Properties

Label 3249.2.a.bd.1.4
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,0,0,-4,0,0,0,0,0,-4,0,0,4,0,0,0,0,0,-24,0,0,4,0,0,-28, 0,0,-28,0,0,0,0,0,-4,0,0,24,0,0,-4,0,0,-24,0,0,0,0,0,-4,0,0,-24,0,0,48, 0,0,20,0,0,-20,0,0,-28,0,0,-24,0,0,20,0,0,0,0,0,-28,0,0,48,0,0,-48,0,0, -48,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.27648.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 171)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.33441\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.33441 q^{2} +3.44949 q^{4} +1.04930 q^{5} -3.44949 q^{7} +3.38371 q^{8} +2.44949 q^{10} -5.71812 q^{11} -1.00000 q^{13} -8.05254 q^{14} +1.00000 q^{16} -2.09859 q^{17} +3.61953 q^{20} -13.3485 q^{22} -3.61953 q^{23} -3.89898 q^{25} -2.33441 q^{26} -11.8990 q^{28} +7.23907 q^{29} -9.44949 q^{31} -4.43300 q^{32} -4.89898 q^{34} -3.61953 q^{35} +3.89898 q^{37} +3.55051 q^{40} +9.33766 q^{41} +6.34847 q^{43} -19.7246 q^{44} -8.44949 q^{46} -9.33766 q^{47} +4.89898 q^{49} -9.10183 q^{50} -3.44949 q^{52} -1.04930 q^{53} -6.00000 q^{55} -11.6721 q^{56} +16.8990 q^{58} -7.81671 q^{59} +5.00000 q^{61} -22.0590 q^{62} -12.3485 q^{64} -1.04930 q^{65} +0.348469 q^{67} -7.23907 q^{68} -8.44949 q^{70} -7.23907 q^{71} +5.00000 q^{73} +9.10183 q^{74} +19.7246 q^{77} +0.348469 q^{79} +1.04930 q^{80} +21.7980 q^{82} +11.4362 q^{83} -2.20204 q^{85} +14.8200 q^{86} -19.3485 q^{88} +5.24648 q^{89} +3.44949 q^{91} -12.4855 q^{92} -21.7980 q^{94} +3.10102 q^{97} +11.4362 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 4 q^{7} - 4 q^{13} + 4 q^{16} - 24 q^{22} + 4 q^{25} - 28 q^{28} - 28 q^{31} - 4 q^{37} + 24 q^{40} - 4 q^{43} - 24 q^{46} - 4 q^{52} - 24 q^{55} + 48 q^{58} + 20 q^{61} - 20 q^{64} - 28 q^{67}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.33441 1.65068 0.825340 0.564636i \(-0.190983\pi\)
0.825340 + 0.564636i \(0.190983\pi\)
\(3\) 0 0
\(4\) 3.44949 1.72474
\(5\) 1.04930 0.469259 0.234630 0.972085i \(-0.424612\pi\)
0.234630 + 0.972085i \(0.424612\pi\)
\(6\) 0 0
\(7\) −3.44949 −1.30378 −0.651892 0.758312i \(-0.726025\pi\)
−0.651892 + 0.758312i \(0.726025\pi\)
\(8\) 3.38371 1.19632
\(9\) 0 0
\(10\) 2.44949 0.774597
\(11\) −5.71812 −1.72408 −0.862040 0.506841i \(-0.830813\pi\)
−0.862040 + 0.506841i \(0.830813\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) −8.05254 −2.15213
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.09859 −0.508983 −0.254491 0.967075i \(-0.581908\pi\)
−0.254491 + 0.967075i \(0.581908\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 3.61953 0.809352
\(21\) 0 0
\(22\) −13.3485 −2.84590
\(23\) −3.61953 −0.754725 −0.377362 0.926066i \(-0.623169\pi\)
−0.377362 + 0.926066i \(0.623169\pi\)
\(24\) 0 0
\(25\) −3.89898 −0.779796
\(26\) −2.33441 −0.457816
\(27\) 0 0
\(28\) −11.8990 −2.24870
\(29\) 7.23907 1.34426 0.672130 0.740433i \(-0.265379\pi\)
0.672130 + 0.740433i \(0.265379\pi\)
\(30\) 0 0
\(31\) −9.44949 −1.69718 −0.848589 0.529052i \(-0.822548\pi\)
−0.848589 + 0.529052i \(0.822548\pi\)
\(32\) −4.43300 −0.783652
\(33\) 0 0
\(34\) −4.89898 −0.840168
\(35\) −3.61953 −0.611813
\(36\) 0 0
\(37\) 3.89898 0.640988 0.320494 0.947250i \(-0.396151\pi\)
0.320494 + 0.947250i \(0.396151\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 3.55051 0.561385
\(41\) 9.33766 1.45830 0.729149 0.684356i \(-0.239916\pi\)
0.729149 + 0.684356i \(0.239916\pi\)
\(42\) 0 0
\(43\) 6.34847 0.968132 0.484066 0.875031i \(-0.339159\pi\)
0.484066 + 0.875031i \(0.339159\pi\)
\(44\) −19.7246 −2.97360
\(45\) 0 0
\(46\) −8.44949 −1.24581
\(47\) −9.33766 −1.36204 −0.681019 0.732266i \(-0.738463\pi\)
−0.681019 + 0.732266i \(0.738463\pi\)
\(48\) 0 0
\(49\) 4.89898 0.699854
\(50\) −9.10183 −1.28719
\(51\) 0 0
\(52\) −3.44949 −0.478358
\(53\) −1.04930 −0.144132 −0.0720659 0.997400i \(-0.522959\pi\)
−0.0720659 + 0.997400i \(0.522959\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) −11.6721 −1.55975
\(57\) 0 0
\(58\) 16.8990 2.21894
\(59\) −7.81671 −1.01765 −0.508825 0.860870i \(-0.669920\pi\)
−0.508825 + 0.860870i \(0.669920\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) −22.0590 −2.80150
\(63\) 0 0
\(64\) −12.3485 −1.54356
\(65\) −1.04930 −0.130149
\(66\) 0 0
\(67\) 0.348469 0.0425723 0.0212861 0.999773i \(-0.493224\pi\)
0.0212861 + 0.999773i \(0.493224\pi\)
\(68\) −7.23907 −0.877866
\(69\) 0 0
\(70\) −8.44949 −1.00991
\(71\) −7.23907 −0.859119 −0.429560 0.903039i \(-0.641331\pi\)
−0.429560 + 0.903039i \(0.641331\pi\)
