Properties

Label 3249.2.a.ba.1.3
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,-2,0,-2,0,0,0,-8,0,0,0,0,-14,8,0,0,-6,0,0,24,0,-14,20, 0,-6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,-24,6,0,0,-38,0,-22,0,0,0,0,0,-6,0,0, -20,0,0,-20,-20,0,8,0,0,0,-6,0,0,0,0,-24,-40,0,0,-6,0,0,12,0,0,4,0,6,0, 0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.17557\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17557 q^{2} -0.618034 q^{4} +0.618034 q^{5} +0.618034 q^{7} -3.07768 q^{8} +0.726543 q^{10} -4.23607 q^{11} +0.449028 q^{13} +0.726543 q^{14} -2.38197 q^{16} +4.23607 q^{17} -0.381966 q^{20} -4.97980 q^{22} +3.76393 q^{23} -4.61803 q^{25} +0.527864 q^{26} -0.381966 q^{28} +5.25731 q^{29} +3.35520 q^{31} +3.35520 q^{32} +4.97980 q^{34} +0.381966 q^{35} -8.50651 q^{37} -1.90211 q^{40} -5.70634 q^{41} -3.76393 q^{43} +2.61803 q^{44} +4.42477 q^{46} -10.6180 q^{47} -6.61803 q^{49} -5.42882 q^{50} -0.277515 q^{52} -10.1311 q^{53} -2.61803 q^{55} -1.90211 q^{56} +6.18034 q^{58} -12.8658 q^{59} -7.23607 q^{61} +3.94427 q^{62} +8.70820 q^{64} +0.277515 q^{65} +10.2371 q^{67} -2.61803 q^{68} +0.449028 q^{70} -2.80017 q^{71} -12.7082 q^{73} -10.0000 q^{74} -2.61803 q^{77} -13.0373 q^{79} -1.47214 q^{80} -6.70820 q^{82} -7.94427 q^{83} +2.61803 q^{85} -4.42477 q^{86} +13.0373 q^{88} +9.95959 q^{89} +0.277515 q^{91} -2.32624 q^{92} -12.4822 q^{94} +2.90617 q^{97} -7.77997 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{5} - 2 q^{7} - 8 q^{11} - 14 q^{16} + 8 q^{17} - 6 q^{20} + 24 q^{23} - 14 q^{25} + 20 q^{26} - 6 q^{28} + 6 q^{35} - 24 q^{43} + 6 q^{44} - 38 q^{47} - 22 q^{49} - 6 q^{55} - 20 q^{58}+ \cdots + 22 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17557 0.831254 0.415627 0.909535i \(-0.363562\pi\)
0.415627 + 0.909535i \(0.363562\pi\)
\(3\) 0 0
\(4\) −0.618034 −0.309017
\(5\) 0.618034 0.276393 0.138197 0.990405i \(-0.455869\pi\)
0.138197 + 0.990405i \(0.455869\pi\)
\(6\) 0 0
\(7\) 0.618034 0.233595 0.116797 0.993156i \(-0.462737\pi\)
0.116797 + 0.993156i \(0.462737\pi\)
\(8\) −3.07768 −1.08813
\(9\) 0 0
\(10\) 0.726543 0.229753
\(11\) −4.23607 −1.27722 −0.638611 0.769529i \(-0.720491\pi\)
−0.638611 + 0.769529i \(0.720491\pi\)
\(12\) 0 0
\(13\) 0.449028 0.124538 0.0622690 0.998059i \(-0.480166\pi\)
0.0622690 + 0.998059i \(0.480166\pi\)
\(14\) 0.726543 0.194177
\(15\) 0 0
\(16\) −2.38197 −0.595492
\(17\) 4.23607 1.02740 0.513699 0.857971i \(-0.328275\pi\)
