Properties

Label 3249.2.a.ba.1.4
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,-2,0,-2,0,0,0,-8,0,0,0,0,-14,8,0,0,-6,0,0,24,0,-14,20, 0,-6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,-24,6,0,0,-38,0,-22,0,0,0,0,0,-6,0,0, -20,0,0,-20,-20,0,8,0,0,0,-6,0,0,0,0,-24,-40,0,0,-6,0,0,12,0,0,4,0,6,0, 0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.90211\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.90211 q^{2} +1.61803 q^{4} -1.61803 q^{5} -1.61803 q^{7} -0.726543 q^{8} -3.07768 q^{10} +0.236068 q^{11} +4.97980 q^{13} -3.07768 q^{14} -4.61803 q^{16} -0.236068 q^{17} -2.61803 q^{20} +0.449028 q^{22} +8.23607 q^{23} -2.38197 q^{25} +9.47214 q^{26} -2.61803 q^{28} -8.50651 q^{29} -7.33094 q^{31} -7.33094 q^{32} -0.449028 q^{34} +2.61803 q^{35} -5.25731 q^{37} +1.17557 q^{40} +3.52671 q^{41} -8.23607 q^{43} +0.381966 q^{44} +15.6659 q^{46} -8.38197 q^{47} -4.38197 q^{49} -4.53077 q^{50} +8.05748 q^{52} -12.1392 q^{53} -0.381966 q^{55} +1.17557 q^{56} -16.1803 q^{58} +13.2088 q^{59} -2.76393 q^{61} -13.9443 q^{62} -4.70820 q^{64} -8.05748 q^{65} -8.95554 q^{67} -0.381966 q^{68} +4.97980 q^{70} -8.78402 q^{71} +0.708204 q^{73} -10.0000 q^{74} -0.381966 q^{77} +0.171513 q^{79} +7.47214 q^{80} +6.70820 q^{82} +9.94427 q^{83} +0.381966 q^{85} -15.6659 q^{86} -0.171513 q^{88} -0.898056 q^{89} -8.05748 q^{91} +13.3262 q^{92} -15.9434 q^{94} -12.3107 q^{97} -8.33499 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{5} - 2 q^{7} - 8 q^{11} - 14 q^{16} + 8 q^{17} - 6 q^{20} + 24 q^{23} - 14 q^{25} + 20 q^{26} - 6 q^{28} + 6 q^{35} - 24 q^{43} + 6 q^{44} - 38 q^{47} - 22 q^{49} - 6 q^{55} - 20 q^{58}+ \cdots + 22 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.90211 1.34500 0.672499 0.740098i \(-0.265221\pi\)
0.672499 + 0.740098i \(0.265221\pi\)
\(3\) 0 0
\(4\) 1.61803 0.809017
\(5\) −1.61803 −0.723607 −0.361803 0.932254i \(-0.617839\pi\)
−0.361803 + 0.932254i \(0.617839\pi\)
\(6\) 0 0
\(7\) −1.61803 −0.611559 −0.305780 0.952102i \(-0.598917\pi\)
−0.305780 + 0.952102i \(0.598917\pi\)
\(8\) −0.726543 −0.256872
\(9\) 0 0
\(10\) −3.07768 −0.973249
\(11\) 0.236068 0.0711772 0.0355886 0.999367i \(-0.488669\pi\)
0.0355886 + 0.999367i \(0.488669\pi\)
\(12\) 0 0
\(13\) 4.97980 1.38115 0.690574 0.723262i \(-0.257358\pi\)
0.690574 + 0.723262i \(0.257358\pi\)
\(14\) −3.07768 −0.822546
\(15\) 0 0
\(16\) −4.61803 −1.15451
\(17\) −0.236068 −0.0572549 −0.0286274 0.999590i \(-0.509114\pi\)
−0.0286274 + 0.999590i \(0.509114\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) −2.61803 −0.585410
\(21\) 0 0
\(22\) 0.449028 0.0957331
\(23\) 8.23607 1.71734 0.858669 0.512530i \(-0.171292\pi\)
0.858669 + 0.512530i \(0.171292\pi\)
\(24\) 0 0
\(25\) −2.38197 −0.476393
\(26\) 9.47214 1.85764
\(27\) 0 0
\(28\) −2.61803 −0.494762
\(29\) −8.50651 −1.57962 −0.789809 0.613352i \(-0.789821\pi\)
−0.789809 + 0.613352i \(0.789821\pi\)
\(30\) 0 0
\(31\) −7.33094 −1.31668 −0.658338 0.752723i \(-0.728740\pi\)
−0.658338 + 0.752723i \(0.728740\pi\)
\(32\) −7.33094 −1.29594
\(33\) 0 0
\(34\) −0.449028 −0.0770077
\(35\) 2.61803 0.442529
\(36\) 0 0
\(37\) −5.25731 −0.864297 −0.432148 0.901803i \(-0.642244\pi\)
−0.432148 + 0.901803i \(0.642244\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.17557 0.185874
\(41\) 3.52671 0.550780 0.275390 0.961333i \(-0.411193\pi\)
0.275390 + 0.961333i \(0.411193\pi\)
\(42\) 0 0
\(43\) −8.23607 −1.25599 −0.627994 0.778218i \(-0.716124\pi\)
−0.627994 + 0.778218i \(0.716124\pi\)
\(44\) 0.381966 0.0575835
\(45\) 0 0
\(46\) 15.6659 2.30982
\(47\) −8.38197 −1.22264 −0.611318 0.791385i \(-0.709360\pi\)
−0.611318 + 0.791385i \(0.709360\pi\)
\(48\) 0 0
\(49\) −4.38197 −0.625995
\(50\) −4.53077 −0.640747
\(51\) 0 0
\(52\) 8.05748 1.11737
\(53\) −12.1392 −1.66745 −0.833725 0.552180i \(-0.813796\pi\)
−0.833725 + 0.552180i \(0.813796\pi\)
\(54\) 0 0
\(55\) −0.381966 −0.0515043
\(56\) 1.17557 0.157092
\(57\) 0 0
\(58\) −16.1803 −2.12458
\(59\) 13.2088 1.71964 0.859819 0.510599i \(-0.170576\pi\)
0.859819 + 0.510599i \(0.170576\pi\)
\(60\) 0 0
\(61\) −2.76393 −0.353885 −0.176943 0.984221i \(-0.556621\pi\)
−0.176943 + 0.984221i \(0.556621\pi\)
\(62\) −13.9443 −1.77092
\(63\) 0 0
\(64\) −4.70820 −0.588525
\(65\) −8.05748 −0.999407
\(66\) 0 0
\(67\) −8.95554 −1.09409 −0.547046 0.837102i \(-0.684248\pi\)
−0.547046 + 0.837102i \(0.684248\pi\)
\(68\) −0.381966 −0.0463202
\(69\) 0 0
\(70\) 4.97980 0.595200