\(72\) 0 0
\(73\) 5.00000 0.585206 0.292603 0.956234i \(-0.405479\pi\)
0.292603 + 0.956234i \(0.405479\pi\)
\(74\) 9.10183 1.05807
\(75\) 0 0
\(76\) 0 0
\(77\) 19.7246 2.24783
\(78\) 0 0
\(79\) 0.348469 0.0392059 0.0196029 0.999808i \(-0.493760\pi\)
0.0196029 + 0.999808i \(0.493760\pi\)
\(80\) 1.04930 0.117315
\(81\) 0 0
\(82\) 21.7980 2.40718
\(83\) 11.4362 1.25529 0.627646 0.778499i \(-0.284019\pi\)
0.627646 + 0.778499i \(0.284019\pi\)
\(84\) 0 0
\(85\) −2.20204 −0.238845
\(86\) 14.8200 1.59808
\(87\) 0 0
\(88\) −19.3485 −2.06255
\(89\) 5.24648 0.556125 0.278063 0.960563i \(-0.410308\pi\)
0.278063 + 0.960563i \(0.410308\pi\)
\(90\) 0 0
\(91\) 3.44949 0.361605
\(92\) −12.4855 −1.30171
\(93\) 0 0
\(94\) −21.7980 −2.24829
\(95\) 0 0
\(96\) 0 0
\(97\) 3.10102 0.314861 0.157430 0.987530i \(-0.449679\pi\)
0.157430 + 0.987530i \(0.449679\pi\)
\(98\) 11.4362 1.15524
\(99\) 0 0
\(100\) −13.4495 −1.34495
\(101\) 2.09859 0.208818 0.104409 0.994534i \(-0.466705\pi\)
0.104409 + 0.994534i \(0.466705\pi\)
\(102\) 0 0
\(103\) −3.44949 −0.339888 −0.169944 0.985454i \(-0.554359\pi\)
−0.169944 + 0.985454i \(0.554359\pi\)
\(104\) −3.38371 −0.331800
\(105\) 0 0
\(106\) −2.44949 −0.237915
\(107\) −16.5767 −1.60253 −0.801266 0.598308i \(-0.795840\pi\)
−0.801266 + 0.598308i \(0.795840\pi\)
\(108\) 0 0
\(109\) −8.89898 −0.852368 −0.426184 0.904637i \(-0.640142\pi\)
−0.426184 + 0.904637i \(0.640142\pi\)
\(110\) −14.0065 −1.33547
\(111\) 0 0
\(112\) −3.44949 −0.325946
\(113\) 8.28836 0.779703 0.389852 0.920878i \(-0.372526\pi\)
0.389852 + 0.920878i \(0.372526\pi\)
\(114\) 0 0
\(115\) −3.79796 −0.354162
\(116\) 24.9711 2.31851
\(117\) 0 0
\(118\) −18.2474 −1.67981
\(119\) 7.23907 0.663604
\(120\) 0 0
\(121\) 21.6969 1.97245
\(122\) 11.6721 1.05674
\(123\) 0 0
\(124\) −32.5959 −2.92720
\(125\) −9.33766 −0.835185
\(126\) 0 0
\(127\) 5.79796 0.514486 0.257243 0.966347i \(-0.417186\pi\)
0.257243 + 0.966347i \(0.417186\pi\)
\(128\) −19.9604 −1.76427
\(129\) 0 0
\(130\) −2.44949 −0.214834
\(131\) 15.6334 1.36590 0.682949 0.730466i \(-0.260697\pi\)
0.682949 + 0.730466i \(0.260697\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.813472 0.0702732
\(135\) 0 0
\(136\) −7.10102 −0.608907
\(137\) −15.6334 −1.33565 −0.667827 0.744317i \(-0.732775\pi\)
−0.667827 + 0.744317i \(0.732775\pi\)
\(138\) 0 0
\(139\) −2.34847 −0.199195 −0.0995973 0.995028i \(-0.531755\pi\)
−0.0995973 + 0.995028i \(0.531755\pi\)
\(140\) −12.4855 −1.05522
\(141\) 0 0
\(142\) −16.8990 −1.41813
\(143\) 5.71812 0.478174
\(144\) 0 0
\(145\) 7.59592 0.630807
\(146\) 11.6721 0.965987
\(147\) 0 0
\(148\) 13.4495 1.10554
\(149\) 12.4855 1.02286 0.511428 0.859326i \(-0.329117\pi\)
0.511428 + 0.859326i \(0.329117\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 46.0454 3.71044
\(155\) −9.91530 −0.796416
\(156\) 0 0
\(157\) −15.6969 −1.25275 −0.626376 0.779521i \(-0.715463\pi\)
−0.626376 + 0.779521i \(0.715463\pi\)
\(158\) 0.813472 0.0647163
\(159\) 0 0
\(160\) −4.65153 −0.367736
\(161\) 12.4855 0.983999
\(162\) 0 0
\(163\) −9.44949 −0.740141 −0.370071 0.929004i \(-0.620667\pi\)
−0.370071 + 0.929004i \(0.620667\pi\)
\(164\) 32.2102 2.51519
\(165\) 0 0
\(166\) 26.6969 2.07208
\(167\) 19.2530 1.48984 0.744919 0.667154i \(-0.232488\pi\)
0.744919 + 0.667154i \(0.232488\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) −5.14048 −0.394257
\(171\) 0 0
\(172\) 21.8990 1.66978
\(173\) −7.23907 −0.550376 −0.275188 0.961390i \(-0.588740\pi\)
−0.275188 + 0.961390i \(0.588740\pi\)
\(174\) 0 0
\(175\) 13.4495 1.01669
\(176\) −5.71812 −0.431020
\(177\) 0 0
\(178\) 12.2474 0.917985
\(179\) −0.577648 −0.0431754 −0.0215877 0.999767i \(-0.506872\pi\)
−0.0215877 + 0.999767i \(0.506872\pi\)
\(180\) 0 0
\(181\) −20.8990 −1.55341 −0.776704 0.629865i \(-0.783110\pi\)
−0.776704 + 0.629865i \(0.783110\pi\)
\(182\) 8.05254 0.596894
\(183\) 0 0
\(184\) −12.2474 −0.902894
\(185\) 4.09118 0.300790
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) −32.2102 −2.34917
\(189\) 0 0
\(190\) 0 0
\(191\) −5.71812 −0.413749 −0.206874 0.978367i \(-0.566329\pi\)
−0.206874 + 0.978367i \(0.566329\pi\)
\(192\) 0 0
\(193\) 19.6969 1.41782 0.708908 0.705301i \(-0.249188\pi\)
0.708908 + 0.705301i \(0.249188\pi\)
\(194\) 7.23907 0.519735
\(195\) 0 0
\(196\) 16.8990 1.20707
\(197\) −14.5841 −1.03908 −0.519538 0.854447i \(-0.673896\pi\)
−0.519538 + 0.854447i \(0.673896\pi\)
\(198\) 0 0
\(199\) 0.348469 0.0247023 0.0123512 0.999924i \(-0.496068\pi\)