0.513699 + 0.857971i \(0.328275\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) −0.381966 −0.0854102
\(21\) 0 0
\(22\) −4.97980 −1.06170
\(23\) 3.76393 0.784834 0.392417 0.919787i \(-0.371639\pi\)
0.392417 + 0.919787i \(0.371639\pi\)
\(24\) 0 0
\(25\) −4.61803 −0.923607
\(26\) 0.527864 0.103523
\(27\) 0 0
\(28\) −0.381966 −0.0721848
\(29\) 5.25731 0.976258 0.488129 0.872771i \(-0.337680\pi\)
0.488129 + 0.872771i \(0.337680\pi\)
\(30\) 0 0
\(31\) 3.35520 0.602611 0.301306 0.953528i \(-0.402578\pi\)
0.301306 + 0.953528i \(0.402578\pi\)
\(32\) 3.35520 0.593121
\(33\) 0 0
\(34\) 4.97980 0.854028
\(35\) 0.381966 0.0645640
\(36\) 0 0
\(37\) −8.50651 −1.39846 −0.699231 0.714896i \(-0.746474\pi\)
−0.699231 + 0.714896i \(0.746474\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.90211 −0.300750
\(41\) −5.70634 −0.891180 −0.445590 0.895237i \(-0.647006\pi\)
−0.445590 + 0.895237i \(0.647006\pi\)
\(42\) 0 0
\(43\) −3.76393 −0.573994 −0.286997 0.957931i \(-0.592657\pi\)
−0.286997 + 0.957931i \(0.592657\pi\)
\(44\) 2.61803 0.394683
\(45\) 0 0
\(46\) 4.42477 0.652396
\(47\) −10.6180 −1.54880 −0.774400 0.632697i \(-0.781948\pi\)
−0.774400 + 0.632697i \(0.781948\pi\)
\(48\) 0 0
\(49\) −6.61803 −0.945433
\(50\) −5.42882 −0.767752
\(51\) 0 0
\(52\) −0.277515 −0.0384843
\(53\) −10.1311 −1.39161 −0.695807 0.718229i \(-0.744953\pi\)
−0.695807 + 0.718229i \(0.744953\pi\)
\(54\) 0 0
\(55\) −2.61803 −0.353016
\(56\) −1.90211 −0.254181
\(57\) 0 0
\(58\) 6.18034 0.811518
\(59\) −12.8658 −1.67498 −0.837490 0.546453i \(-0.815978\pi\)
−0.837490 + 0.546453i \(0.815978\pi\)
\(60\) 0 0
\(61\) −7.23607 −0.926484 −0.463242 0.886232i \(-0.653314\pi\)
−0.463242 + 0.886232i \(0.653314\pi\)
\(62\) 3.94427 0.500923
\(63\) 0 0
\(64\) 8.70820 1.08853
\(65\) 0.277515 0.0344214
\(66\) 0 0
\(67\) 10.2371 1.25066 0.625331 0.780360i \(-0.284964\pi\)
0.625331 + 0.780360i \(0.284964\pi\)
\(68\) −2.61803 −0.317483
\(69\) 0 0
\(70\) 0.449028 0.0536691
\(71\) −2.80017 −0.332319 −0.166159 0.986099i \(-0.553137\pi\)
−0.166159 + 0.986099i \(0.553137\pi\)
\(72\) 0 0
\(73\) −12.7082 −1.48738 −0.743691 0.668523i \(-0.766927\pi\)
−0.743691 + 0.668523i \(0.766927\pi\)
\(74\) −10.0000 −1.16248
\(75\) 0 0
\(76\) 0 0
\(77\) −2.61803 −0.298353
\(78\) 0 0
\(79\) −13.0373 −1.46681 −0.733404 0.679793i \(-0.762070\pi\)
−0.733404 + 0.679793i \(0.762070\pi\)
\(80\) −1.47214 −0.164590
\(81\) 0 0
\(82\) −6.70820 −0.740797
\(83\) −7.94427 −0.871997 −0.435999 0.899947i \(-0.643605\pi\)
