.109218 −0.0546091 0.998508i \(-0.517391\pi\)
−0.0546091 + 0.998508i \(0.517391\pi\)
\(272\) −6.60272 −0.400349
\(273\) 0 0
\(274\) −12.4949 −0.754844
\(275\) −10.7210 −0.646501
\(276\) 0 0
\(277\) 10.6969 0.642717 0.321358 0.946958i \(-0.395861\pi\)
0.321358 + 0.946958i \(0.395861\pi\)
\(278\) 9.16212 0.549507
\(279\) 0 0
\(280\) −12.2474 −0.731925
\(281\) 6.93623 0.413781 0.206890 0.978364i \(-0.433666\pi\)
0.206890 + 0.978364i \(0.433666\pi\)
\(282\) 0 0
\(283\) −25.7980 −1.53353 −0.766765 0.641928i \(-0.778135\pi\)
−0.766765 + 0.641928i \(0.778135\pi\)
\(284\) 13.8725 0.823179
\(285\) 0 0
\(286\) −1.34847 −0.0797367
\(287\) 4.30188 0.253932
\(288\) 0 0
\(289\) 26.5959 1.56447
\(290\) 23.4430 1.37662
\(291\) 0 0
\(292\) −7.24745 −0.424125
\(293\) −32.3466 −1.88971 −0.944854 0.327492i \(-0.893797\pi\)
−0.944854 + 0.327492i \(0.893797\pi\)
\(294\) 0 0
\(295\) 27.7980 1.61846
\(296\) −15.0978 −0.877543
\(297\) 0 0
\(298\) 5.14643 0.298125
\(299\) 4.78529 0.276740
\(300\) 0 0
\(301\) −12.1010 −0.697491
\(302\) 2.96786 0.170781
\(303\) 0 0
\(304\) 0 0
\(305\) 16.5068 0.945177
\(306\) 0 0
\(307\) −9.59592 −0.547668 −0.273834 0.961777i \(-0.588292\pi\)
−0.273834 + 0.961777i \(0.588292\pi\)
\(308\) 3.81846 0.217577
\(309\) 0 0
\(310\) 11.1464 0.633075
\(311\) 25.2605 1.43239 0.716195 0.697901i \(-0.245882\pi\)
0.716195 + 0.697901i \(0.245882\pi\)
\(312\) 0 0
\(313\) 12.8990 0.729093 0.364547 0.931185i \(-0.381224\pi\)
0.364547 + 0.931185i \(0.381224\pi\)
\(314\) 10.1626 0.573511
\(315\) 0 0
\(316\) −20.7980 −1.16998
\(317\) −0.333505 −0.0187315 −0.00936576 0.999956i \(-0.502981\pi\)
−0.00936576 + 0.999956i \(0.502981\pi\)
\(318\) 0 0
\(319\) −17.3939 −0.973870
\(320\) 7.75314 0.433414
\(321\) 0 0
\(322\) 5.14643 0.286799
\(323\) 0 0
\(324\) 0 0
\(325\) 5.89898 0.327217
\(326\) −3.37631 −0.186997
\(327\) 0 0
\(328\) −7.59592 −0.419414
\(329\) 4.30188 0.237170
\(330\) 0 0
\(331\) −1.44949 −0.0796712 −0.0398356 0.999206i \(-0.512683\pi\)
−0.0398356 + 0.999206i \(0.512683\pi\)
\(332\) −5.26870 −0.289157
\(333\) 0 0
\(334\) −8.94439 −0.489415
\(335\) 47.3695 2.58807
\(336\) 0 0
\(337\) 3.69694 0.201385 0.100693 0.994918i \(-0.467894\pi\)
0.100693 + 0.994918i \(0.467894\pi\)
\(338\) −8.90357 −0.484290
\(339\) 0 0
\(340\) 31.5959 1.71353
\(341\) −8.27025 −0.447859
\(342\) 0 0
\(343\) −17.2474 −0.931275
\(344\) 21.3670 1.15203
\(345\) 0 0
\(346\) −7.10102 −0.381753
\(347\) −20.9586 −1.12512 −0.562558 0.826758i \(-0.690183\pi\)
−0.562558 + 0.826758i \(0.690183\pi\)
\(348\) 0 0
\(349\) 2.79796 0.149771 0.0748857 0.997192i \(-0.476141\pi\)
0.0748857 + 0.997192i \(0.476141\pi\)
\(350\) 6.34417 0.339110
\(351\) 0 0
\(352\) −10.6515 −0.567728
\(353\) −2.63435 −0.140212 −0.0701062 0.997540i \(-0.522334\pi\)
−0.0701062 + 0.997540i \(0.522334\pi\)
\(354\) 0 0
\(355\) −31.5959 −1.67694
\(356\) 23.9264 1.26810
\(357\) 0 0
\(358\) 13.3485 0.705489
\(359\) −19.1412 −1.01023 −0.505116 0.863052i \(-0.668550\pi\)
−0.505116 + 0.863052i \(0.668550\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 8.23656 0.432904