\(71\) −8.78402 −1.04247 −0.521236 0.853413i \(-0.674529\pi\)
−0.521236 + 0.853413i \(0.674529\pi\)
\(72\) 0 0
\(73\) 0.708204 0.0828890 0.0414445 0.999141i \(-0.486804\pi\)
0.0414445 + 0.999141i \(0.486804\pi\)
\(74\) −10.0000 −1.16248
\(75\) 0 0
\(76\) 0 0
\(77\) −0.381966 −0.0435291
\(78\) 0 0
\(79\) 0.171513 0.0192968 0.00964838 0.999953i \(-0.496929\pi\)
0.00964838 + 0.999953i \(0.496929\pi\)
\(80\) 7.47214 0.835410
\(81\) 0 0
\(82\) 6.70820 0.740797
\(83\) 9.94427 1.09153 0.545763 0.837940i \(-0.316240\pi\)
0.545763 + 0.837940i \(0.316240\pi\)
\(84\) 0 0
\(85\) 0.381966 0.0414300
\(86\) −15.6659 −1.68930
\(87\) 0 0
\(88\) −0.171513 −0.0182834
\(89\) −0.898056 −0.0951937 −0.0475969 0.998867i \(-0.515156\pi\)
−0.0475969 + 0.998867i \(0.515156\pi\)
\(90\) 0 0
\(91\) −8.05748 −0.844653
\(92\) 13.3262 1.38936
\(93\) 0 0
\(94\) −15.9434 −1.64444
\(95\) 0 0
\(96\) 0 0
\(97\) −12.3107 −1.24997 −0.624983 0.780638i \(-0.714894\pi\)
−0.624983 + 0.780638i \(0.714894\pi\)
\(98\) −8.33499 −0.841962
\(99\) 0 0
\(100\) −3.85410 −0.385410
\(101\) −13.6525 −1.35847 −0.679236 0.733920i \(-0.737689\pi\)
−0.679236 + 0.733920i \(0.737689\pi\)
\(102\) 0 0
\(103\) −5.15131 −0.507574 −0.253787 0.967260i \(-0.581676\pi\)
−0.253787 + 0.967260i \(0.581676\pi\)
\(104\) −3.61803 −0.354777
\(105\) 0 0
\(106\) −23.0902 −2.24272
\(107\) −1.62460 −0.157056 −0.0785279 0.996912i \(-0.525022\pi\)
−0.0785279 + 0.996912i \(0.525022\pi\)
\(108\) 0 0
\(109\) 15.3884 1.47394 0.736972 0.675924i \(-0.236255\pi\)
0.736972 + 0.675924i \(0.236255\pi\)
\(110\) −0.726543 −0.0692731
\(111\) 0 0
\(112\) 7.47214 0.706050
\(113\) 12.7598 1.20034 0.600169 0.799873i \(-0.295100\pi\)
0.600169 + 0.799873i \(0.295100\pi\)
\(114\) 0 0
\(115\) −13.3262 −1.24268
\(116\) −13.7638 −1.27794
\(117\) 0 0
\(118\) 25.1246 2.31291
\(119\) 0.381966 0.0350148
\(120\) 0 0
\(121\) −10.9443 −0.994934
\(122\) −5.25731 −0.475975
\(123\) 0 0
\(124\) −11.8617 −1.06521
\(125\) 11.9443 1.06833
\(126\) 0 0
\(127\) 7.60845 0.675141 0.337570 0.941300i \(-0.390395\pi\)
0.337570 + 0.941300i \(0.390395\pi\)
\(128\) 5.70634 0.504374
\(129\) 0 0
\(130\) −15.3262 −1.34420
\(131\) 7.76393 0.678338 0.339169 0.940725i \(-0.389854\pi\)
0.339169 + 0.940725i \(0.389854\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −17.0344 −1.47155
\(135\) 0 0
\(136\) 0.171513 0.0147072
\(137\) 2.14590 0.183336 0.0916682 0.995790i \(-0.470780\pi\)
0.0916682 + 0.995790i \(0.470780\pi\)
\(138\) 0 0
\(139\) 0.180340 0.0152962 0.00764811 0.999971i \(-0.497566\pi\)
0.00764811 + 0.999971i \(0.497566\pi\)
\(140\) 4.23607 0.358013
\(141\) 0 0
\(142\) −16.7082 −1.40212
\(143\) 1.17557 0.0983061
\(144\) 0 0
\(145\) 13.7638 1.14302
\(146\) 1.34708 0.111485
\(147\) 0 0
\(148\) −8.50651 −0.699231
\(149\) 1.38197 0.113215 0.0566075 0.998397i \(-0.481972\pi\)
0.0566075 + 0.998397i \(0.481972\pi\)
\(150\) 0 0
\(151\) 11.7557 0.956666 0.478333 0.878179i \(-0.341241\pi\)
0.478333 + 0.878179i \(0.341241\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.726543 −0.0585465
\(155\) 11.8617 0.952755
\(156\) 0 0
\(157\) 20.4164 1.62941 0.814703 0.579878i \(-0.196900\pi\)
0.814703 + 0.579878i \(0.196900\pi\)
\(158\) 0.326238 0.0259541
\(159\) 0 0
\(160\) 11.8617 0.937750
\(161\) −13.3262 −1.05025
\(162\) 0 0
\(163\) −0.673762 −0.0527731 −0.0263866 0.999652i \(-0.508400\pi\)
−0.0263866 + 0.999652i \(0.508400\pi\)
\(164\) 5.70634 0.445590
\(165\) 0 0
\(166\) 18.9151 1.46810
\(167\) −10.8576 −0.840190 −0.420095 0.907480i \(-0.638003\pi\)
−0.420095 + 0.907480i \(0.638003\pi\)
\(168\) 0 0
\(169\) 11.7984 0.907567
\(170\) 0.726543 0.0557233
\(171\) 0 0
\(172\) −13.3262 −1.01612
\(173\) 16.6700 1.26740 0.633698 0.773581i \(-0.281536\pi\)
0.633698 + 0.773581i \(0.281536\pi\)
\(174\) 0 0
\(175\) 3.85410 0.291343
\(176\) −1.09017 −0.0821747
\(177\) 0 0
\(178\) −1.70820 −0.128035
\(179\) −1.90211 −0.142171 −0.0710853 0.997470i \(-0.522646\pi\)
−0.0710853 + 0.997470i \(0.522646\pi\)
\(180\) 0 0
\(181\) −0.620541 −0.0461245 −0.0230622 0.999734i \(-0.507342\pi\)
−0.0230622 + 0.999734i \(0.507342\pi\)
\(182\) −15.3262 −1.13606
\(183\) 0 0
\(184\) −5.98385 −0.441136
\(185\) 8.50651 0.625411
\(186\) 0 0
\(187\) −0.0557281 −0.00407524
\(188\) −13.5623 −0.989133
\(189\) 0 0
\(190\) 0 0
\(191\) 18.4164 1.33256 0.666282 0.745700i \(-0.267885\pi\)
0.666282 + 0.745700i \(0.267885\pi\)
\(192\) 0 0
\(193\) 8.50651 0.612312 0.306156 0.951981i \(-0.400957\pi\)