−0.435999 + 0.899947i \(0.643605\pi\)
\(84\) 0 0
\(85\) 2.61803 0.283966
\(86\) −4.42477 −0.477135
\(87\) 0 0
\(88\) 13.0373 1.38978
\(89\) 9.95959 1.05571 0.527857 0.849333i \(-0.322996\pi\)
0.527857 + 0.849333i \(0.322996\pi\)
\(90\) 0 0
\(91\) 0.277515 0.0290914
\(92\) −2.32624 −0.242527
\(93\) 0 0
\(94\) −12.4822 −1.28745
\(95\) 0 0
\(96\) 0 0
\(97\) 2.90617 0.295077 0.147538 0.989056i \(-0.452865\pi\)
0.147538 + 0.989056i \(0.452865\pi\)
\(98\) −7.77997 −0.785895
\(99\) 0 0
\(100\) 2.85410 0.285410
\(101\) 17.6525 1.75649 0.878243 0.478214i \(-0.158716\pi\)
0.878243 + 0.478214i \(0.158716\pi\)
\(102\) 0 0
\(103\) 12.5882 1.24036 0.620179 0.784461i \(-0.287060\pi\)
0.620179 + 0.784461i \(0.287060\pi\)
\(104\) −1.38197 −0.135513
\(105\) 0 0
\(106\) −11.9098 −1.15678
\(107\) 6.88191 0.665299 0.332650 0.943050i \(-0.392057\pi\)
0.332650 + 0.943050i \(0.392057\pi\)
\(108\) 0 0
\(109\) −3.63271 −0.347951 −0.173975 0.984750i \(-0.555661\pi\)
−0.173975 + 0.984750i \(0.555661\pi\)
\(110\) −3.07768 −0.293446
\(111\) 0 0
\(112\) −1.47214 −0.139104
\(113\) −7.88597 −0.741849 −0.370925 0.928663i \(-0.620959\pi\)
−0.370925 + 0.928663i \(0.620959\pi\)
\(114\) 0 0
\(115\) 2.32624 0.216923
\(116\) −3.24920 −0.301680
\(117\) 0 0
\(118\) −15.1246 −1.39233
\(119\) 2.61803 0.239995
\(120\) 0 0
\(121\) 6.94427 0.631297
\(122\) −8.50651 −0.770143
\(123\) 0 0
\(124\) −2.07363 −0.186217
\(125\) −5.94427 −0.531672
\(126\) 0 0
\(127\) 4.70228 0.417260 0.208630 0.977995i \(-0.433100\pi\)
0.208630 + 0.977995i \(0.433100\pi\)
\(128\) 3.52671 0.311720
\(129\) 0 0
\(130\) 0.326238 0.0286130
\(131\) 12.2361 1.06907 0.534535 0.845146i \(-0.320487\pi\)
0.534535 + 0.845146i \(0.320487\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0344 1.03962
\(135\) 0 0
\(136\) −13.0373 −1.11794
\(137\) 8.85410 0.756457 0.378228 0.925712i \(-0.376533\pi\)
0.378228 + 0.925712i \(0.376533\pi\)
\(138\) 0 0
\(139\) −22.1803 −1.88131 −0.940656 0.339362i \(-0.889789\pi\)
−0.940656 + 0.339362i \(0.889789\pi\)
\(140\) −0.236068 −0.0199514
\(141\) 0 0
\(142\) −3.29180 −0.276241
\(143\) −1.90211 −0.159063
\(144\) 0 0
\(145\) 3.24920 0.269831
\(146\) −14.9394 −1.23639
\(147\) 0 0
\(148\) 5.25731 0.432148
\(149\) 3.61803 0.296401 0.148200 0.988957i \(-0.452652\pi\)
0.148200 + 0.988957i \(0.452652\pi\)
\(150\) 0 0
\(151\) −19.0211 −1.54792 −0.773959 0.633236i \(-0.781726\pi\)