\(363\) 0 0
\(364\) −2.10102 −0.110123
\(365\) 16.5068 0.864005
\(366\) 0 0
\(367\) −5.65153 −0.295008 −0.147504 0.989061i \(-0.547124\pi\)
−0.147504 + 0.989061i \(0.547124\pi\)
\(368\) 4.78529 0.249450
\(369\) 0 0
\(370\) 14.4495 0.751193
\(371\) 4.78529 0.248440
\(372\) 0 0
\(373\) 1.30306 0.0674700 0.0337350 0.999431i \(-0.489260\pi\)
0.0337350 + 0.999431i \(0.489260\pi\)
\(374\) 8.90357 0.460392
\(375\) 0 0
\(376\) −7.59592 −0.391730
\(377\) 9.57058 0.492910
\(378\) 0 0
\(379\) −1.44949 −0.0744553 −0.0372276 0.999307i \(-0.511853\pi\)
−0.0372276 + 0.999307i \(0.511853\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.34847 −0.0689937
\(383\) −15.0229 −0.767633 −0.383816 0.923409i \(-0.625390\pi\)
−0.383816 + 0.923409i \(0.625390\pi\)
\(384\) 0 0
\(385\) −8.69694 −0.443237
\(386\) 7.19478 0.366205
\(387\) 0 0
\(388\) 18.6969 0.949193
\(389\) −6.93623 −0.351681 −0.175840 0.984419i \(-0.556264\pi\)
−0.175840 + 0.984419i \(0.556264\pi\)
\(390\) 0 0
\(391\) −31.5959 −1.59787
\(392\) 12.5384 0.633286
\(393\) 0 0
\(394\) −10.0454 −0.506080
\(395\) 47.3695 2.38342
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) −10.6460 −0.533638
\(399\) 0 0
\(400\) 5.89898 0.294949
\(401\) −23.1095 −1.15403 −0.577017 0.816732i \(-0.695783\pi\)
−0.577017 + 0.816732i \(0.695783\pi\)
\(402\) 0 0
\(403\) 4.55051 0.226677
\(404\) −9.57058 −0.476154
\(405\) 0 0
\(406\) 10.2929 0.510826
\(407\) −10.7210 −0.531420
\(408\) 0 0
\(409\) −12.8990 −0.637813 −0.318907 0.947786i \(-0.603316\pi\)
−0.318907 + 0.947786i \(0.603316\pi\)
\(410\) 7.26973 0.359026
\(411\) 0 0
\(412\) 2.10102 0.103510
\(413\) 12.2049 0.600565
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 5.86076 0.287347
\(417\) 0 0
\(418\) 0 0
\(419\) −17.9907 −0.878905 −0.439452 0.898266i \(-0.644827\pi\)
−0.439452 + 0.898266i \(0.644827\pi\)
\(420\) 0 0
\(421\) −12.8990 −0.628658 −0.314329 0.949314i \(-0.601779\pi\)
−0.314329 + 0.949314i \(0.601779\pi\)
\(422\) −0.258552 −0.0125861
\(423\) 0 0
\(424\) −8.44949 −0.410343
\(425\) −38.9493 −1.88932
\(426\) 0 0
\(427\) 7.24745 0.350729
\(428\) 18.1743 0.878489
\(429\) 0 0
\(430\) −20.4495 −0.986162
\(431\) −2.96786 −0.142957 −0.0714783 0.997442i \(-0.522772\pi\)
−0.0714783 + 0.997442i \(0.522772\pi\)
\(432\) 0 0
\(433\) −7.69694 −0.369891 −0.184946 0.982749i \(-0.559211\pi\)
−0.184946 + 0.982749i \(0.559211\pi\)
\(434\) 4.89393 0.234916
\(435\) 0 0
\(436\) 1.30306 0.0624053
\(437\) 0 0
\(438\) 0 0
\(439\) 23.6515 1.12883 0.564413 0.825493i \(-0.309103\pi\)
0.564413 + 0.825493i \(0.309103\pi\)
\(440\) 15.3564 0.732087
\(441\) 0 0
\(442\) −4.89898 −0.233021
\(443\) −18.4741 −0.877733 −0.438866 0.898552i \(-0.644620\pi\)
−0.438866 + 0.898552i \(0.644620\pi\)
\(444\) 0 0
\(445\) −54.4949 −2.58331
\(446\) 10.6460 0.504105
\(447\) 0 0
\(448\) 3.40408 0.160828
\(449\) −28.7117 −1.35499 −0.677495 0.735527i \(-0.736934\pi\)
−0.677495 + 0.735527i \(0.736934\pi\)
\(450\) 0 0
\(451\) −5.39388 −0.253988
\(452\) −9.08716 −0.427424
\(453\) 0 0
\(454\) 10.6515 0.499901
\(455\) 4.78529 0.224338