0.306156 + 0.951981i \(0.400957\pi\)
\(194\) −23.4164 −1.68120
\(195\) 0 0
\(196\) −7.09017 −0.506441
\(197\) −26.7426 −1.90533 −0.952667 0.304015i \(-0.901673\pi\)
−0.952667 + 0.304015i \(0.901673\pi\)
\(198\) 0 0
\(199\) −21.1803 −1.50143 −0.750717 0.660624i \(-0.770292\pi\)
−0.750717 + 0.660624i \(0.770292\pi\)
\(200\) 1.73060 0.122372
\(201\) 0 0
\(202\) −25.9686 −1.82714
\(203\) 13.7638 0.966031
\(204\) 0 0
\(205\) −5.70634 −0.398548
\(206\) −9.79837 −0.682685
\(207\) 0 0
\(208\) −22.9969 −1.59455
\(209\) 0 0
\(210\) 0 0
\(211\) −7.77997 −0.535595 −0.267797 0.963475i \(-0.586296\pi\)
−0.267797 + 0.963475i \(0.586296\pi\)
\(212\) −19.6417 −1.34900
\(213\) 0 0
\(214\) −3.09017 −0.211240
\(215\) 13.3262 0.908842
\(216\) 0 0
\(217\) 11.8617 0.805225
\(218\) 29.2705 1.98245
\(219\) 0 0
\(220\) −0.618034 −0.0416678
\(221\) −1.17557 −0.0790774
\(222\) 0 0
\(223\) 14.9394 1.00042 0.500208 0.865905i \(-0.333257\pi\)
0.500208 + 0.865905i \(0.333257\pi\)
\(224\) 11.8617 0.792544
\(225\) 0 0
\(226\) 24.2705 1.61445
\(227\) −8.67802 −0.575981 −0.287990 0.957633i \(-0.592987\pi\)
−0.287990 + 0.957633i \(0.592987\pi\)
\(228\) 0 0
\(229\) −21.6525 −1.43084 −0.715418 0.698697i \(-0.753764\pi\)
−0.715418 + 0.698697i \(0.753764\pi\)
\(230\) −25.3480 −1.67140
\(231\) 0 0
\(232\) 6.18034 0.405759
\(233\) 11.8885 0.778844 0.389422 0.921059i \(-0.372675\pi\)
0.389422 + 0.921059i \(0.372675\pi\)
\(234\) 0 0
\(235\) 13.5623 0.884707
\(236\) 21.3723 1.39122
\(237\) 0 0
\(238\) 0.726543 0.0470948
\(239\) 6.85410 0.443355 0.221677 0.975120i \(-0.428847\pi\)
0.221677 + 0.975120i \(0.428847\pi\)
\(240\) 0 0
\(241\) 4.08174 0.262928 0.131464 0.991321i \(-0.458032\pi\)
0.131464 + 0.991321i \(0.458032\pi\)
\(242\) −20.8172 −1.33818
\(243\) 0 0
\(244\) −4.47214 −0.286299
\(245\) 7.09017 0.452974
\(246\) 0 0
\(247\) 0 0
\(248\) 5.32624 0.338216
\(249\) 0 0
\(250\) 22.7194 1.43690
\(251\) −1.58359 −0.0999554 −0.0499777 0.998750i \(-0.515915\pi\)
−0.0499777 + 0.998750i \(0.515915\pi\)
\(252\) 0 0
\(253\) 1.94427 0.122235
\(254\) 14.4721 0.908063
\(255\) 0 0
\(256\) 20.2705 1.26691
\(257\) 20.0907 1.25322 0.626612 0.779332i \(-0.284441\pi\)
0.626612 + 0.779332i \(0.284441\pi\)
\(258\) 0 0
\(259\) 8.50651 0.528569
\(260\) −13.0373 −0.808538
\(261\) 0 0
\(262\) 14.7679 0.912362
\(263\) −19.5279 −1.20414 −0.602070 0.798443i \(-0.705657\pi\)
−0.602070 + 0.798443i \(0.705657\pi\)
\(264\) 0 0
\(265\) 19.6417 1.20658
\(266\) 0 0
\(267\) 0 0
\(268\) −14.4904 −0.885140
\(269\) 21.2008 1.29263 0.646317 0.763069i \(-0.276309\pi\)
0.646317 + 0.763069i \(0.276309\pi\)
\(270\) 0 0
\(271\) −14.1459 −0.859302 −0.429651 0.902995i \(-0.641363\pi\)
−0.429651 + 0.902995i \(0.641363\pi\)
\(272\) 1.09017 0.0661013
\(273\) 0 0
\(274\) 4.08174 0.246587
\(275\) −0.562306 −0.0339083
\(276\) 0 0
\(277\) 11.7984 0.708896 0.354448 0.935076i \(-0.384669\pi\)
0.354448 + 0.935076i \(0.384669\pi\)
\(278\) 0.343027 0.0205734
\(279\) 0 0
\(280\) −1.90211 −0.113673
\(281\) 25.7315 1.53501 0.767507 0.641040i \(-0.221497\pi\)
0.767507 + 0.641040i \(0.221497\pi\)
\(282\) 0 0
\(283\) −32.2148 −1.91497 −0.957485 0.288483i \(-0.906849\pi\)
−0.957485 + 0.288483i \(0.906849\pi\)
\(284\) −14.2128 −0.843377
\(285\) 0 0
\(286\) 2.23607 0.132221
\(287\) −5.70634 −0.336835
\(288\) 0 0
\(289\) −16.9443 −0.996722
\(290\) 26.1803 1.53736
\(291\) 0 0
\(292\) 1.14590 0.0670586
\(293\) 5.53483 0.323348 0.161674 0.986844i \(-0.448311\pi\)
0.161674 + 0.986844i \(0.448311\pi\)
\(294\) 0 0
\(295\) −21.3723 −1.24434
\(296\) 3.81966 0.222013
\(297\) 0 0
\(298\) 2.62866 0.152274
\(299\) 41.0139 2.37190
\(300\) 0 0
\(301\) 13.3262 0.768112
\(302\) 22.3607 1.28671
\(303\) 0 0
\(304\) 0 0
\(305\) 4.47214 0.256074
\(306\) 0 0
\(307\) −26.8011 −1.52962 −0.764810 0.644256i \(-0.777167\pi\)
−0.764810 + 0.644256i \(0.777167\pi\)
\(308\) −0.618034 −0.0352158
\(309\) 0 0
\(310\) 22.5623 1.28145
\(311\) −25.9443 −1.47116 −0.735582 0.677435i \(-0.763091\pi\)
−0.735582 + 0.677435i \(0.763091\pi\)
\(312\) 0 0
\(313\) −0.180340 −0.0101934 −0.00509671 0.999987i \(-0.501622\pi\)
−0.00509671 + 0.999987i \(0.501622\pi\)
\(314\) 38.8343 2.19155
\(315\) 0 0
\(316\) 0.277515 0.0156114
\(317\) 15.6659 0.879886 0.439943 0.898026i \(-0.354999\pi\)
0.439943 + 0.898026i \(0.354999\pi\)
\(318\) 0 0
\(319\) −2.00811 −0.112433
\(320\) 7.61803 0.425861
\(321\) 0 0
\(322\) −25.3480 −1.41259
