Properties

Label 3249.2.a.be
Level $3249$
Weight $2$
Character orbit 3249.a
Self dual yes
Analytic conductor $25.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,0,0,-4,0,0,0,0,0,4,0,0,4,0,0,0,0,0,24,0,0,4,0,0,-28, 0,0,28,0,0,0,0,0,4,0,0,-24,0,0,-4,0,0,24,0,0,0,0,0,4,0,0,-24,0,0,48,0, 0,20,0,0,-20,0,0,28,0,0,24,0,0,20,0,0,0,0,0,28,0,0,48,0,0,-48,0,0,48,0, 0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.27648.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 171)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} - \beta_{3} q^{5} + ( - \beta_{2} - 1) q^{7} + (\beta_{3} + \beta_1) q^{8} - \beta_{2} q^{10} + (\beta_{3} + 2 \beta_1) q^{11} + q^{13} + ( - \beta_{3} - 3 \beta_1) q^{14}+ \cdots + (2 \beta_{3} + 4 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 4 q^{7} + 4 q^{13} + 4 q^{16} + 24 q^{22} + 4 q^{25} - 28 q^{28} + 28 q^{31} + 4 q^{37} - 24 q^{40} - 4 q^{43} + 24 q^{46} + 4 q^{52} - 24 q^{55} + 48 q^{58} + 20 q^{61} - 20 q^{64} + 28 q^{67}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.33441
−0.741964
0.741964
2.33441
−2.33441 0 3.44949 1.04930 0 −3.44949 −3.38371 0 −2.44949
1.2 −0.741964 0 −1.44949 −3.30136 0 1.44949 2.55940 0 2.44949
1.3 0.741964 0 −1.44949 3.30136 0 1.44949 −2.55940 0 2.44949
1.4 2.33441 0 3.44949 −1.04930 0 −3.44949 3.38371 0 −2.44949
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3249.2.a.be 4
3.b odd 2 1 inner 3249.2.a.be 4
19.b odd 2 1 3249.2.a.bd 4
19.d odd 6 2 171.2.f.c 8
57.d even 2 1 3249.2.a.bd 4
57.f even 6 2 171.2.f.c 8
76.f even 6 2 2736.2.s.bb 8
228.n odd 6 2 2736.2.s.bb 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
171.2.f.c 8 19.d odd 6 2
171.2.f.c 8 57.f even 6 2
2736.2.s.bb 8 76.f even 6 2
2736.2.s.bb 8 228.n odd 6 2
3249.2.a.bd 4 19.b odd 2 1
3249.2.a.bd 4 57.d even 2 1
3249.2.a.be 4 1.a even 1 1 trivial
3249.2.a.be 4 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3249))\):

\( T_{2}^{4} - 6T_{2}^{2} + 3 \) Copy content Toggle raw display
\( T_{5}^{4} - 12T_{5}^{2} + 12 \) Copy content Toggle raw display
\( T_{13} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 6T^{2} + 3 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 12T^{2} + 12 \) Copy content Toggle raw display
$7$ \( (T^{2} + 2 T - 5)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 36T^{2} + 108 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 48T^{2} + 192 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 36T^{2} + 300 \) Copy content Toggle raw display
$29$ \( T^{4} - 144T^{2} + 4800 \) Copy content Toggle raw display
$31$ \( (T^{2} - 14 T + 43)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2 T - 23)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 96T^{2} + 768 \) Copy content Toggle raw display
$43$ \( (T^{2} + 2 T - 53)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 96T^{2} + 768 \) Copy content Toggle raw display
$53$ \( T^{4} - 12T^{2} + 12 \) Copy content Toggle raw display
$59$ \( T^{4} - 132T^{2} + 4332 \) Copy content Toggle raw display
$61$ \( (T - 5)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 14 T - 5)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 144T^{2} + 4800 \) Copy content Toggle raw display
$73$ \( (T - 5)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 14 T - 5)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 144T^{2} + 1728 \) Copy content Toggle raw display
$89$ \( T^{4} - 300T^{2} + 7500 \) Copy content Toggle raw display
$97$ \( (T^{2} + 16 T + 40)^{2} \) Copy content Toggle raw display
show more
show less