\(456\) 0 0
\(457\) −29.8990 −1.39862 −0.699308 0.714821i \(-0.746508\pi\)
−0.699308 + 0.714821i \(0.746508\pi\)
\(458\) 6.52777 0.305023
\(459\) 0 0
\(460\) −22.8990 −1.06767
\(461\) −9.23707 −0.430213 −0.215107 0.976591i \(-0.569010\pi\)
−0.215107 + 0.976591i \(0.569010\pi\)
\(462\) 0 0
\(463\) 34.1464 1.58692 0.793460 0.608623i \(-0.208278\pi\)
0.793460 + 0.608623i \(0.208278\pi\)
\(464\) 9.57058 0.444303
\(465\) 0 0
\(466\) 0.494897 0.0229257
\(467\) 16.1733 0.748411 0.374205 0.927346i \(-0.377915\pi\)
0.374205 + 0.927346i \(0.377915\pi\)
\(468\) 0 0
\(469\) 20.7980 0.960361
\(470\) 7.26973 0.335328
\(471\) 0 0
\(472\) −21.5505 −0.991943
\(473\) 15.1728 0.697645
\(474\) 0 0
\(475\) 0 0
\(476\) 13.8725 0.635843
\(477\) 0 0
\(478\) −10.6515 −0.487190
\(479\) −9.57058 −0.437291 −0.218645 0.975804i \(-0.570164\pi\)
−0.218645 + 0.975804i \(0.570164\pi\)
\(480\) 0 0
\(481\) 5.89898 0.268970
\(482\) 14.0973 0.642115
\(483\) 0 0
\(484\) 11.1566 0.507120
\(485\) −42.5842 −1.93365
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) −12.7970 −0.579292
\(489\) 0 0
\(490\) −12.0000 −0.542105
\(491\) −30.0457 −1.35595 −0.677973 0.735087i \(-0.737141\pi\)
−0.677973 + 0.735087i \(0.737141\pi\)
\(492\) 0 0
\(493\) −63.1918 −2.84602
\(494\) 0 0
\(495\) 0 0
\(496\) 4.55051 0.204324
\(497\) −13.8725 −0.622264
\(498\) 0 0
\(499\) 42.3485 1.89578 0.947889 0.318601i \(-0.103213\pi\)
0.947889 + 0.318601i \(0.103213\pi\)
\(500\) −4.30188 −0.192386
\(501\) 0 0
\(502\) 14.2020 0.633868
\(503\) −0.667010 −0.0297405 −0.0148703 0.999889i \(-0.504734\pi\)
−0.0148703 + 0.999889i \(0.504734\pi\)
\(504\) 0 0
\(505\) 21.7980 0.969996
\(506\) −6.45281 −0.286863
\(507\) 0 0
\(508\) −20.0000 −0.887357
\(509\) −33.6806 −1.49287 −0.746433 0.665460i \(-0.768235\pi\)
−0.746433 + 0.665460i \(0.768235\pi\)
\(510\) 0 0
\(511\) 7.24745 0.320608
\(512\) 10.9795 0.485232
\(513\) 0 0
\(514\) 5.14643 0.226999
\(515\) −4.78529 −0.210865
\(516\) 0 0
\(517\) −5.39388 −0.237222
\(518\) 6.34417 0.278747
\(519\) 0 0
\(520\) −8.44949 −0.370535
\(521\) −9.90408 −0.433906 −0.216953 0.976182i \(-0.569612\pi\)
−0.216953 + 0.976182i \(0.569612\pi\)
\(522\) 0 0
\(523\) 5.65153 0.247124 0.123562 0.992337i \(-0.460568\pi\)
0.123562 + 0.992337i \(0.460568\pi\)
\(524\) −24.4099 −1.06635
\(525\) 0 0
\(526\) −11.5051 −0.501646
\(527\) −30.0457 −1.30881
\(528\) 0 0
\(529\) −0.101021 −0.00439220
\(530\) 8.08665 0.351262
\(531\) 0 0
\(532\) 0 0
\(533\) 2.96786 0.128552
\(534\) 0 0
\(535\) −41.3939 −1.78961
\(536\) −36.7234 −1.58621
\(537\) 0 0
\(538\) −11.7526 −0.506688
\(539\) 8.90357 0.383504
\(540\) 0 0
\(541\) 19.6969 0.846838 0.423419 0.905934i \(-0.360830\pi\)
0.423419 + 0.905934i \(0.360830\pi\)
\(542\) −1.33402 −0.0573011
\(543\) 0 0
\(544\) −38.6969 −1.65912
\(545\) −2.96786 −0.127129
\(546\) 0 0
\(547\) 32.3485 1.38312 0.691560 0.722319i \(-0.256924\pi\)
0.691560 + 0.722319i \(0.256924\pi\)
\(548\) 24.4099 1.04274
\(549\) 0 0
\(550\) −7.95459 −0.339185
\(551\) 0 0
\(552\) 0 0
\(553\) 20.7980 0.884419
\(554\) 7.93674 0.337200