\(323\) 0 0
\(324\) 0 0
\(325\) −11.8617 −0.657969
\(326\) −1.28157 −0.0709797
\(327\) 0 0
\(328\) −2.56231 −0.141480
\(329\) 13.5623 0.747714
\(330\) 0 0
\(331\) 3.97574 0.218526 0.109263 0.994013i \(-0.465151\pi\)
0.109263 + 0.994013i \(0.465151\pi\)
\(332\) 16.0902 0.883063
\(333\) 0 0
\(334\) −20.6525 −1.13005
\(335\) 14.4904 0.791693
\(336\) 0 0
\(337\) −4.08174 −0.222347 −0.111173 0.993801i \(-0.535461\pi\)
−0.111173 + 0.993801i \(0.535461\pi\)
\(338\) 22.4418 1.22068
\(339\) 0 0
\(340\) 0.618034 0.0335176
\(341\) −1.73060 −0.0937172
\(342\) 0 0
\(343\) 18.4164 0.994393
\(344\) 5.98385 0.322628
\(345\) 0 0
\(346\) 31.7082 1.70464
\(347\) 11.4164 0.612865 0.306432 0.951892i \(-0.400865\pi\)
0.306432 + 0.951892i \(0.400865\pi\)
\(348\) 0 0
\(349\) −29.7984 −1.59507 −0.797535 0.603272i \(-0.793863\pi\)
−0.797535 + 0.603272i \(0.793863\pi\)
\(350\) 7.33094 0.391855
\(351\) 0 0
\(352\) −1.73060 −0.0922413
\(353\) −23.3607 −1.24336 −0.621682 0.783270i \(-0.713550\pi\)
−0.621682 + 0.783270i \(0.713550\pi\)
\(354\) 0 0
\(355\) 14.2128 0.754340
\(356\) −1.45309 −0.0770134
\(357\) 0 0
\(358\) −3.61803 −0.191219
\(359\) 31.5066 1.66285 0.831427 0.555634i \(-0.187525\pi\)
0.831427 + 0.555634i \(0.187525\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −1.18034 −0.0620373
\(363\) 0 0
\(364\) −13.0373 −0.683339
\(365\) −1.14590 −0.0599790
\(366\) 0 0
\(367\) −30.8885 −1.61237 −0.806184 0.591664i \(-0.798471\pi\)
−0.806184 + 0.591664i \(0.798471\pi\)
\(368\) −38.0344 −1.98268
\(369\) 0 0
\(370\) 16.1803 0.841176
\(371\) 19.6417 1.01974
\(372\) 0 0
\(373\) −11.2412 −0.582045 −0.291023 0.956716i \(-0.593996\pi\)
−0.291023 + 0.956716i \(0.593996\pi\)
\(374\) −0.106001 −0.00548119
\(375\) 0 0
\(376\) 6.08985 0.314060
\(377\) −42.3607 −2.18169
\(378\) 0 0
\(379\) 1.45309 0.0746400 0.0373200 0.999303i \(-0.488118\pi\)
0.0373200 + 0.999303i \(0.488118\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 35.0301 1.79230
\(383\) −16.9070 −0.863908 −0.431954 0.901896i \(-0.642176\pi\)
−0.431954 + 0.901896i \(0.642176\pi\)
\(384\) 0 0
\(385\) 0.618034 0.0314979
\(386\) 16.1803 0.823558
\(387\) 0 0
\(388\) −19.9192 −1.01124
\(389\) 12.8197 0.649983 0.324991 0.945717i \(-0.394639\pi\)
0.324991 + 0.945717i \(0.394639\pi\)
\(390\) 0 0
\(391\) −1.94427 −0.0983261
\(392\) 3.18368 0.160800
\(393\) 0 0
\(394\) −50.8675 −2.56267
\(395\) −0.277515 −0.0139633
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) −40.2874 −2.01942
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) 4.53077 0.226256 0.113128 0.993580i \(-0.463913\pi\)
0.113128 + 0.993580i \(0.463913\pi\)
\(402\) 0 0
\(403\) −36.5066 −1.81852
\(404\) −22.0902 −1.09903
\(405\) 0 0
\(406\) 26.1803 1.29931
\(407\) −1.24108 −0.0615182
\(408\) 0 0
\(409\) 17.2250 0.851722 0.425861 0.904789i \(-0.359971\pi\)
0.425861 + 0.904789i \(0.359971\pi\)
\(410\) −10.8541 −0.536046
\(411\) 0 0
\(412\) −8.33499 −0.410636
\(413\) −21.3723 −1.05166
\(414\) 0 0
\(415\) −16.0902 −0.789835
\(416\) −36.5066 −1.78988
\(417\) 0 0
\(418\) 0 0
\(419\) 20.7082 1.01166 0.505831 0.862633i \(-0.331186\pi\)
0.505831 + 0.862633i \(0.331186\pi\)
\(420\) 0 0
\(421\) −10.7516 −0.524003 −0.262002 0.965067i \(-0.584383\pi\)
−0.262002 + 0.965067i \(0.584383\pi\)
\(422\) −14.7984 −0.720374
\(423\) 0 0
\(424\) 8.81966 0.428321
\(425\) 0.562306 0.0272758
\(426\) 0 0
\(427\) 4.47214 0.216422
\(428\) −2.62866 −0.127061
\(429\) 0 0
\(430\) 25.3480 1.22239
\(431\) 12.2047 0.587881 0.293941 0.955824i \(-0.405033\pi\)
0.293941 + 0.955824i \(0.405033\pi\)
\(432\) 0 0
\(433\) −28.0827 −1.34957 −0.674783 0.738016i \(-0.735763\pi\)
−0.674783 + 0.738016i \(0.735763\pi\)
\(434\) 22.5623 1.08303
\(435\) 0 0
\(436\) 24.8990 1.19245
\(437\) 0 0
\(438\) 0 0
\(439\) 21.2008 1.01186 0.505928 0.862575i \(-0.331150\pi\)
0.505928 + 0.862575i \(0.331150\pi\)
\(440\) 0.277515 0.0132300
\(441\) 0 0
\(442\) −2.23607 −0.106359
\(443\) −27.1803 −1.29138 −0.645688 0.763601i \(-0.723430\pi\)
−0.645688 + 0.763601i \(0.723430\pi\)
\(444\) 0 0
\(445\) 1.45309 0.0688828
\(446\) 28.4164 1.34556
\(447\) 0 0
\(448\) 7.61803 0.359918
\(449\) −20.7112 −0.977424 −0.488712 0.872445i \(-0.662533\pi\)
−0.488712 + 0.872445i \(0.662533\pi\)
\(450\) 0 0
\(451\) 0.832544 0.0392029
\(452\) 20.6457 0.971093
\(453\) 0 0
\(454\) −16.5066 −0.774692
\(455\) 13.0373 0.611197
\(456\) 0 0
\(457\) 15.5623 0.727974 0.363987 0.931404i \(-0.381415\pi\)