−0.773959 + 0.633236i \(0.781726\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −3.07768 −0.248007
\(155\) 2.07363 0.166558
\(156\) 0 0
\(157\) −6.41641 −0.512085 −0.256043 0.966666i \(-0.582419\pi\)
−0.256043 + 0.966666i \(0.582419\pi\)
\(158\) −15.3262 −1.21929
\(159\) 0 0
\(160\) 2.07363 0.163935
\(161\) 2.32624 0.183333
\(162\) 0 0
\(163\) −16.3262 −1.27877 −0.639385 0.768887i \(-0.720811\pi\)
−0.639385 + 0.768887i \(0.720811\pi\)
\(164\) 3.52671 0.275390
\(165\) 0 0
\(166\) −9.33905 −0.724851
\(167\) 9.06154 0.701203 0.350601 0.936525i \(-0.385977\pi\)
0.350601 + 0.936525i \(0.385977\pi\)
\(168\) 0 0
\(169\) −12.7984 −0.984490
\(170\) 3.07768 0.236048
\(171\) 0 0
\(172\) 2.32624 0.177374
\(173\) 15.5599 1.18300 0.591500 0.806305i \(-0.298536\pi\)
0.591500 + 0.806305i \(0.298536\pi\)
\(174\) 0 0
\(175\) −2.85410 −0.215750
\(176\) 10.0902 0.760575
\(177\) 0 0
\(178\) 11.7082 0.877567
\(179\) −1.17557 −0.0878663 −0.0439331 0.999034i \(-0.513989\pi\)
−0.0439331 + 0.999034i \(0.513989\pi\)
\(180\) 0 0
\(181\) 18.0171 1.33920 0.669599 0.742723i \(-0.266466\pi\)
0.669599 + 0.742723i \(0.266466\pi\)
\(182\) 0.326238 0.0241824
\(183\) 0 0
\(184\) −11.5842 −0.853998
\(185\) −5.25731 −0.386525
\(186\) 0 0
\(187\) −17.9443 −1.31222
\(188\) 6.56231 0.478605
\(189\) 0 0
\(190\) 0 0
\(191\) −8.41641 −0.608990 −0.304495 0.952514i \(-0.598488\pi\)
−0.304495 + 0.952514i \(0.598488\pi\)
\(192\) 0 0
\(193\) −5.25731 −0.378430 −0.189215 0.981936i \(-0.560594\pi\)
−0.189215 + 0.981936i \(0.560594\pi\)
\(194\) 3.41641 0.245284
\(195\) 0 0
\(196\) 4.09017 0.292155
\(197\) 15.7426 1.12162 0.560809 0.827946i \(-0.310490\pi\)
0.560809 + 0.827946i \(0.310490\pi\)
\(198\) 0 0
\(199\) 1.18034 0.0836721 0.0418360 0.999124i \(-0.486679\pi\)
0.0418360 + 0.999124i \(0.486679\pi\)
\(200\) 14.2128 1.00500
\(201\) 0 0
\(202\) 20.7517 1.46009
\(203\) 3.24920 0.228049
\(204\) 0 0
\(205\) −3.52671 −0.246316
\(206\) 14.7984 1.03105
\(207\) 0 0
\(208\) −1.06957 −0.0741613
\(209\) 0 0
\(210\) 0 0
\(211\) 8.33499 0.573805 0.286902 0.957960i \(-0.407374\pi\)
0.286902 + 0.957960i \(0.407374\pi\)
\(212\) 6.26137 0.430033
\(213\) 0 0
\(214\) 8.09017 0.553033
\(215\) −2.32624 −0.158648
\(216\) 0 0
\(217\) 2.07363 0.140767
\(218\) −4.27051 −0.289235
\(219\) 0 0
\(220\) 1.61803 0.109088
\(221\) 1.90211 0.127950
\(222\) 0 0
\(223\) 1.34708 0.0902074 0.0451037 0.998982i \(-0.485638\pi\)
0.0451037 + 0.998982i \(0.485638\pi\)
\(224\) 2.07363 0.138550
\(225\) 0 0
\(226\) −9.27051 −0.616665