0.0123512 + 0.999924i \(0.496068\pi\)
\(200\) −13.1930 −0.932887
\(201\) 0 0
\(202\) 4.89898 0.344691
\(203\) −24.9711 −1.75263
\(204\) 0 0
\(205\) 9.79796 0.684319
\(206\) −8.05254 −0.561047
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) 0 0
\(211\) −14.3485 −0.987789 −0.493895 0.869522i \(-0.664427\pi\)
−0.493895 + 0.869522i \(0.664427\pi\)
\(212\) −3.61953 −0.248591
\(213\) 0 0
\(214\) −38.6969 −2.64527
\(215\) 6.66142 0.454305
\(216\) 0 0
\(217\) 32.5959 2.21276
\(218\) −20.7739 −1.40699
\(219\) 0 0
\(220\) −20.6969 −1.39539
\(221\) 2.09859 0.141166
\(222\) 0 0
\(223\) 0.348469 0.0233352 0.0116676 0.999932i \(-0.496286\pi\)
0.0116676 + 0.999932i \(0.496286\pi\)
\(224\) 15.2916 1.02171
\(225\) 0 0
\(226\) 19.3485 1.28704
\(227\) 10.8586 0.720711 0.360355 0.932815i \(-0.382655\pi\)
0.360355 + 0.932815i \(0.382655\pi\)
\(228\) 0 0
\(229\) −10.7980 −0.713549 −0.356775 0.934190i \(-0.616124\pi\)
−0.356775 + 0.934190i \(0.616124\pi\)
\(230\) −8.86601 −0.584607
\(231\) 0 0
\(232\) 24.4949 1.60817
\(233\) 20.7739 1.36094 0.680472 0.732774i \(-0.261775\pi\)
0.680472 + 0.732774i \(0.261775\pi\)
\(234\) 0 0
\(235\) −9.79796 −0.639148
\(236\) −26.9637 −1.75519
\(237\) 0 0
\(238\) 16.8990 1.09540
\(239\) 10.8586 0.702384 0.351192 0.936303i \(-0.385776\pi\)
0.351192 + 0.936303i \(0.385776\pi\)
\(240\) 0 0
\(241\) −19.0000 −1.22390 −0.611949 0.790897i \(-0.709614\pi\)
−0.611949 + 0.790897i \(0.709614\pi\)
\(242\) 50.6496 3.25588
\(243\) 0 0
\(244\) 17.2474 1.10415
\(245\) 5.14048 0.328413
\(246\) 0 0
\(247\) 0 0
\(248\) −31.9743 −2.03037
\(249\) 0 0
\(250\) −21.7980 −1.37862
\(251\) −14.4781 −0.913852 −0.456926 0.889505i \(-0.651050\pi\)
−0.456926 + 0.889505i \(0.651050\pi\)
\(252\) 0 0
\(253\) 20.6969 1.30121
\(254\) 13.5348 0.849251
\(255\) 0 0
\(256\) −21.8990 −1.36869
\(257\) −12.4855 −0.778827 −0.389413 0.921063i \(-0.627322\pi\)
−0.389413 + 0.921063i \(0.627322\pi\)
\(258\) 0 0
\(259\) −13.4495 −0.835711
\(260\) −3.61953 −0.224474
\(261\) 0 0
\(262\) 36.4949 2.25466
\(263\) 25.9144 1.59795 0.798975 0.601365i \(-0.205376\pi\)
0.798975 + 0.601365i \(0.205376\pi\)
\(264\) 0 0
\(265\) −1.10102 −0.0676352
\(266\) 0 0
\(267\) 0 0
\(268\) 1.20204 0.0734263
\(269\) −15.5274 −0.946724 −0.473362 0.880868i \(-0.656960\pi\)
−0.473362 + 0.880868i \(0.656960\pi\)
\(270\) 0 0
\(271\) 17.7980 1.08115 0.540575 0.841296i \(-0.318207\pi\)
0.540575 + 0.841296i \(0.318207\pi\)
\(272\) −2.09859 −0.127246
\(273\) 0 0
\(274\) −36.4949 −2.20474
\(275\) 22.2948 1.34443
\(276\) 0 0
\(277\) −18.6969 −1.12339 −0.561695 0.827344i \(-0.689851\pi\)
−0.561695 + 0.827344i \(0.689851\pi\)
\(278\) −5.48230 −0.328807
\(279\) 0 0
\(280\) −12.2474 −0.731925
\(281\) −12.4855 −0.744825 −0.372413 0.928067i \(-0.621469\pi\)
−0.372413 + 0.928067i \(0.621469\pi\)
\(282\) 0 0
\(283\) −6.20204 −0.368673 −0.184337 0.982863i \(-0.559014\pi\)
−0.184337 + 0.982863i \(0.559014\pi\)
\(284\) −24.9711 −1.48176
\(285\) 0 0
\(286\) 13.3485 0.789312
\(287\) −32.2102 −1.90131
\(288\) 0 0
\(289\) −12.5959 −0.740936
\(290\) 17.7320 1.04126
\(291\) 0 0
\(292\) 17.2474 1.00933
\(293\) −10.2810 −0.600620 −0.300310 0.953842i \(-0.597090\pi\)
−0.300310 + 0.953842i \(0.597090\pi\)
\(294\) 0 0
\(295\) −8.20204 −0.477541
\(296\) 13.1930 0.766828
\(297\) 0 0
\(298\) 29.1464 1.68841
\(299\) 3.61953 0.209323
\(300\) 0 0
\(301\) −21.8990 −1.26224
\(302\) −9.33766 −0.537322
\(303\) 0 0
\(304\) 0 0
\(305\) 5.24648 0.300412
\(306\) 0 0
\(307\) −29.5959 −1.68913 −0.844564 0.535454i \(-0.820140\pi\)
−0.844564 + 0.535454i \(0.820140\pi\)
\(308\) 68.0398 3.87693
\(309\) 0 0
\(310\) −23.1464 −1.31463
\(311\) 23.4501 1.32974 0.664868 0.746961i \(-0.268488\pi\)
0.664868 + 0.746961i \(0.268488\pi\)
\(312\) 0 0
\(313\) 3.10102 0.175280 0.0876400 0.996152i \(-0.472067\pi\)
0.0876400 + 0.996152i \(0.472067\pi\)
\(314\) −36.6432 −2.06789
\(315\) 0 0
\(316\) 1.20204 0.0676201
\(317\) 10.3870 0.583389 0.291695 0.956511i \(-0.405781\pi\)
0.291695 + 0.956511i \(0.405781\pi\)
\(318\) 0 0
\(319\) −41.3939 −2.31761
\(320\) −12.9572 −0.724329
\(321\) 0 0
\(322\) 29.1464 1.62427
\(323\) 0 0
\(324\) 0 0
\(325\) 3.89898 0.216276
\(326\) −22.0590 −1.22174
\(327\) 0 0
\(328\) 31.5959 1.74459
\(329\) 32.2102 1.77580
\(330\) 0 0
\(331\) −3.44949 −0.189601 −0.0948006 0.995496i \(-0.530221\pi\)
−0.0948006 + 0.995496i \(0.530221\pi\)
\(332\) 39.4492 2.16506
\(333\) 0 0
\(334\) 44.9444 2.45925