\(555\) 0 0
\(556\) −17.8990 −0.759086
\(557\) 22.7760 0.965051 0.482525 0.875882i \(-0.339720\pi\)
0.482525 + 0.875882i \(0.339720\pi\)
\(558\) 0 0
\(559\) −8.34847 −0.353103
\(560\) 4.78529 0.202215
\(561\) 0 0
\(562\) 5.14643 0.217089
\(563\) −19.8082 −0.834814 −0.417407 0.908720i \(-0.637061\pi\)
−0.417407 + 0.908720i \(0.637061\pi\)
\(564\) 0 0
\(565\) 20.6969 0.870727
\(566\) −19.1412 −0.804563
\(567\) 0 0
\(568\) 24.4949 1.02778
\(569\) −8.90357 −0.373257 −0.186628 0.982431i \(-0.559756\pi\)
−0.186628 + 0.982431i \(0.559756\pi\)
\(570\) 0 0
\(571\) −13.2474 −0.554388 −0.277194 0.960814i \(-0.589405\pi\)
−0.277194 + 0.960814i \(0.589405\pi\)
\(572\) 2.63435 0.110148
\(573\) 0 0
\(574\) 3.19184 0.133225
\(575\) 28.2283 1.17720
\(576\) 0 0
\(577\) −6.69694 −0.278797 −0.139399 0.990236i \(-0.544517\pi\)
−0.139399 + 0.990236i \(0.544517\pi\)
\(578\) 19.7332 0.820793
\(579\) 0 0
\(580\) −45.7980 −1.90166
\(581\) 5.26870 0.218583
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) −12.7970 −0.529543
\(585\) 0 0
\(586\) −24.0000 −0.991431
\(587\) 11.3880 0.470033 0.235017 0.971991i \(-0.424486\pi\)
0.235017 + 0.971991i \(0.424486\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 20.6251 0.849121
\(591\) 0 0
\(592\) 5.89898 0.242447
\(593\) −10.5711 −0.434103 −0.217051 0.976160i \(-0.569644\pi\)
−0.217051 + 0.976160i \(0.569644\pi\)
\(594\) 0 0
\(595\) −31.5959 −1.29531
\(596\) −10.0540 −0.411827
\(597\) 0 0
\(598\) 3.55051 0.145191
\(599\) −31.8632 −1.30189 −0.650947 0.759123i \(-0.725628\pi\)
−0.650947 + 0.759123i \(0.725628\pi\)
\(600\) 0 0
\(601\) −12.1010 −0.493611 −0.246805 0.969065i \(-0.579381\pi\)
−0.246805 + 0.969065i \(0.579381\pi\)
\(602\) −8.97852 −0.365937
\(603\) 0 0
\(604\) −5.79796 −0.235916
\(605\) −25.4104 −1.03308
\(606\) 0 0
\(607\) 45.9444 1.86483 0.932413 0.361396i \(-0.117700\pi\)
0.932413 + 0.361396i \(0.117700\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 12.2474 0.495885
\(611\) 2.96786 0.120067
\(612\) 0 0
\(613\) 12.8990 0.520985 0.260492 0.965476i \(-0.416115\pi\)
0.260492 + 0.965476i \(0.416115\pi\)
\(614\) −7.11982 −0.287333
\(615\) 0 0
\(616\) 6.74235 0.271657
\(617\) −23.1095 −0.930354 −0.465177 0.885218i \(-0.654009\pi\)
−0.465177 + 0.885218i \(0.654009\pi\)
\(618\) 0 0
\(619\) −25.2474 −1.01478 −0.507390 0.861716i \(-0.669390\pi\)
−0.507390 + 0.861716i \(0.669390\pi\)
\(620\) −21.7755 −0.874525
\(621\) 0 0
\(622\) 18.7423 0.751500
\(623\) −23.9264 −0.958593
\(624\) 0 0
\(625\) −19.6969 −0.787878
\(626\) 9.57058 0.382517
\(627\) 0 0
\(628\) −19.8536 −0.792244
\(629\) −38.9493 −1.55301
\(630\) 0 0
\(631\) −8.34847 −0.332347 −0.166174 0.986097i \(-0.553141\pi\)
−0.166174 + 0.986097i \(0.553141\pi\)
\(632\) −36.7234 −1.46078
\(633\) 0 0
\(634\) −0.247449 −0.00982744
\(635\) 45.5520 1.80768
\(636\) 0 0
\(637\) −4.89898 −0.194105
\(638\) −12.9056 −0.510939
\(639\) 0 0
\(640\) −32.9444 −1.30224
\(641\) −14.8393 −0.586116 −0.293058 0.956095i \(-0.594673\pi\)
−0.293058 + 0.956095i \(0.594673\pi\)
\(642\) 0 0