0.363987 + 0.931404i \(0.381415\pi\)
\(458\) −41.1855 −1.92447
\(459\) 0 0
\(460\) −21.5623 −1.00535
\(461\) 33.0902 1.54116 0.770581 0.637342i \(-0.219966\pi\)
0.770581 + 0.637342i \(0.219966\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 39.2833 1.82368
\(465\) 0 0
\(466\) 22.6134 1.04754
\(467\) 22.3262 1.03314 0.516568 0.856246i \(-0.327210\pi\)
0.516568 + 0.856246i \(0.327210\pi\)
\(468\) 0 0
\(469\) 14.4904 0.669103
\(470\) 25.7970 1.18993
\(471\) 0 0
\(472\) −9.59675 −0.441726
\(473\) −1.94427 −0.0893977
\(474\) 0 0
\(475\) 0 0
\(476\) 0.618034 0.0283275
\(477\) 0 0
\(478\) 13.0373 0.596311
\(479\) −28.2148 −1.28917 −0.644583 0.764534i \(-0.722969\pi\)
−0.644583 + 0.764534i \(0.722969\pi\)
\(480\) 0 0
\(481\) −26.1803 −1.19372
\(482\) 7.76393 0.353637
\(483\) 0 0
\(484\) −17.7082 −0.804918
\(485\) 19.9192 0.904484
\(486\) 0 0
\(487\) −24.1069 −1.09239 −0.546195 0.837658i \(-0.683924\pi\)
−0.546195 + 0.837658i \(0.683924\pi\)
\(488\) 2.00811 0.0909031
\(489\) 0 0
\(490\) 13.4863 0.609249
\(491\) −11.7082 −0.528384 −0.264192 0.964470i \(-0.585105\pi\)
−0.264192 + 0.964470i \(0.585105\pi\)
\(492\) 0 0
\(493\) 2.00811 0.0904409
\(494\) 0 0
\(495\) 0 0
\(496\) 33.8545 1.52011
\(497\) 14.2128 0.637533
\(498\) 0 0
\(499\) −18.2361 −0.816359 −0.408179 0.912902i \(-0.633836\pi\)
−0.408179 + 0.912902i \(0.633836\pi\)
\(500\) 19.3262 0.864296
\(501\) 0 0
\(502\) −3.01217 −0.134440
\(503\) −33.0344 −1.47293 −0.736466 0.676474i \(-0.763507\pi\)
−0.736466 + 0.676474i \(0.763507\pi\)
\(504\) 0 0
\(505\) 22.0902 0.983000
\(506\) 3.69822 0.164406
\(507\) 0 0
\(508\) 12.3107 0.546201
\(509\) 4.08174 0.180920 0.0904600 0.995900i \(-0.471166\pi\)
0.0904600 + 0.995900i \(0.471166\pi\)
\(510\) 0 0
\(511\) −1.14590 −0.0506915
\(512\) 27.1441 1.19961
\(513\) 0 0
\(514\) 38.2148 1.68558
\(515\) 8.33499 0.367284
\(516\) 0 0
\(517\) −1.97871 −0.0870237
\(518\) 16.1803 0.710923
\(519\) 0 0
\(520\) 5.85410 0.256719
\(521\) −22.6538 −0.992483 −0.496241 0.868185i \(-0.665287\pi\)
−0.496241 + 0.868185i \(0.665287\pi\)
\(522\) 0 0
\(523\) 16.4580 0.719658 0.359829 0.933018i \(-0.382835\pi\)
0.359829 + 0.933018i \(0.382835\pi\)
\(524\) 12.5623 0.548787
\(525\) 0 0
\(526\) −37.1442 −1.61956
\(527\) 1.73060 0.0753861
\(528\) 0 0
\(529\) 44.8328 1.94925
\(530\) 37.3607 1.62284
\(531\) 0 0
\(532\) 0 0
\(533\) 17.5623 0.760708
\(534\) 0 0
\(535\) 2.62866 0.113647
\(536\) 6.50658 0.281041
\(537\) 0 0
\(538\) 40.3262 1.73859
\(539\) −1.03444 −0.0445566
\(540\) 0 0
\(541\) −13.4164 −0.576816 −0.288408 0.957508i \(-0.593126\pi\)
−0.288408 + 0.957508i \(0.593126\pi\)
\(542\) −26.9071 −1.15576
\(543\) 0 0
\(544\) 1.73060 0.0741988
\(545\) −24.8990 −1.06656
\(546\) 0 0
\(547\) 33.8545 1.44751 0.723757 0.690055i \(-0.242413\pi\)
0.723757 + 0.690055i \(0.242413\pi\)
\(548\) 3.47214 0.148322
\(549\) 0 0
\(550\) −1.06957 −0.0456066
\(551\) 0 0
\(552\) 0 0
\(553\) −0.277515 −0.0118011
\(554\) 22.4418 0.953462
\(555\) 0 0
\(556\) 0.291796 0.0123749
\(557\) 16.9443 0.717952 0.358976 0.933347i \(-0.383126\pi\)
0.358976 + 0.933347i \(0.383126\pi\)
\(558\) 0 0
\(559\) −41.0139 −1.73470
\(560\) −12.0902 −0.510903
\(561\) 0 0
\(562\) 48.9443 2.06459
\(563\) 12.2047 0.514368 0.257184 0.966362i \(-0.417205\pi\)
0.257184 + 0.966362i \(0.417205\pi\)
\(564\) 0 0
\(565\) −20.6457 −0.868572
\(566\) −61.2762 −2.57563
\(567\) 0 0
\(568\) 6.38197 0.267781
\(569\) 8.26948 0.346675 0.173337 0.984863i \(-0.444545\pi\)
0.173337 + 0.984863i \(0.444545\pi\)
\(570\) 0 0
\(571\) 3.41641 0.142972 0.0714861 0.997442i \(-0.477226\pi\)
0.0714861 + 0.997442i \(0.477226\pi\)
\(572\) 1.90211 0.0795313
\(573\) 0 0
\(574\) −10.8541 −0.453041
\(575\) −19.6180 −0.818129
\(576\) 0 0
\(577\) 22.1246 0.921060 0.460530 0.887644i \(-0.347659\pi\)
0.460530 + 0.887644i \(0.347659\pi\)
\(578\) −32.2299 −1.34059
\(579\) 0 0
\(580\) 22.2703 0.924725
\(581\) −16.0902 −0.667533
\(582\) 0 0
\(583\) −2.86568 −0.118684
\(584\) −0.514540 −0.0212918
\(585\) 0 0
\(586\) 10.5279 0.434902
\(587\) −33.5066 −1.38296 −0.691482 0.722393i \(-0.743042\pi\)
−0.691482 + 0.722393i \(0.743042\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −40.6525 −1.67364
\(591\) 0 0
\(592\) 24.2784 0.997838
\(593\) 19.4164 0.797336 0.398668 0.917095i \(-0.369473\pi\)
0.398668 + 0.917095i \(0.369473\pi\)
\(594\) 0 0
\(595\) −0.618034 −0.0253369
\(596\) 2.23607 0.0915929
\(597\) 0 0
\(598\) 78.0132 3.19020