\(227\) 18.2946 1.21425 0.607127 0.794605i \(-0.292322\pi\)
0.607127 + 0.794605i \(0.292322\pi\)
\(228\) 0 0
\(229\) 9.65248 0.637854 0.318927 0.947779i \(-0.396678\pi\)
0.318927 + 0.947779i \(0.396678\pi\)
\(230\) 2.73466 0.180318
\(231\) 0 0
\(232\) −16.1803 −1.06229
\(233\) −23.8885 −1.56499 −0.782495 0.622657i \(-0.786053\pi\)
−0.782495 + 0.622657i \(0.786053\pi\)
\(234\) 0 0
\(235\) −6.56231 −0.428078
\(236\) 7.95148 0.517597
\(237\) 0 0
\(238\) 3.07768 0.199497
\(239\) 0.145898 0.00943736 0.00471868 0.999989i \(-0.498498\pi\)
0.00471868 + 0.999989i \(0.498498\pi\)
\(240\) 0 0
\(241\) 10.4086 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(242\) 8.16348 0.524768
\(243\) 0 0
\(244\) 4.47214 0.286299
\(245\) −4.09017 −0.261311
\(246\) 0 0
\(247\) 0 0
\(248\) −10.3262 −0.655717
\(249\) 0 0
\(250\) −6.98791 −0.441954
\(251\) −28.4164 −1.79363 −0.896814 0.442408i \(-0.854124\pi\)
−0.896814 + 0.442408i \(0.854124\pi\)
\(252\) 0 0
\(253\) −15.9443 −1.00241
\(254\) 5.52786 0.346849
\(255\) 0 0
\(256\) −13.2705 −0.829407
\(257\) −11.2412 −0.701205 −0.350602 0.936524i \(-0.614023\pi\)
−0.350602 + 0.936524i \(0.614023\pi\)
\(258\) 0 0
\(259\) −5.25731 −0.326673
\(260\) −0.171513 −0.0106368
\(261\) 0 0
\(262\) 14.3844 0.888669
\(263\) −28.4721 −1.75567 −0.877834 0.478966i \(-0.841012\pi\)
−0.877834 + 0.478966i \(0.841012\pi\)
\(264\) 0 0
\(265\) −6.26137 −0.384633
\(266\) 0 0
\(267\) 0 0
\(268\) −6.32688 −0.386476
\(269\) 20.9888 1.27971 0.639854 0.768497i \(-0.278995\pi\)
0.639854 + 0.768497i \(0.278995\pi\)
\(270\) 0 0
\(271\) −20.8541 −1.26680 −0.633398 0.773826i \(-0.718340\pi\)
−0.633398 + 0.773826i \(0.718340\pi\)
\(272\) −10.0902 −0.611806
\(273\) 0 0
\(274\) 10.4086 0.628808
\(275\) 19.5623 1.17965
\(276\) 0 0
\(277\) −12.7984 −0.768980 −0.384490 0.923129i \(-0.625623\pi\)
−0.384490 + 0.923129i \(0.625623\pi\)
\(278\) −26.0746 −1.56385
\(279\) 0 0
\(280\) −1.17557 −0.0702538
\(281\) 26.4176 1.57594 0.787970 0.615713i \(-0.211132\pi\)
0.787970 + 0.615713i \(0.211132\pi\)
\(282\) 0 0
\(283\) 19.2148 1.14220 0.571100 0.820880i \(-0.306517\pi\)
0.571100 + 0.820880i \(0.306517\pi\)
\(284\) 1.73060 0.102692
\(285\) 0 0
\(286\) −2.23607 −0.132221
\(287\) −3.52671 −0.208175
\(288\) 0 0
\(289\) 0.944272 0.0555454
\(290\) 3.81966 0.224298
\(291\) 0 0
\(292\) 7.85410 0.459627
\(293\) 16.5640 0.967679 0.483839 0.875157i \(-0.339242\pi\)
0.483839 + 0.875157i \(0.339242\pi\)
\(294\) 0 0