\(643\) 18.3485 0.723593 0.361796 0.932257i \(-0.382164\pi\)
0.361796 + 0.932257i \(0.382164\pi\)
\(644\) −10.0540 −0.396183
\(645\) 0 0
\(646\) 0 0
\(647\) −12.5384 −0.492937 −0.246468 0.969151i \(-0.579270\pi\)
−0.246468 + 0.969151i \(0.579270\pi\)
\(648\) 0 0
\(649\) −15.3031 −0.600698
\(650\) 4.37683 0.171673
\(651\) 0 0
\(652\) 6.59592 0.258316
\(653\) −5.26870 −0.206180 −0.103090 0.994672i \(-0.532873\pi\)
−0.103090 + 0.994672i \(0.532873\pi\)
\(654\) 0 0
\(655\) 55.5959 2.17231
\(656\) 2.96786 0.115875
\(657\) 0 0
\(658\) 3.19184 0.124431
\(659\) 43.7346 1.70366 0.851829 0.523820i \(-0.175493\pi\)
0.851829 + 0.523820i \(0.175493\pi\)
\(660\) 0 0
\(661\) 37.1918 1.44659 0.723297 0.690537i \(-0.242626\pi\)
0.723297 + 0.690537i \(0.242626\pi\)
\(662\) −1.07547 −0.0417993
\(663\) 0 0
\(664\) −9.30306 −0.361029
\(665\) 0 0
\(666\) 0 0
\(667\) 45.7980 1.77330
\(668\) 17.4736 0.676075
\(669\) 0 0
\(670\) 35.1464 1.35782
\(671\) −9.08716 −0.350806
\(672\) 0 0
\(673\) −12.1010 −0.466460 −0.233230 0.972422i \(-0.574930\pi\)
−0.233230 + 0.972422i \(0.574930\pi\)
\(674\) 2.74299 0.105656
\(675\) 0 0
\(676\) 17.3939 0.668995
\(677\) −7.26973 −0.279398 −0.139699 0.990194i \(-0.544614\pi\)
−0.139699 + 0.990194i \(0.544614\pi\)
\(678\) 0 0
\(679\) −18.6969 −0.717523
\(680\) 55.7896 2.13943
\(681\) 0 0
\(682\) −6.13622 −0.234968
\(683\) 17.9907 0.688396 0.344198 0.938897i \(-0.388151\pi\)
0.344198 + 0.938897i \(0.388151\pi\)
\(684\) 0 0
\(685\) −55.5959 −2.12421
\(686\) −12.7970 −0.488591
\(687\) 0 0
\(688\) −8.34847 −0.318282
\(689\) 3.30136 0.125772
\(690\) 0 0
\(691\) −33.3939 −1.27036 −0.635181 0.772363i \(-0.719075\pi\)
−0.635181 + 0.772363i \(0.719075\pi\)
\(692\) 13.8725 0.527351
\(693\) 0 0
\(694\) −15.5505 −0.590289
\(695\) 40.7667 1.54637
\(696\) 0 0
\(697\) −19.5959 −0.742248
\(698\) 2.07598 0.0785772
\(699\) 0 0
\(700\) −12.3939 −0.468445
\(701\) 30.3793 1.14741 0.573704 0.819063i \(-0.305506\pi\)
0.573704 + 0.819063i \(0.305506\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −4.26818 −0.160863
\(705\) 0 0
\(706\) −1.95459 −0.0735621
\(707\) 9.57058 0.359939
\(708\) 0 0
\(709\) −30.3939 −1.14147 −0.570733 0.821136i \(-0.693341\pi\)
−0.570733 + 0.821136i \(0.693341\pi\)
\(710\) −23.4430 −0.879801
\(711\) 0 0
\(712\) 42.2474 1.58329
\(713\) 21.7755 0.815499
\(714\) 0 0
\(715\) −6.00000 −0.224387
\(716\) −26.0774 −0.974557
\(717\) 0 0
\(718\) −14.2020 −0.530015
\(719\) −3.15145 −0.117529 −0.0587647 0.998272i \(-0.518716\pi\)
−0.0587647 + 0.998272i \(0.518716\pi\)
\(720\) 0 0
\(721\) −2.10102 −0.0782461
\(722\) 0 0
\(723\) 0 0
\(724\) −16.0908 −0.598010
\(725\) 56.4566 2.09675
\(726\) 0 0
\(727\) 3.04541 0.112948 0.0564740 0.998404i \(-0.482014\pi\)
0.0564740 + 0.998404i \(0.482014\pi\)
\(728\) −3.70982 −0.137495
\(729\) 0 0
\(730\) 12.2474 0.453298
\(731\) 55.1226 2.03878
\(732\) 0 0
\(733\) 34.6969 1.28156 0.640780 0.767724i \(-0.278611\pi\)
0.640780 + 0.767724i \(0.278611\pi\)
\(734\) −4.19323 −0.154775
\(735\) 0 0
\(736\) 28.0454 1.03377
\(737\) −26.0774 −0.960573
\(738\) 0 0