\(599\) −6.22088 −0.254178 −0.127089 0.991891i \(-0.540563\pi\)
−0.127089 + 0.991891i \(0.540563\pi\)
\(600\) 0 0
\(601\) 15.4539 0.630379 0.315189 0.949029i \(-0.397932\pi\)
0.315189 + 0.949029i \(0.397932\pi\)
\(602\) 25.3480 1.03311
\(603\) 0 0
\(604\) 19.0211 0.773959
\(605\) 17.7082 0.719941
\(606\) 0 0
\(607\) 47.5528 1.93011 0.965055 0.262048i \(-0.0843979\pi\)
0.965055 + 0.262048i \(0.0843979\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 8.50651 0.344418
\(611\) −41.7405 −1.68864
\(612\) 0 0
\(613\) 14.5279 0.586775 0.293387 0.955994i \(-0.405217\pi\)
0.293387 + 0.955994i \(0.405217\pi\)
\(614\) −50.9787 −2.05733
\(615\) 0 0
\(616\) 0.277515 0.0111814
\(617\) −2.87539 −0.115759 −0.0578794 0.998324i \(-0.518434\pi\)
−0.0578794 + 0.998324i \(0.518434\pi\)
\(618\) 0 0
\(619\) −9.09017 −0.365365 −0.182682 0.983172i \(-0.558478\pi\)
−0.182682 + 0.983172i \(0.558478\pi\)
\(620\) 19.1926 0.770795
\(621\) 0 0
\(622\) −49.3489 −1.97871
\(623\) 1.45309 0.0582166
\(624\) 0 0
\(625\) −7.41641 −0.296656
\(626\) −0.343027 −0.0137101
\(627\) 0 0
\(628\) 33.0344 1.31822
\(629\) 1.24108 0.0494852
\(630\) 0 0
\(631\) −36.8328 −1.46629 −0.733146 0.680072i \(-0.761949\pi\)
−0.733146 + 0.680072i \(0.761949\pi\)
\(632\) −0.124612 −0.00495679
\(633\) 0 0
\(634\) 29.7984 1.18344
\(635\) −12.3107 −0.488537
\(636\) 0 0
\(637\) −21.8213 −0.864591
\(638\) −3.81966 −0.151222
\(639\) 0 0
\(640\) −9.23305 −0.364968
\(641\) 20.4337 0.807084 0.403542 0.914961i \(-0.367779\pi\)
0.403542 + 0.914961i \(0.367779\pi\)
\(642\) 0 0
\(643\) 13.4377 0.529931 0.264965 0.964258i \(-0.414639\pi\)
0.264965 + 0.964258i \(0.414639\pi\)
\(644\) −21.5623 −0.849674
\(645\) 0 0
\(646\) 0 0
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) 3.11817 0.122399
\(650\) −22.5623 −0.884966
\(651\) 0 0
\(652\) −1.09017 −0.0426944
\(653\) 0.0557281 0.00218081 0.00109040 0.999999i \(-0.499653\pi\)
0.00109040 + 0.999999i \(0.499653\pi\)
\(654\) 0 0
\(655\) −12.5623 −0.490850
\(656\) −16.2865 −0.635880
\(657\) 0 0
\(658\) 25.7970 1.00567
\(659\) 11.7962 0.459514 0.229757 0.973248i \(-0.426207\pi\)
0.229757 + 0.973248i \(0.426207\pi\)
\(660\) 0 0
\(661\) −47.5528 −1.84959 −0.924795 0.380465i \(-0.875764\pi\)
−0.924795 + 0.380465i \(0.875764\pi\)
\(662\) 7.56231 0.293917
\(663\) 0 0
\(664\) −7.22494 −0.280382
\(665\) 0 0
\(666\) 0 0
\(667\) −70.0602 −2.71274
\(668\) −17.5680 −0.679728
\(669\) 0 0
\(670\) 27.5623 1.06482
\(671\) −0.652476 −0.0251886
\(672\) 0 0
\(673\) −33.8950 −1.30656 −0.653278 0.757118i \(-0.726607\pi\)
−0.653278 + 0.757118i \(0.726607\pi\)
\(674\) −7.76393 −0.299055
\(675\) 0 0
\(676\) 19.0902 0.734237
\(677\) 4.70228 0.180723 0.0903617 0.995909i \(-0.471198\pi\)
0.0903617 + 0.995909i \(0.471198\pi\)
\(678\) 0 0
\(679\) 19.9192 0.764428
\(680\) −0.277515 −0.0106422
\(681\) 0 0
\(682\) −3.29180 −0.126049
\(683\) 13.8293 0.529165 0.264582 0.964363i \(-0.414766\pi\)
0.264582 + 0.964363i \(0.414766\pi\)
\(684\) 0 0
\(685\) −3.47214 −0.132663
\(686\) 35.0301 1.33746
\(687\) 0 0
\(688\) 38.0344 1.45005
\(689\) −60.4508 −2.30299
\(690\) 0 0
\(691\) 20.7771 0.790398 0.395199 0.918596i \(-0.370676\pi\)
0.395199 + 0.918596i \(0.370676\pi\)
\(692\) 26.9726 1.02534
\(693\) 0 0
\(694\) 21.7153 0.824301
\(695\) −0.291796 −0.0110685
\(696\) 0 0
\(697\) −0.832544 −0.0315348
\(698\) −56.6799 −2.14536
\(699\) 0 0
\(700\) 6.23607 0.235701
\(701\) −3.18034 −0.120120 −0.0600599 0.998195i \(-0.519129\pi\)
−0.0600599 + 0.998195i \(0.519129\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.11146 −0.0418896
\(705\) 0 0
\(706\) −44.4347 −1.67232
\(707\) 22.0902 0.830786
\(708\) 0 0
\(709\) −22.6869 −0.852025 −0.426013 0.904717i \(-0.640082\pi\)
−0.426013 + 0.904717i \(0.640082\pi\)
\(710\) 27.0344 1.01458
\(711\) 0 0
\(712\) 0.652476 0.0244526
\(713\) −60.3781 −2.26118
\(714\) 0 0
\(715\) −1.90211 −0.0711350
\(716\) −3.07768 −0.115018
\(717\) 0 0
\(718\) 59.9291 2.23653
\(719\) 29.6738 1.10664 0.553322 0.832967i \(-0.313360\pi\)
0.553322 + 0.832967i \(0.313360\pi\)
\(720\) 0 0
\(721\) 8.33499 0.310411
\(722\) 0 0
\(723\) 0 0
\(724\) −1.00406 −0.0373155
\(725\) 20.2622 0.752520
\(726\) 0 0
\(727\) 29.1591 1.08145 0.540725 0.841200i \(-0.318150\pi\)
0.540725 + 0.841200i \(0.318150\pi\)
\(728\) 5.85410 0.216967
\(729\) 0 0
\(730\) −2.17963 −0.0806716
\(731\) 1.94427 0.0719115
\(732\) 0 0
\(733\) 12.8197 0.473505 0.236752 0.971570i \(-0.423917\pi\)