\(335\) 0.365647 0.0199774
\(336\) 0 0
\(337\) 25.6969 1.39980 0.699901 0.714240i \(-0.253228\pi\)
0.699901 + 0.714240i \(0.253228\pi\)
\(338\) −28.0130 −1.52370
\(339\) 0 0
\(340\) −7.59592 −0.411946
\(341\) 54.0334 2.92607
\(342\) 0 0
\(343\) 7.24745 0.391325
\(344\) 21.4814 1.15820
\(345\) 0 0
\(346\) −16.8990 −0.908495
\(347\) 8.76001 0.470262 0.235131 0.971964i \(-0.424448\pi\)
0.235131 + 0.971964i \(0.424448\pi\)
\(348\) 0 0
\(349\) −16.7980 −0.899174 −0.449587 0.893237i \(-0.648429\pi\)
−0.449587 + 0.893237i \(0.648429\pi\)
\(350\) 31.3967 1.67822
\(351\) 0 0
\(352\) 25.3485 1.35108
\(353\) 19.7246 1.04984 0.524918 0.851153i \(-0.324096\pi\)
0.524918 + 0.851153i \(0.324096\pi\)
\(354\) 0 0
\(355\) −7.59592 −0.403149
\(356\) 18.0977 0.959174
\(357\) 0 0
\(358\) −1.34847 −0.0712688
\(359\) 14.4781 0.764127 0.382063 0.924136i \(-0.375214\pi\)
0.382063 + 0.924136i \(0.375214\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −48.7869 −2.56418
\(363\) 0 0
\(364\) 11.8990 0.623676
\(365\) 5.24648 0.274613
\(366\) 0 0
\(367\) −20.3485 −1.06218 −0.531091 0.847315i \(-0.678218\pi\)
−0.531091 + 0.847315i \(0.678218\pi\)
\(368\) −3.61953 −0.188681
\(369\) 0 0
\(370\) 9.55051 0.496507
\(371\) 3.61953 0.187917
\(372\) 0 0
\(373\) −30.6969 −1.58943 −0.794714 0.606985i \(-0.792379\pi\)
−0.794714 + 0.606985i \(0.792379\pi\)
\(374\) 28.0130 1.44852
\(375\) 0 0
\(376\) −31.5959 −1.62944
\(377\) −7.23907 −0.372831
\(378\) 0 0
\(379\) −3.44949 −0.177188 −0.0885942 0.996068i \(-0.528237\pi\)
−0.0885942 + 0.996068i \(0.528237\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −13.3485 −0.682967
\(383\) 9.91530 0.506648 0.253324 0.967381i \(-0.418476\pi\)
0.253324 + 0.967381i \(0.418476\pi\)
\(384\) 0 0
\(385\) 20.6969 1.05481
\(386\) 45.9808 2.34036
\(387\) 0 0
\(388\) 10.6969 0.543055
\(389\) −12.4855 −0.633042 −0.316521 0.948585i \(-0.602515\pi\)
−0.316521 + 0.948585i \(0.602515\pi\)
\(390\) 0 0
\(391\) 7.59592 0.384142
\(392\) 16.5767 0.837251
\(393\) 0 0
\(394\) −34.0454 −1.71518
\(395\) 0.365647 0.0183977
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) 0.813472 0.0407756
\(399\) 0 0
\(400\) −3.89898 −0.194949
\(401\) 7.34507 0.366795 0.183398 0.983039i \(-0.441290\pi\)
0.183398 + 0.983039i \(0.441290\pi\)
\(402\) 0 0
\(403\) 9.44949 0.470713
\(404\) 7.23907 0.360157
\(405\) 0 0
\(406\) −58.2929 −2.89303
\(407\) −22.2948 −1.10511
\(408\) 0 0
\(409\) 3.10102 0.153336 0.0766678 0.997057i \(-0.475572\pi\)
0.0766678 + 0.997057i \(0.475572\pi\)
\(410\) 22.8725 1.12959
\(411\) 0 0
\(412\) −11.8990 −0.586221
\(413\) 26.9637 1.32680
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 4.43300 0.217346
\(417\) 0 0
\(418\) 0 0
\(419\) −0.577648 −0.0282199 −0.0141100 0.999900i \(-0.504491\pi\)
−0.0141100 + 0.999900i \(0.504491\pi\)
\(420\) 0 0
\(421\) 3.10102 0.151134 0.0755672 0.997141i \(-0.475923\pi\)
0.0755672 + 0.997141i \(0.475923\pi\)
\(422\) −33.4953 −1.63052
\(423\) 0 0
\(424\) −3.55051 −0.172428
\(425\) 8.18236 0.396903
\(426\) 0 0
\(427\) −17.2474 −0.834663
\(428\) −57.1812 −2.76396
\(429\) 0 0
\(430\) 15.5505 0.749912
\(431\) −9.33766 −0.449779 −0.224890 0.974384i \(-0.572202\pi\)
−0.224890 + 0.974384i \(0.572202\pi\)
\(432\) 0 0
\(433\) −21.6969 −1.04269 −0.521344 0.853347i \(-0.674569\pi\)
−0.521344 + 0.853347i \(0.674569\pi\)
\(434\) 76.0924 3.65255
\(435\) 0 0
\(436\) −30.6969 −1.47012
\(437\) 0 0
\(438\) 0 0
\(439\) −38.3485 −1.83027 −0.915136 0.403145i \(-0.867917\pi\)
−0.915136 + 0.403145i \(0.867917\pi\)
\(440\) −20.3023 −0.967872
\(441\) 0 0
\(442\) 4.89898 0.233021
\(443\) 35.2520 1.67487 0.837437 0.546533i \(-0.184053\pi\)
0.837437 + 0.546533i \(0.184053\pi\)
\(444\) 0 0
\(445\) 5.50510 0.260967
\(446\) 0.813472 0.0385190
\(447\) 0 0
\(448\) 42.5959 2.01247
\(449\) −21.7172 −1.02490 −0.512449 0.858718i \(-0.671262\pi\)
−0.512449 + 0.858718i \(0.671262\pi\)
\(450\) 0 0
\(451\) −53.3939 −2.51422
\(452\) 28.5906 1.34479
\(453\) 0 0
\(454\) 25.3485 1.18966
\(455\) 3.61953 0.169686
\(456\) 0 0
\(457\) −20.1010 −0.940286 −0.470143 0.882590i \(-0.655798\pi\)
−0.470143 + 0.882590i \(0.655798\pi\)
\(458\) −25.2069 −1.17784
\(459\) 0 0
\(460\) −13.1010 −0.610838
\(461\) 17.6260 0.820926 0.410463 0.911877i \(-0.365367\pi\)
0.410463 + 0.911877i \(0.365367\pi\)
\(462\) 0 0
\(463\) −0.146428 −0.00680510 −0.00340255 0.999994i \(-0.501083\pi\)
−0.00340255 + 0.999994i \(0.501083\pi\)
\(464\) 7.23907 0.336065
\(465\) 0 0
\(466\) 48.4949 2.24648