\(739\) 15.0454 0.553454 0.276727 0.960949i \(-0.410750\pi\)
0.276727 + 0.960949i \(0.410750\pi\)
\(740\) −28.2283 −1.03769
\(741\) 0 0
\(742\) 3.55051 0.130343
\(743\) 13.6889 0.502195 0.251098 0.967962i \(-0.419208\pi\)
0.251098 + 0.967962i \(0.419208\pi\)
\(744\) 0 0
\(745\) 22.8990 0.838954
\(746\) 0.966824 0.0353980
\(747\) 0 0
\(748\) −17.3939 −0.635983
\(749\) −18.1743 −0.664075
\(750\) 0 0
\(751\) −9.04541 −0.330072 −0.165036 0.986288i \(-0.552774\pi\)
−0.165036 + 0.986288i \(0.552774\pi\)
\(752\) 2.96786 0.108227
\(753\) 0 0
\(754\) 7.10102 0.258604
\(755\) 13.2054 0.480595
\(756\) 0 0
\(757\) −42.3939 −1.54083 −0.770416 0.637542i \(-0.779951\pi\)
−0.770416 + 0.637542i \(0.779951\pi\)
\(758\) −1.07547 −0.0390628
\(759\) 0 0
\(760\) 0 0
\(761\) −26.0774 −0.945304 −0.472652 0.881249i \(-0.656703\pi\)
−0.472652 + 0.881249i \(0.656703\pi\)
\(762\) 0 0
\(763\) −1.30306 −0.0471740
\(764\) 2.63435 0.0953074
\(765\) 0 0
\(766\) −11.1464 −0.402737
\(767\) 8.42015 0.304034
\(768\) 0 0
\(769\) −30.3939 −1.09603 −0.548016 0.836468i \(-0.684617\pi\)
−0.548016 + 0.836468i \(0.684617\pi\)
\(770\) −6.45281 −0.232543
\(771\) 0 0
\(772\) −14.0556 −0.505873
\(773\) −2.96786 −0.106746 −0.0533732 0.998575i \(-0.516997\pi\)
−0.0533732 + 0.998575i \(0.516997\pi\)
\(774\) 0 0
\(775\) 26.8434 0.964242
\(776\) 33.0136 1.18512
\(777\) 0 0
\(778\) −5.14643 −0.184508
\(779\) 0 0
\(780\) 0 0
\(781\) 17.3939 0.622402
\(782\) −23.4430 −0.838321
\(783\) 0 0
\(784\) −4.89898 −0.174964
\(785\) 45.2185 1.61392
\(786\) 0 0
\(787\) −22.7526 −0.811041 −0.405520 0.914086i \(-0.632910\pi\)
−0.405520 + 0.914086i \(0.632910\pi\)
\(788\) 19.6246 0.699096
\(789\) 0 0
\(790\) 35.1464 1.25045
\(791\) 9.08716 0.323102
\(792\) 0 0
\(793\) 5.00000 0.177555
\(794\) −5.19375 −0.184319
\(795\) 0 0
\(796\) 20.7980 0.737164
\(797\) −44.8850 −1.58991 −0.794955 0.606669i \(-0.792505\pi\)
−0.794955 + 0.606669i \(0.792505\pi\)
\(798\) 0 0
\(799\) −19.5959 −0.693254
\(800\) 34.5725 1.22232
\(801\) 0 0
\(802\) −17.1464 −0.605461
\(803\) −9.08716 −0.320679
\(804\) 0 0
\(805\) 22.8990 0.807083
\(806\) 3.37631 0.118926
\(807\) 0 0
\(808\) −16.8990 −0.594504
\(809\) 20.8087 0.731594 0.365797 0.930695i \(-0.380796\pi\)
0.365797 + 0.930695i \(0.380796\pi\)
\(810\) 0 0
\(811\) 1.79796 0.0631349 0.0315674 0.999502i \(-0.489950\pi\)
0.0315674 + 0.999502i \(0.489950\pi\)
\(812\) −20.1080 −0.705652
\(813\) 0 0
\(814\) −7.95459 −0.278808
\(815\) −15.0229 −0.526228
\(816\) 0 0
\(817\) 0 0
\(818\) −9.57058 −0.334627
\(819\) 0 0
\(820\) −14.2020 −0.495957
\(821\) −2.30084 −0.0803000 −0.0401500 0.999194i \(-0.512784\pi\)
−0.0401500 + 0.999194i \(0.512784\pi\)
\(822\) 0 0
\(823\) −49.7980 −1.73585 −0.867924 0.496697i \(-0.834546\pi\)
−0.867924 + 0.496697i \(0.834546\pi\)
\(824\) 3.70982 0.129238
\(825\) 0 0
\(826\) 9.05561 0.315085
\(827\) 40.2833 1.40079 0.700394 0.713756i \(-0.253007\pi\)
0.700394 + 0.713756i \(0.253007\pi\)
\(828\) 0 0
\(829\) −26.1918 −0.909680 −0.454840 0.890573i \(-0.650304\pi\)
−0.454840 + 0.890573i \(0.650304\pi\)
\(830\) 8.90357 0.309047