0.236752 + 0.971570i \(0.423917\pi\)
\(734\) −58.7535 −2.16863
\(735\) 0 0
\(736\) −60.3781 −2.22557
\(737\) −2.11412 −0.0778744
\(738\) 0 0
\(739\) −4.79837 −0.176511 −0.0882555 0.996098i \(-0.528129\pi\)
−0.0882555 + 0.996098i \(0.528129\pi\)
\(740\) 13.7638 0.505968
\(741\) 0 0
\(742\) 37.3607 1.37155
\(743\) −6.88191 −0.252473 −0.126236 0.992000i \(-0.540290\pi\)
−0.126236 + 0.992000i \(0.540290\pi\)
\(744\) 0 0
\(745\) −2.23607 −0.0819232
\(746\) −21.3820 −0.782849
\(747\) 0 0
\(748\) −0.0901699 −0.00329694
\(749\) 2.62866 0.0960490
\(750\) 0 0
\(751\) 44.6467 1.62918 0.814590 0.580037i \(-0.196962\pi\)
0.814590 + 0.580037i \(0.196962\pi\)
\(752\) 38.7082 1.41154
\(753\) 0 0
\(754\) −80.5748 −2.93436
\(755\) −19.0211 −0.692250
\(756\) 0 0
\(757\) 28.1246 1.02221 0.511103 0.859519i \(-0.329237\pi\)
0.511103 + 0.859519i \(0.329237\pi\)
\(758\) 2.76393 0.100391
\(759\) 0 0
\(760\) 0 0
\(761\) −19.3050 −0.699804 −0.349902 0.936786i \(-0.613785\pi\)
−0.349902 + 0.936786i \(0.613785\pi\)
\(762\) 0 0
\(763\) −24.8990 −0.901404
\(764\) 29.7984 1.07807
\(765\) 0 0
\(766\) −32.1591 −1.16195
\(767\) 65.7771 2.37507
\(768\) 0 0
\(769\) 31.0344 1.11913 0.559565 0.828786i \(-0.310968\pi\)
0.559565 + 0.828786i \(0.310968\pi\)
\(770\) 1.17557 0.0423646
\(771\) 0 0
\(772\) 13.7638 0.495371
\(773\) −22.3763 −0.804821 −0.402410 0.915459i \(-0.631827\pi\)
−0.402410 + 0.915459i \(0.631827\pi\)
\(774\) 0 0
\(775\) 17.4620 0.627255
\(776\) 8.94427 0.321081
\(777\) 0 0
\(778\) 24.3844 0.874225
\(779\) 0 0
\(780\) 0 0
\(781\) −2.07363 −0.0742002
\(782\) −3.69822 −0.132248
\(783\) 0 0
\(784\) 20.2361 0.722717
\(785\) −33.0344 −1.17905
\(786\) 0 0
\(787\) −13.6578 −0.486849 −0.243424 0.969920i \(-0.578271\pi\)
−0.243424 + 0.969920i \(0.578271\pi\)
\(788\) −43.2705 −1.54145
\(789\) 0 0
\(790\) −0.527864 −0.0187806
\(791\) −20.6457 −0.734078
\(792\) 0 0
\(793\) −13.7638 −0.488768
\(794\) −13.3148 −0.472524
\(795\) 0 0
\(796\) −34.2705 −1.21469
\(797\) 11.4782 0.406578 0.203289 0.979119i \(-0.434837\pi\)
0.203289 + 0.979119i \(0.434837\pi\)
\(798\) 0 0
\(799\) 1.97871 0.0700019
\(800\) 17.4620 0.617376
\(801\) 0 0
\(802\) 8.61803 0.304313
\(803\) 0.167184 0.00589980
\(804\) 0 0
\(805\) 21.5623 0.759971
\(806\) −69.4396 −2.44591
\(807\) 0 0
\(808\) 9.91910 0.348953
\(809\) 37.5410 1.31987 0.659936 0.751322i \(-0.270583\pi\)
0.659936 + 0.751322i \(0.270583\pi\)
\(810\) 0 0
\(811\) −15.0454 −0.528315 −0.264158 0.964480i \(-0.585094\pi\)
−0.264158 + 0.964480i \(0.585094\pi\)
\(812\) 22.2703 0.781535
\(813\) 0 0
\(814\) −2.36068 −0.0827418
\(815\) 1.09017 0.0381870
\(816\) 0 0
\(817\) 0 0
\(818\) 32.7639 1.14556
\(819\) 0 0
\(820\) −9.23305 −0.322432
\(821\) 29.6738 1.03562 0.517811 0.855495i \(-0.326747\pi\)
0.517811 + 0.855495i \(0.326747\pi\)
\(822\) 0 0
\(823\) 40.3050 1.40494 0.702471 0.711712i \(-0.252080\pi\)
0.702471 + 0.711712i \(0.252080\pi\)
\(824\) 3.74265 0.130381
\(825\) 0 0
\(826\) −40.6525 −1.41448
\(827\) −30.8828 −1.07390 −0.536951 0.843614i \(-0.680424\pi\)
−0.536951 + 0.843614i \(0.680424\pi\)
\(828\) 0 0
\(829\) 49.8635 1.73183 0.865915 0.500191i \(-0.166737\pi\)
0.865915 + 0.500191i \(0.166737\pi\)
\(830\) −30.6053 −1.06233
\(831\) 0 0
\(832\) −23.4459 −0.812840
\(833\) 1.03444 0.0358413
\(834\) 0 0
\(835\) 17.5680 0.607967
\(836\) 0 0
\(837\) 0 0
\(838\) 39.3893 1.36068
\(839\) 51.3821 1.77391 0.886953 0.461859i \(-0.152818\pi\)
0.886953 + 0.461859i \(0.152818\pi\)
\(840\) 0 0
\(841\) 43.3607 1.49520
\(842\) −20.4508 −0.704783
\(843\) 0 0
\(844\) −12.5882 −0.433305
\(845\) −19.0902 −0.656722
\(846\) 0 0
\(847\) 17.7082 0.608461
\(848\) 56.0593 1.92509
\(849\) 0 0
\(850\) 1.06957 0.0366859
\(851\) −43.2996 −1.48429
\(852\) 0 0
\(853\) 33.5967 1.15033 0.575165 0.818037i \(-0.304938\pi\)
0.575165 + 0.818037i \(0.304938\pi\)
\(854\) 8.50651 0.291087
\(855\) 0 0
\(856\) 1.18034 0.0403432
\(857\) 15.3884 0.525658 0.262829 0.964842i \(-0.415344\pi\)
0.262829 + 0.964842i \(0.415344\pi\)
\(858\) 0 0
\(859\) −27.1591 −0.926655 −0.463327 0.886187i \(-0.653345\pi\)
−0.463327 + 0.886187i \(0.653345\pi\)
\(860\) 21.5623 0.735269
\(861\) 0 0
\(862\) 23.2148 0.790699
\(863\) −10.8981 −0.370977 −0.185488 0.982646i \(-0.559387\pi\)
−0.185488 + 0.982646i \(0.559387\pi\)
\(864\) 0 0
\(865\) −26.9726 −0.917096
\(866\) −53.4164 −1.81516
\(867\) 0 0
\(868\) 19.1926 0.651441
\(869\) 0.0404888 0.00137349
\(870\) 0 0