\(467\) −5.14048 −0.237873 −0.118936 0.992902i \(-0.537948\pi\)
−0.118936 + 0.992902i \(0.537948\pi\)
\(468\) 0 0
\(469\) −1.20204 −0.0555051
\(470\) −22.8725 −1.05503
\(471\) 0 0
\(472\) −26.4495 −1.21744
\(473\) −36.3013 −1.66914
\(474\) 0 0
\(475\) 0 0
\(476\) 24.9711 1.14455
\(477\) 0 0
\(478\) 25.3485 1.15941
\(479\) 7.23907 0.330761 0.165381 0.986230i \(-0.447115\pi\)
0.165381 + 0.986230i \(0.447115\pi\)
\(480\) 0 0
\(481\) −3.89898 −0.177778
\(482\) −44.3539 −2.02026
\(483\) 0 0
\(484\) 74.8434 3.40197
\(485\) 3.25389 0.147751
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 16.9185 0.765867
\(489\) 0 0
\(490\) 12.0000 0.542105
\(491\) −19.8306 −0.894943 −0.447471 0.894298i \(-0.647675\pi\)
−0.447471 + 0.894298i \(0.647675\pi\)
\(492\) 0 0
\(493\) −15.1918 −0.684206
\(494\) 0 0
\(495\) 0 0
\(496\) −9.44949 −0.424295
\(497\) 24.9711 1.12011
\(498\) 0 0
\(499\) 27.6515 1.23785 0.618926 0.785449i \(-0.287568\pi\)
0.618926 + 0.785449i \(0.287568\pi\)
\(500\) −32.2102 −1.44048
\(501\) 0 0
\(502\) −33.7980 −1.50848
\(503\) −20.7739 −0.926263 −0.463131 0.886290i \(-0.653274\pi\)
−0.463131 + 0.886290i \(0.653274\pi\)
\(504\) 0 0
\(505\) 2.20204 0.0979895
\(506\) 48.3152 2.14787
\(507\) 0 0
\(508\) 20.0000 0.887357
\(509\) 31.2669 1.38588 0.692940 0.720996i \(-0.256315\pi\)
0.692940 + 0.720996i \(0.256315\pi\)
\(510\) 0 0
\(511\) −17.2474 −0.762982
\(512\) −11.2004 −0.494993
\(513\) 0 0
\(514\) −29.1464 −1.28559
\(515\) −3.61953 −0.159496
\(516\) 0 0
\(517\) 53.3939 2.34826
\(518\) −31.3967 −1.37949
\(519\) 0 0
\(520\) −3.55051 −0.155700
\(521\) 3.14789 0.137911 0.0689557 0.997620i \(-0.478033\pi\)
0.0689557 + 0.997620i \(0.478033\pi\)
\(522\) 0 0
\(523\) −20.3485 −0.889776 −0.444888 0.895586i \(-0.646757\pi\)
−0.444888 + 0.895586i \(0.646757\pi\)
\(524\) 53.9274 2.35583
\(525\) 0 0
\(526\) 60.4949 2.63770
\(527\) 19.8306 0.863835
\(528\) 0 0
\(529\) −9.89898 −0.430390
\(530\) −2.57024 −0.111644
\(531\) 0 0
\(532\) 0 0
\(533\) −9.33766 −0.404459
\(534\) 0 0
\(535\) −17.3939 −0.752003
\(536\) 1.17912 0.0509302
\(537\) 0 0
\(538\) −36.2474 −1.56274
\(539\) −28.0130 −1.20660
\(540\) 0 0
\(541\) −9.69694 −0.416904 −0.208452 0.978033i \(-0.566842\pi\)
−0.208452 + 0.978033i \(0.566842\pi\)
\(542\) 41.5478 1.78463
\(543\) 0 0
\(544\) 9.30306 0.398865
\(545\) −9.33766 −0.399981
\(546\) 0 0
\(547\) −17.6515 −0.754725 −0.377362 0.926066i \(-0.623169\pi\)
−0.377362 + 0.926066i \(0.623169\pi\)
\(548\) −53.9274 −2.30366
\(549\) 0 0
\(550\) 52.0454 2.21922
\(551\) 0 0
\(552\) 0 0
\(553\) −1.20204 −0.0511160
\(554\) −43.6464 −1.85436
\(555\) 0 0
\(556\) −8.10102 −0.343560
\(557\) −3.04189 −0.128889 −0.0644444 0.997921i \(-0.520528\pi\)
−0.0644444 + 0.997921i \(0.520528\pi\)
\(558\) 0 0
\(559\) −6.34847 −0.268512
\(560\) −3.61953 −0.152953
\(561\) 0 0
\(562\) −29.1464 −1.22947
\(563\) 6.29577 0.265335 0.132668 0.991161i \(-0.457646\pi\)
0.132668 + 0.991161i \(0.457646\pi\)
\(564\) 0 0
\(565\) 8.69694 0.365883
\(566\) −14.4781 −0.608561
\(567\) 0 0
\(568\) −24.4949 −1.02778
\(569\) −28.0130 −1.17436 −0.587182 0.809455i \(-0.699763\pi\)
−0.587182 + 0.809455i \(0.699763\pi\)
\(570\) 0 0
\(571\) 11.2474 0.470691 0.235346 0.971912i \(-0.424378\pi\)
0.235346 + 0.971912i \(0.424378\pi\)
\(572\) 19.7246 0.824727
\(573\) 0 0
\(574\) −75.1918 −3.13845
\(575\) 14.1125 0.588531
\(576\) 0 0
\(577\) 22.6969 0.944886 0.472443 0.881361i \(-0.343372\pi\)
0.472443 + 0.881361i \(0.343372\pi\)
\(578\) −29.4041 −1.22305
\(579\) 0 0
\(580\) 26.2020 1.08798
\(581\) −39.4492 −1.63663
\(582\) 0 0
\(583\) 6.00000 0.248495
\(584\) 16.9185 0.700094
\(585\) 0 0
\(586\) −24.0000 −0.991431
\(587\) −1.52094 −0.0627760 −0.0313880 0.999507i \(-0.509993\pi\)
−0.0313880 + 0.999507i \(0.509993\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −19.1470 −0.788268
\(591\) 0 0
\(592\) 3.89898 0.160247
\(593\) −23.9218 −0.982350 −0.491175 0.871061i \(-0.663432\pi\)
−0.491175 + 0.871061i \(0.663432\pi\)
\(594\) 0 0
\(595\) 7.59592 0.311402
\(596\) 43.0688 1.76416
\(597\) 0 0
\(598\) 8.44949 0.345525
\(599\) 25.5487 1.04389 0.521946 0.852978i \(-0.325206\pi\)
0.521946 + 0.852978i \(0.325206\pi\)
\(600\) 0 0
\(601\) 21.8990 0.893278 0.446639 0.894714i \(-0.352621\pi\)
0.446639 + 0.894714i \(0.352621\pi\)
\(602\) −51.1213 −2.08355
\(603\) 0 0
\(604\) −13.7980 −0.561431
\(605\) 22.7665 0.925590
\(606\) 0 0
\(607\) 7.94439 0.322453 0.161226 0.986917i \(-0.448455\pi\)