\(831\) 0 0
\(832\) 2.34847 0.0814185
\(833\) 32.3466 1.12074
\(834\) 0 0
\(835\) −39.7980 −1.37727
\(836\) 0 0
\(837\) 0 0
\(838\) −13.3485 −0.461115
\(839\) −51.0043 −1.76087 −0.880433 0.474171i \(-0.842748\pi\)
−0.880433 + 0.474171i \(0.842748\pi\)
\(840\) 0 0
\(841\) 62.5959 2.15848
\(842\) −9.57058 −0.329824
\(843\) 0 0
\(844\) 0.505103 0.0173863
\(845\) −39.6163 −1.36284
\(846\) 0 0
\(847\) −11.1566 −0.383346
\(848\) 3.30136 0.113369
\(849\) 0 0
\(850\) −28.8990 −0.991227
\(851\) 28.2283 0.967654
\(852\) 0 0
\(853\) −10.3031 −0.352770 −0.176385 0.984321i \(-0.556440\pi\)
−0.176385 + 0.984321i \(0.556440\pi\)
\(854\) 5.37734 0.184009
\(855\) 0 0
\(856\) 32.0908 1.09684
\(857\) 26.4109 0.902179 0.451089 0.892479i \(-0.351036\pi\)
0.451089 + 0.892479i \(0.351036\pi\)
\(858\) 0 0
\(859\) −8.95459 −0.305527 −0.152763 0.988263i \(-0.548817\pi\)
−0.152763 + 0.988263i \(0.548817\pi\)
\(860\) 39.9498 1.36228
\(861\) 0 0
\(862\) −2.20204 −0.0750018
\(863\) −23.4430 −0.798010 −0.399005 0.916949i \(-0.630644\pi\)
−0.399005 + 0.916949i \(0.630644\pi\)
\(864\) 0 0
\(865\) −31.5959 −1.07429
\(866\) −5.71085 −0.194063
\(867\) 0 0
\(868\) −9.56072 −0.324512
\(869\) −26.0774 −0.884614
\(870\) 0 0
\(871\) 14.3485 0.486179
\(872\) 2.30084 0.0779164
\(873\) 0 0
\(874\) 0 0
\(875\) 4.30188 0.145430
\(876\) 0 0
\(877\) −25.6969 −0.867724 −0.433862 0.900979i \(-0.642849\pi\)
−0.433862 + 0.900979i \(0.642849\pi\)
\(878\) 17.5486 0.592236
\(879\) 0 0
\(880\) −6.00000 −0.202260
\(881\) 43.8845 1.47851 0.739253 0.673427i \(-0.235179\pi\)
0.739253 + 0.673427i \(0.235179\pi\)
\(882\) 0 0
\(883\) 15.6515 0.526716 0.263358 0.964698i \(-0.415170\pi\)
0.263358 + 0.964698i \(0.415170\pi\)
\(884\) 9.57058 0.321893
\(885\) 0 0
\(886\) −13.7071 −0.460500
\(887\) −39.1329 −1.31395 −0.656977 0.753910i \(-0.728165\pi\)
−0.656977 + 0.753910i \(0.728165\pi\)
\(888\) 0 0
\(889\) 20.0000 0.670778
\(890\) −40.4332 −1.35533
\(891\) 0 0
\(892\) −20.7980 −0.696367
\(893\) 0 0
\(894\) 0 0
\(895\) 59.3939 1.98532
\(896\) −14.4645 −0.483225
\(897\) 0 0
\(898\) −21.3031 −0.710892
\(899\) 43.5510 1.45251
\(900\) 0 0
\(901\) −21.7980 −0.726195
\(902\) −4.00206 −0.133254
\(903\) 0 0
\(904\) −16.0454 −0.533662
\(905\) 36.6485 1.21824
\(906\) 0 0
\(907\) 43.1918 1.43416 0.717081 0.696990i \(-0.245478\pi\)
0.717081 + 0.696990i \(0.245478\pi\)
\(908\) −20.8087 −0.690560
\(909\) 0 0
\(910\) 3.55051 0.117698
\(911\) 23.4430 0.776702 0.388351 0.921512i \(-0.373045\pi\)
0.388351 + 0.921512i \(0.373045\pi\)
\(912\) 0 0
\(913\) −6.60612 −0.218631
\(914\) −22.1840 −0.733780
\(915\) 0 0
\(916\) −12.7526 −0.421356
\(917\) 24.4099 0.806084
\(918\) 0 0
\(919\) 4.75255 0.156772 0.0783861 0.996923i \(-0.475023\pi\)
0.0783861 + 0.996923i \(0.475023\pi\)
\(920\) −40.4332 −1.33304
\(921\) 0 0
\(922\) −6.85357 −0.225710
\(923\) −9.57058 −0.315019
\(924\) 0 0
\(925\) 34.7980 1.14415
\(926\) 25.3354 0.832573
\(927\) 0 0
\(928\) 56.0908 1.84127
\(929\) −50.4872 −1.65643 −0.828216 0.560409i \(-0.810644\pi\)