\(871\) −44.5967 −1.51110
\(872\) −11.1803 −0.378614
\(873\) 0 0
\(874\) 0 0
\(875\) −19.3262 −0.653346
\(876\) 0 0
\(877\) 29.3642 0.991560 0.495780 0.868448i \(-0.334882\pi\)
0.495780 + 0.868448i \(0.334882\pi\)
\(878\) 40.3262 1.36094
\(879\) 0 0
\(880\) 1.76393 0.0594621
\(881\) 4.36068 0.146915 0.0734575 0.997298i \(-0.476597\pi\)
0.0734575 + 0.997298i \(0.476597\pi\)
\(882\) 0 0
\(883\) 4.52786 0.152375 0.0761874 0.997094i \(-0.475725\pi\)
0.0761874 + 0.997094i \(0.475725\pi\)
\(884\) −1.90211 −0.0639750
\(885\) 0 0
\(886\) −51.7001 −1.73690
\(887\) −18.8091 −0.631549 −0.315774 0.948834i \(-0.602264\pi\)
−0.315774 + 0.948834i \(0.602264\pi\)
\(888\) 0 0
\(889\) −12.3107 −0.412889
\(890\) 2.76393 0.0926472
\(891\) 0 0
\(892\) 24.1724 0.809353
\(893\) 0 0
\(894\) 0 0
\(895\) 3.07768 0.102876
\(896\) −9.23305 −0.308455
\(897\) 0 0
\(898\) −39.3951 −1.31463
\(899\) 62.3607 2.07985
\(900\) 0 0
\(901\) 2.86568 0.0954697
\(902\) 1.58359 0.0527279
\(903\) 0 0
\(904\) −9.27051 −0.308333
\(905\) 1.00406 0.0333760
\(906\) 0 0
\(907\) 24.1069 0.800457 0.400229 0.916415i \(-0.368931\pi\)
0.400229 + 0.916415i \(0.368931\pi\)
\(908\) −14.0413 −0.465978
\(909\) 0 0
\(910\) 24.7984 0.822058
\(911\) −39.0463 −1.29366 −0.646831 0.762633i \(-0.723906\pi\)
−0.646831 + 0.762633i \(0.723906\pi\)
\(912\) 0 0
\(913\) 2.34752 0.0776917
\(914\) 29.6013 0.979123
\(915\) 0 0
\(916\) −35.0344 −1.15757
\(917\) −12.5623 −0.414844
\(918\) 0 0
\(919\) −33.9443 −1.11972 −0.559859 0.828588i \(-0.689145\pi\)
−0.559859 + 0.828588i \(0.689145\pi\)
\(920\) 9.68208 0.319209
\(921\) 0 0
\(922\) 62.9412 2.07286
\(923\) −43.7426 −1.43981
\(924\) 0 0
\(925\) 12.5227 0.411745
\(926\) −45.6507 −1.50018
\(927\) 0 0
\(928\) 62.3607 2.04709
\(929\) −14.8197 −0.486217 −0.243109 0.969999i \(-0.578167\pi\)
−0.243109 + 0.969999i \(0.578167\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 19.2361 0.630098
\(933\) 0 0
\(934\) 42.4670 1.38956
\(935\) 0.0901699 0.00294887
\(936\) 0 0
\(937\) −18.1803 −0.593926 −0.296963 0.954889i \(-0.595974\pi\)
−0.296963 + 0.954889i \(0.595974\pi\)
\(938\) 27.5623 0.899941
\(939\) 0 0
\(940\) 21.9443 0.715743
\(941\) −16.3925 −0.534379 −0.267190 0.963644i \(-0.586095\pi\)
−0.267190 + 0.963644i \(0.586095\pi\)
\(942\) 0 0
\(943\) 29.0462 0.945876
\(944\) −60.9986 −1.98534
\(945\) 0 0
\(946\) −3.69822 −0.120240
\(947\) 19.8885 0.646291 0.323145 0.946349i \(-0.395260\pi\)
0.323145 + 0.946349i \(0.395260\pi\)
\(948\) 0 0
\(949\) 3.52671 0.114482
\(950\) 0 0
\(951\) 0 0
\(952\) −0.277515 −0.00899430
\(953\) −56.1248 −1.81806 −0.909031 0.416728i \(-0.863177\pi\)
−0.909031 + 0.416728i \(0.863177\pi\)
\(954\) 0 0
\(955\) −29.7984 −0.964253
\(956\) 11.0902 0.358682
\(957\) 0 0
\(958\) −53.6677 −1.73392
\(959\) −3.47214 −0.112121
\(960\) 0 0
\(961\) 22.7426 0.733634
\(962\) −49.7980 −1.60555
\(963\) 0 0
\(964\) 6.60440 0.212713
\(965\) −13.7638 −0.443073
\(966\) 0 0
\(967\) −6.27051 −0.201646 −0.100823 0.994904i \(-0.532148\pi\)
−0.100823 + 0.994904i \(0.532148\pi\)
\(968\) 7.95148 0.255570
\(969\) 0 0
\(970\) 37.8885 1.21653
\(971\) −4.53077 −0.145399 −0.0726996 0.997354i \(-0.523161\pi\)
−0.0726996 + 0.997354i \(0.523161\pi\)
\(972\) 0 0
\(973\) −0.291796 −0.00935455
\(974\) −45.8541 −1.46926
\(975\) 0 0
\(976\) 12.7639 0.408564
\(977\) 16.4580 0.526538 0.263269 0.964723i \(-0.415199\pi\)
0.263269 + 0.964723i \(0.415199\pi\)
\(978\) 0 0
\(979\) −0.212002 −0.00677562
\(980\) 11.4721 0.366464
\(981\) 0 0
\(982\) −22.2703 −0.710675
\(983\) −25.7315 −0.820708 −0.410354 0.911926i \(-0.634595\pi\)
−0.410354 + 0.911926i \(0.634595\pi\)
\(984\) 0 0
\(985\) 43.2705 1.37871
\(986\) 3.81966 0.121643
\(987\) 0 0
\(988\) 0 0
\(989\) −67.8328 −2.15696
\(990\) 0 0
\(991\) 15.3884 0.488829 0.244415 0.969671i \(-0.421404\pi\)
0.244415 + 0.969671i \(0.421404\pi\)
\(992\) 53.7426 1.70633
\(993\) 0 0
\(994\) 27.0344 0.857480
\(995\) 34.2705 1.08645
\(996\) 0 0
\(997\) −12.1246 −0.383990 −0.191995 0.981396i \(-0.561496\pi\)
−0.191995 + 0.981396i \(0.561496\pi\)
\(998\) −34.6871 −1.09800
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.ba.1.4 yes 4
3.2 odd 2 3249.2.a.bb.1.1 yes 4
19.18 odd 2 inner 3249.2.a.ba.1.1 4
57.56 even 2 3249.2.a.bb.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3249.2.a.ba.1.1 4 19.18 odd 2 inner
3249.2.a.ba.1.4 yes 4 1.1 even 1 trivial
3249.2.a.bb.1.1 yes 4 3.2 odd 2
3249.2.a.bb.1.4 yes 4 57.56 even 2