0.161226 + 0.986917i \(0.448455\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 12.2474 0.495885
\(611\) 9.33766 0.377761
\(612\) 0 0
\(613\) 3.10102 0.125249 0.0626245 0.998037i \(-0.480053\pi\)
0.0626245 + 0.998037i \(0.480053\pi\)
\(614\) −69.0891 −2.78821
\(615\) 0 0
\(616\) 66.7423 2.68913
\(617\) −7.34507 −0.295701 −0.147851 0.989010i \(-0.547235\pi\)
−0.147851 + 0.989010i \(0.547235\pi\)
\(618\) 0 0
\(619\) −0.752551 −0.0302476 −0.0151238 0.999886i \(-0.504814\pi\)
−0.0151238 + 0.999886i \(0.504814\pi\)
\(620\) −34.2027 −1.37362
\(621\) 0 0
\(622\) 54.7423 2.19497
\(623\) −18.0977 −0.725068
\(624\) 0 0
\(625\) 9.69694 0.387878
\(626\) 7.23907 0.289331
\(627\) 0 0
\(628\) −54.1464 −2.16068
\(629\) −8.18236 −0.326252
\(630\) 0 0
\(631\) 6.34847 0.252729 0.126364 0.991984i \(-0.459669\pi\)
0.126364 + 0.991984i \(0.459669\pi\)
\(632\) 1.17912 0.0469028
\(633\) 0 0
\(634\) 24.2474 0.962989
\(635\) 6.08377 0.241427
\(636\) 0 0
\(637\) −4.89898 −0.194105
\(638\) −96.6305 −3.82564
\(639\) 0 0
\(640\) −20.9444 −0.827900
\(641\) −46.6883 −1.84408 −0.922038 0.387099i \(-0.873477\pi\)
−0.922038 + 0.387099i \(0.873477\pi\)
\(642\) 0 0
\(643\) 3.65153 0.144002 0.0720012 0.997405i \(-0.477061\pi\)
0.0720012 + 0.997405i \(0.477061\pi\)
\(644\) 43.0688 1.69715
\(645\) 0 0
\(646\) 0 0
\(647\) 16.5767 0.651698 0.325849 0.945422i \(-0.394350\pi\)
0.325849 + 0.945422i \(0.394350\pi\)
\(648\) 0 0
\(649\) 44.6969 1.75451
\(650\) 9.10183 0.357003
\(651\) 0 0
\(652\) −32.5959 −1.27655
\(653\) 39.4492 1.54377 0.771884 0.635764i \(-0.219315\pi\)
0.771884 + 0.635764i \(0.219315\pi\)
\(654\) 0 0
\(655\) 16.4041 0.640961
\(656\) 9.33766 0.364574
\(657\) 0 0
\(658\) 75.1918 2.93128
\(659\) 11.8019 0.459737 0.229868 0.973222i \(-0.426170\pi\)
0.229868 + 0.973222i \(0.426170\pi\)
\(660\) 0 0
\(661\) 41.1918 1.60218 0.801088 0.598546i \(-0.204255\pi\)
0.801088 + 0.598546i \(0.204255\pi\)
\(662\) −8.05254 −0.312971
\(663\) 0 0
\(664\) 38.6969 1.50173
\(665\) 0 0
\(666\) 0 0
\(667\) −26.2020 −1.01455
\(668\) 66.4129 2.56959
\(669\) 0 0
\(670\) 0.853572 0.0329764
\(671\) −28.5906 −1.10373
\(672\) 0 0
\(673\) 21.8990 0.844144 0.422072 0.906562i \(-0.361303\pi\)
0.422072 + 0.906562i \(0.361303\pi\)
\(674\) 59.9873 2.31062
\(675\) 0 0
\(676\) −41.3939 −1.59207
\(677\) 22.8725 0.879061 0.439531 0.898228i \(-0.355145\pi\)
0.439531 + 0.898228i \(0.355145\pi\)
\(678\) 0 0
\(679\) −10.6969 −0.410511
\(680\) −7.45107 −0.285735
\(681\) 0 0
\(682\) 126.136 4.83001
\(683\) −0.577648 −0.0221031 −0.0110515 0.999939i \(-0.503518\pi\)
−0.0110515 + 0.999939i \(0.503518\pi\)
\(684\) 0 0
\(685\) −16.4041 −0.626768
\(686\) 16.9185 0.645953
\(687\) 0 0
\(688\) 6.34847 0.242033
\(689\) 1.04930 0.0399750
\(690\) 0 0
\(691\) 25.3939 0.966029 0.483014 0.875612i \(-0.339542\pi\)
0.483014 + 0.875612i \(0.339542\pi\)
\(692\) −24.9711 −0.949258
\(693\) 0 0
\(694\) 20.4495 0.776252
\(695\) −2.46424 −0.0934739
\(696\) 0 0
\(697\) −19.5959 −0.742248
\(698\) −39.2134 −1.48425
\(699\) 0 0
\(700\) 46.3939 1.75352
\(701\) 30.2176 1.14130 0.570651 0.821193i \(-0.306691\pi\)
0.570651 + 0.821193i \(0.306691\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 70.6101 2.66122
\(705\) 0 0
\(706\) 46.0454 1.73294
\(707\) −7.23907 −0.272253
\(708\) 0 0
\(709\) 28.3939 1.06635 0.533177 0.846004i \(-0.320998\pi\)
0.533177 + 0.846004i \(0.320998\pi\)
\(710\) −17.7320 −0.665471
\(711\) 0 0
\(712\) 17.7526 0.665305
\(713\) 34.2027 1.28090
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) −1.99259 −0.0744666
\(717\) 0 0
\(718\) 33.7980 1.26133
\(719\) −47.2659 −1.76272 −0.881361 0.472444i \(-0.843372\pi\)
−0.881361 + 0.472444i \(0.843372\pi\)
\(720\) 0 0
\(721\) 11.8990 0.443141
\(722\) 0 0
\(723\) 0 0
\(724\) −72.0908 −2.67923
\(725\) −28.2250 −1.04825
\(726\) 0 0
\(727\) −41.0454 −1.52229 −0.761145 0.648582i \(-0.775362\pi\)
−0.761145 + 0.648582i \(0.775362\pi\)
\(728\) 11.6721 0.432596
\(729\) 0 0
\(730\) 12.2474 0.453298
\(731\) −13.3228 −0.492763
\(732\) 0 0
\(733\) 5.30306 0.195873 0.0979365 0.995193i \(-0.468776\pi\)
0.0979365 + 0.995193i \(0.468776\pi\)
\(734\) −47.5018 −1.75332
\(735\) 0 0
\(736\) 16.0454 0.591442
\(737\) −1.99259 −0.0733980
\(738\) 0 0
\(739\) −29.0454 −1.06845 −0.534226 0.845342i \(-0.679397\pi\)
−0.534226 + 0.845342i \(0.679397\pi\)
\(740\) 14.1125 0.518785
\(741\) 0 0
\(742\) 8.44949 0.310191
\(743\) 31.6325 1.16048 0.580242 0.814444i \(-0.302958\pi\)
0.580242 + 0.814444i \(0.302958\pi\)