−0.828216 + 0.560409i \(0.810644\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.966824 −0.0316694
\(933\) 0 0
\(934\) 12.0000 0.392652
\(935\) 39.6163 1.29559
\(936\) 0 0
\(937\) 49.0908 1.60373 0.801864 0.597507i \(-0.203842\pi\)
0.801864 + 0.597507i \(0.203842\pi\)
\(938\) 15.4313 0.503851
\(939\) 0 0
\(940\) −14.2020 −0.463220
\(941\) 45.5520 1.48495 0.742477 0.669872i \(-0.233651\pi\)
0.742477 + 0.669872i \(0.233651\pi\)
\(942\) 0 0
\(943\) 14.2020 0.462482
\(944\) 8.42015 0.274053
\(945\) 0 0
\(946\) 11.2577 0.366018
\(947\) 24.1100 0.783471 0.391735 0.920078i \(-0.371875\pi\)
0.391735 + 0.920078i \(0.371875\pi\)
\(948\) 0 0
\(949\) 5.00000 0.162307
\(950\) 0 0
\(951\) 0 0
\(952\) 24.4949 0.793884
\(953\) 25.4104 0.823123 0.411561 0.911382i \(-0.364984\pi\)
0.411561 + 0.911382i \(0.364984\pi\)
\(954\) 0 0
\(955\) −6.00000 −0.194155
\(956\) 20.8087 0.673001
\(957\) 0 0
\(958\) −7.10102 −0.229424
\(959\) −24.4099 −0.788235
\(960\) 0 0
\(961\) −10.2929 −0.332028
\(962\) 4.37683 0.141115
\(963\) 0 0
\(964\) −27.5403 −0.887014
\(965\) 32.0131 1.03054
\(966\) 0 0
\(967\) −5.65153 −0.181741 −0.0908705 0.995863i \(-0.528965\pi\)
−0.0908705 + 0.995863i \(0.528965\pi\)
\(968\) 19.6995 0.633166
\(969\) 0 0
\(970\) −31.5959 −1.01448
\(971\) 35.3144 1.13329 0.566647 0.823960i \(-0.308240\pi\)
0.566647 + 0.823960i \(0.308240\pi\)
\(972\) 0 0
\(973\) 17.8990 0.573815
\(974\) −5.93571 −0.190192
\(975\) 0 0
\(976\) 5.00000 0.160046
\(977\) −16.1733 −0.517430 −0.258715 0.965954i \(-0.583299\pi\)
−0.258715 + 0.965954i \(0.583299\pi\)
\(978\) 0 0
\(979\) 30.0000 0.958804
\(980\) 23.4430 0.748860
\(981\) 0 0
\(982\) −22.2929 −0.711394
\(983\) −27.5613 −0.879069 −0.439535 0.898226i \(-0.644857\pi\)
−0.439535 + 0.898226i \(0.644857\pi\)
\(984\) 0 0
\(985\) −44.6969 −1.42416
\(986\) −46.8861 −1.49316
\(987\) 0 0
\(988\) 0 0
\(989\) −39.9498 −1.27033
\(990\) 0 0
\(991\) 47.0454 1.49445 0.747223 0.664573i \(-0.231387\pi\)
0.747223 + 0.664573i \(0.231387\pi\)
\(992\) 26.6694 0.846755
\(993\) 0 0
\(994\) −10.2929 −0.326470
\(995\) −47.3695 −1.50171
\(996\) 0 0
\(997\) 43.0908 1.36470 0.682350 0.731026i \(-0.260958\pi\)
0.682350 + 0.731026i \(0.260958\pi\)
\(998\) 31.4210 0.994615
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.be.1.3 4
3.2 odd 2 inner 3249.2.a.be.1.2 4
19.8 odd 6 171.2.f.c.64.3 yes 8
19.12 odd 6 171.2.f.c.163.3 yes 8
19.18 odd 2 3249.2.a.bd.1.2 4
57.8 even 6 171.2.f.c.64.2 8
57.50 even 6 171.2.f.c.163.2 yes 8
57.56 even 2 3249.2.a.bd.1.3 4
76.27 even 6 2736.2.s.bb.577.1 8
76.31 even 6 2736.2.s.bb.1873.1 8
228.107 odd 6 2736.2.s.bb.1873.4 8
228.179 odd 6 2736.2.s.bb.577.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.f.c.64.2 8 57.8 even 6
171.2.f.c.64.3 yes 8 19.8 odd 6
171.2.f.c.163.2 yes 8 57.50 even 6
171.2.f.c.163.3 yes 8 19.12 odd 6
2736.2.s.bb.577.1 8 76.27 even 6
2736.2.s.bb.577.4 8 228.179 odd 6
2736.2.s.bb.1873.1 8 76.31 even 6
2736.2.s.bb.1873.4 8 228.107 odd 6
3249.2.a.bd.1.2 4 19.18 odd 2
3249.2.a.bd.1.3 4 57.56 even 2
3249.2.a.be.1.2 4 3.2 odd 2 inner
3249.2.a.be.1.3 4 1.1 even 1 trivial