\(744\) 0 0
\(745\) 13.1010 0.479984
\(746\) −71.6594 −2.62364
\(747\) 0 0
\(748\) 41.3939 1.51351
\(749\) 57.1812 2.08936
\(750\) 0 0
\(751\) −35.0454 −1.27883 −0.639413 0.768864i \(-0.720822\pi\)
−0.639413 + 0.768864i \(0.720822\pi\)
\(752\) −9.33766 −0.340509
\(753\) 0 0
\(754\) −16.8990 −0.615425
\(755\) −4.19718 −0.152751
\(756\) 0 0
\(757\) 16.3939 0.595846 0.297923 0.954590i \(-0.403706\pi\)
0.297923 + 0.954590i \(0.403706\pi\)
\(758\) −8.05254 −0.292481
\(759\) 0 0
\(760\) 0 0
\(761\) 1.99259 0.0722313 0.0361157 0.999348i \(-0.488502\pi\)
0.0361157 + 0.999348i \(0.488502\pi\)
\(762\) 0 0
\(763\) 30.6969 1.11130
\(764\) −19.7246 −0.713611
\(765\) 0 0
\(766\) 23.1464 0.836314
\(767\) 7.81671 0.282245
\(768\) 0 0
\(769\) 28.3939 1.02391 0.511955 0.859012i \(-0.328922\pi\)
0.511955 + 0.859012i \(0.328922\pi\)
\(770\) 48.3152 1.74116
\(771\) 0 0
\(772\) 67.9444 2.44537
\(773\) −9.33766 −0.335852 −0.167926 0.985800i \(-0.553707\pi\)
−0.167926 + 0.985800i \(0.553707\pi\)
\(774\) 0 0
\(775\) 36.8434 1.32345
\(776\) 10.4930 0.376675
\(777\) 0 0
\(778\) −29.1464 −1.04495
\(779\) 0 0
\(780\) 0 0
\(781\) 41.3939 1.48119
\(782\) 17.7320 0.634096
\(783\) 0 0
\(784\) 4.89898 0.174964
\(785\) −16.4707 −0.587865
\(786\) 0 0
\(787\) 47.2474 1.68419 0.842095 0.539329i \(-0.181322\pi\)
0.842095 + 0.539329i \(0.181322\pi\)
\(788\) −50.3078 −1.79214
\(789\) 0 0
\(790\) 0.853572 0.0303687
\(791\) −28.5906 −1.01657
\(792\) 0 0
\(793\) −5.00000 −0.177555
\(794\) −16.3409 −0.579917
\(795\) 0 0
\(796\) 1.20204 0.0426052
\(797\) −26.8577 −0.951348 −0.475674 0.879622i \(-0.657796\pi\)
−0.475674 + 0.879622i \(0.657796\pi\)
\(798\) 0 0
\(799\) 19.5959 0.693254
\(800\) 17.2842 0.611089
\(801\) 0 0
\(802\) 17.1464 0.605461
\(803\) −28.5906 −1.00894
\(804\) 0 0
\(805\) 13.1010 0.461750
\(806\) 22.0590 0.776996
\(807\) 0 0
\(808\) 7.10102 0.249813
\(809\) 37.4566 1.31690 0.658452 0.752622i \(-0.271211\pi\)
0.658452 + 0.752622i \(0.271211\pi\)
\(810\) 0 0
\(811\) 17.7980 0.624971 0.312485 0.949923i \(-0.398838\pi\)
0.312485 + 0.949923i \(0.398838\pi\)
\(812\) −86.1375 −3.02283
\(813\) 0 0
\(814\) −52.0454 −1.82419
\(815\) −9.91530 −0.347318
\(816\) 0 0
\(817\) 0 0
\(818\) 7.23907 0.253108
\(819\) 0 0
\(820\) 33.7980 1.18028
\(821\) 30.1116 1.05090 0.525450 0.850824i \(-0.323897\pi\)
0.525450 + 0.850824i \(0.323897\pi\)
\(822\) 0 0
\(823\) −30.2020 −1.05278 −0.526388 0.850244i \(-0.676454\pi\)
−0.526388 + 0.850244i \(0.676454\pi\)
\(824\) −11.6721 −0.406616
\(825\) 0 0
\(826\) 62.9444 2.19012
\(827\) −33.3654 −1.16023 −0.580115 0.814534i \(-0.696992\pi\)
−0.580115 + 0.814534i \(0.696992\pi\)
\(828\) 0 0
\(829\) −52.1918 −1.81270 −0.906349 0.422531i \(-0.861142\pi\)
−0.906349 + 0.422531i \(0.861142\pi\)
\(830\) 28.0130 0.972344
\(831\) 0 0
\(832\) 12.3485 0.428106
\(833\) −10.2810 −0.356214
\(834\) 0 0
\(835\) 20.2020 0.699120
\(836\) 0 0
\(837\) 0 0
\(838\) −1.34847 −0.0465821
\(839\) 11.0706 0.382200 0.191100 0.981571i \(-0.438795\pi\)
0.191100 + 0.981571i \(0.438795\pi\)
\(840\) 0 0
\(841\) 23.4041 0.807037
\(842\) 7.23907 0.249475
\(843\) 0 0
\(844\) −49.4949 −1.70368
\(845\) −12.5915 −0.433162
\(846\) 0 0
\(847\) −74.8434 −2.57165
\(848\) −1.04930 −0.0360329
\(849\) 0 0
\(850\) 19.1010 0.655160
\(851\) −14.1125 −0.483770
\(852\) 0 0
\(853\) −39.6969 −1.35920 −0.679599 0.733584i \(-0.737846\pi\)
−0.679599 + 0.733584i \(0.737846\pi\)
\(854\) −40.2627 −1.37776
\(855\) 0 0
\(856\) −56.0908 −1.91714
\(857\) −8.39436 −0.286746 −0.143373 0.989669i \(-0.545795\pi\)
−0.143373 + 0.989669i \(0.545795\pi\)
\(858\) 0 0
\(859\) −53.0454 −1.80989 −0.904943 0.425533i \(-0.860087\pi\)
−0.904943 + 0.425533i \(0.860087\pi\)
\(860\) 22.9785 0.783560
\(861\) 0 0
\(862\) −21.7980 −0.742441
\(863\) 17.7320 0.603605 0.301802 0.953370i \(-0.402412\pi\)
0.301802 + 0.953370i \(0.402412\pi\)
\(864\) 0 0
\(865\) −7.59592 −0.258269
\(866\) −50.6496 −1.72114
\(867\) 0 0
\(868\) 112.439 3.81644
\(869\) −1.99259 −0.0675940
\(870\) 0 0
\(871\) −0.348469 −0.0118074
\(872\) −30.1116 −1.01971
\(873\) 0 0
\(874\) 0 0
\(875\) 32.2102 1.08890
\(876\) 0 0
\(877\) −3.69694 −0.124837 −0.0624184 0.998050i \(-0.519881\pi\)
−0.0624184 + 0.998050i \(0.519881\pi\)
\(878\) −89.5212 −3.02119
\(879\) 0 0
\(880\) −6.00000 −0.202260
\(881\) −58.0185 −1.95469 −0.977347 0.211643i \(-0.932119\pi\)
−0.977347 + 0.211643i \(0.932119\pi\)
\(882\) 0 0
\(883\) 30.3485 1.02131 0.510654 0.859787i \(-0.329403\pi\)
0.510654 + 0.859787i \(0.329403\pi\)
\(884\) 7.23907 0.243476
\(885\) 0 0
\(886\) 82.2929 2.76468
\(887\) 48.4212 1.62583 0.812913 0.582385i \(-0.197881\pi\)
0.812913 + 0.582385i \(0.197881\pi\)
\(888\) 0 0
\(889\) −20.0000 −0.670778
\(890\) 12.8512 0.430773
\(891\) 0 0
\(892\) 1.20204 0.0402473
\(893\) 0 0
\(894\) 0 0
\(895\) −0.606123 −0.0202605
\(896\) 68.8533 2.30023
\(897\) 0 0
\(898\) −50.6969 −1.69178
\(899\) −68.4055 −2.28145
\(900\) 0 0
\(901\) 2.20204 0.0733606
\(902\) −124.643 −4.15017
\(903\) 0 0
\(904\) 28.0454 0.932776
\(905\) −21.9292 −0.728951
\(906\) 0 0
\(907\) 35.1918 1.16853 0.584263 0.811564i \(-0.301384\pi\)
0.584263 + 0.811564i \(0.301384\pi\)
\(908\) 37.4566 1.24304
\(909\) 0 0
\(910\) 8.44949 0.280098
\(911\) −17.7320 −0.587488 −0.293744 0.955884i \(-0.594901\pi\)
−0.293744 + 0.955884i \(0.594901\pi\)
\(912\) 0 0
\(913\) −65.3939 −2.16422
\(914\) −46.9241 −1.55211
\(915\) 0 0
\(916\) −37.2474 −1.23069
\(917\) −53.9274 −1.78084
\(918\) 0 0
\(919\) 29.2474 0.964784 0.482392 0.875955i \(-0.339768\pi\)
0.482392 + 0.875955i \(0.339768\pi\)
\(920\) −12.8512 −0.423691
\(921\) 0 0
\(922\) 41.1464 1.35509
\(923\) 7.23907 0.238277
\(924\) 0 0
\(925\) −15.2020 −0.499840
\(926\) −0.341824 −0.0112330
\(927\) 0 0
\(928\) −32.0908 −1.05343
\(929\) 55.9199 1.83467 0.917337 0.398112i \(-0.130334\pi\)
0.917337 + 0.398112i \(0.130334\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 71.6594 2.34728
\(933\) 0 0
\(934\) −12.0000 −0.392652
\(935\) 12.5915 0.411787
\(936\) 0 0
\(937\) −39.0908 −1.27704 −0.638521 0.769605i \(-0.720453\pi\)
−0.638521 + 0.769605i \(0.720453\pi\)
\(938\) −2.80606 −0.0916212
\(939\) 0 0
\(940\) −33.7980 −1.10237
\(941\) 6.08377 0.198325 0.0991626 0.995071i \(-0.468384\pi\)
0.0991626 + 0.995071i \(0.468384\pi\)
\(942\) 0 0
\(943\) −33.7980 −1.10061
\(944\) −7.81671 −0.254412
\(945\) 0 0
\(946\) −84.7423 −2.75521
\(947\) 38.5059 1.25127 0.625637 0.780114i \(-0.284839\pi\)
0.625637 + 0.780114i \(0.284839\pi\)
\(948\) 0 0
\(949\) −5.00000 −0.162307
\(950\) 0 0
\(951\) 0 0
\(952\) 24.4949 0.793884
\(953\) 22.7665 0.737479 0.368740 0.929533i \(-0.379789\pi\)
0.368740 + 0.929533i \(0.379789\pi\)
\(954\) 0 0
\(955\) −6.00000 −0.194155
\(956\) 37.4566 1.21143
\(957\) 0 0
\(958\) 16.8990 0.545981
\(959\) 53.9274 1.74140
\(960\) 0 0
\(961\) 58.2929 1.88041
\(962\) −9.10183 −0.293455
\(963\) 0 0
\(964\) −65.5403 −2.11091
\(965\) 20.6679 0.665323
\(966\) 0 0
\(967\) −20.3485 −0.654363 −0.327181 0.944962i \(-0.606099\pi\)
−0.327181 + 0.944962i \(0.606099\pi\)
\(968\) 73.4161 2.35968
\(969\) 0 0
\(970\) 7.59592 0.243890
\(971\) 19.6186 0.629591 0.314796 0.949160i \(-0.398064\pi\)
0.314796 + 0.949160i \(0.398064\pi\)
\(972\) 0 0
\(973\) 8.10102 0.259707
\(974\) 18.6753 0.598396
\(975\) 0 0
\(976\) 5.00000 0.160046
\(977\) −5.14048 −0.164458 −0.0822292 0.996613i \(-0.526204\pi\)
−0.0822292 + 0.996613i \(0.526204\pi\)
\(978\) 0 0
\(979\) −30.0000 −0.958804
\(980\) 17.7320 0.566429
\(981\) 0 0
\(982\) −46.2929 −1.47726
\(983\) −6.66142 −0.212466 −0.106233 0.994341i \(-0.533879\pi\)
−0.106233 + 0.994341i \(0.533879\pi\)
\(984\) 0 0
\(985\) −15.3031 −0.487596
\(986\) −35.4640 −1.12941
\(987\) 0 0
\(988\) 0 0
\(989\) −22.9785 −0.730674
\(990\) 0 0
\(991\) −2.95459 −0.0938557 −0.0469279 0.998898i \(-0.514943\pi\)
−0.0469279 + 0.998898i \(0.514943\pi\)
\(992\) 41.8896 1.33000
\(993\) 0 0
\(994\) 58.2929 1.84894
\(995\) 0.365647 0.0115918
\(996\) 0 0
\(997\) −45.0908 −1.42804 −0.714020 0.700125i \(-0.753128\pi\)
−0.714020 + 0.700125i \(0.753128\pi\)
\(998\) 64.5501 2.04330
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.bd.1.4 4
3.2 odd 2 inner 3249.2.a.bd.1.1 4
19.7 even 3 171.2.f.c.163.1 yes 8
19.11 even 3 171.2.f.c.64.1 8
19.18 odd 2 3249.2.a.be.1.1 4
57.11 odd 6 171.2.f.c.64.4 yes 8
57.26 odd 6 171.2.f.c.163.4 yes 8
57.56 even 2 3249.2.a.be.1.4 4
76.7 odd 6 2736.2.s.bb.1873.2 8
76.11 odd 6 2736.2.s.bb.577.2 8
228.11 even 6 2736.2.s.bb.577.3 8
228.83 even 6 2736.2.s.bb.1873.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.f.c.64.1 8 19.11 even 3
171.2.f.c.64.4 yes 8 57.11 odd 6
171.2.f.c.163.1 yes 8 19.7 even 3
171.2.f.c.163.4 yes 8 57.26 odd 6
2736.2.s.bb.577.2 8 76.11 odd 6
2736.2.s.bb.577.3 8 228.11 even 6
2736.2.s.bb.1873.2 8 76.7 odd 6
2736.2.s.bb.1873.3 8 228.83 even 6
3249.2.a.bd.1.1 4 3.2 odd 2 inner
3249.2.a.bd.1.4 4 1.1 even 1 trivial
3249.2.a.be.1.1 4 19.18 odd 2
3249.2.a.be.1.4 4 57.56 even 2