\(295\) −7.95148 −0.462953
\(296\) 26.1803 1.52170
\(297\) 0 0
\(298\) 4.25325 0.246384
\(299\) 1.69011 0.0977416
\(300\) 0 0
\(301\) −2.32624 −0.134082
\(302\) −22.3607 −1.28671
\(303\) 0 0
\(304\) 0 0
\(305\) −4.47214 −0.256074
\(306\) 0 0
\(307\) −3.42071 −0.195230 −0.0976151 0.995224i \(-0.531121\pi\)
−0.0976151 + 0.995224i \(0.531121\pi\)
\(308\) 1.61803 0.0921960
\(309\) 0 0
\(310\) 2.43769 0.138452
\(311\) −8.05573 −0.456798 −0.228399 0.973568i \(-0.573349\pi\)
−0.228399 + 0.973568i \(0.573349\pi\)
\(312\) 0 0
\(313\) 22.1803 1.25371 0.626853 0.779137i \(-0.284342\pi\)
0.626853 + 0.779137i \(0.284342\pi\)
\(314\) −7.54294 −0.425673
\(315\) 0 0
\(316\) 8.05748 0.453269
\(317\) 4.42477 0.248520 0.124260 0.992250i \(-0.460344\pi\)
0.124260 + 0.992250i \(0.460344\pi\)
\(318\) 0 0
\(319\) −22.2703 −1.24690
\(320\) 5.38197 0.300861
\(321\) 0 0
\(322\) 2.73466 0.152396
\(323\) 0 0
\(324\) 0 0
\(325\) −2.07363 −0.115024
\(326\) −19.1926 −1.06298
\(327\) 0 0
\(328\) 17.5623 0.969716
\(329\) −6.56231 −0.361792
\(330\) 0 0
\(331\) −10.6861 −0.587363 −0.293682 0.955903i \(-0.594881\pi\)
−0.293682 + 0.955903i \(0.594881\pi\)
\(332\) 4.90983 0.269462
\(333\) 0 0
\(334\) 10.6525 0.582878
\(335\) 6.32688 0.345674
\(336\) 0 0
\(337\) −10.4086 −0.566994 −0.283497 0.958973i \(-0.591495\pi\)
−0.283497 + 0.958973i \(0.591495\pi\)
\(338\) −15.0454 −0.818361
\(339\) 0 0
\(340\) −1.61803 −0.0877502
\(341\) −14.2128 −0.769669
\(342\) 0 0
\(343\) −8.41641 −0.454443
\(344\) 11.5842 0.624578
\(345\) 0 0
\(346\) 18.2918 0.983373
\(347\) −15.4164 −0.827596 −0.413798 0.910369i \(-0.635798\pi\)
−0.413798 + 0.910369i \(0.635798\pi\)
\(348\) 0 0
\(349\) −5.20163 −0.278437 −0.139218 0.990262i \(-0.544459\pi\)
−0.139218 + 0.990262i \(0.544459\pi\)
\(350\) −3.35520 −0.179343
\(351\) 0 0
\(352\) −14.2128 −0.757547
\(353\) 21.3607 1.13691 0.568457 0.822713i \(-0.307541\pi\)
0.568457 + 0.822713i \(0.307541\pi\)
\(354\) 0 0
\(355\) −1.73060 −0.0918507
\(356\) −6.15537 −0.326234
\(357\) 0 0
\(358\) −1.38197 −0.0730392
\(359\) −6.50658 −0.343404 −0.171702 0.985149i \(-0.554927\pi\)
−0.171702 + 0.985149i \(0.554927\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 21.1803 1.11321
\(363\) 0 0
\(364\) −0.171513 −0.00898975
\(365\) −7.85410 −0.411102
\(366\) 0 0
\(367\) 4.88854 0.255180 0.127590 0.991827i \(-0.459276\pi\)
0.127590 + 0.991827i \(0.459276\pi\)
\(368\) −8.96556 −0.467362
\(369\) 0 0
\(370\) −6.18034 −0.321301
\(371\) −6.26137 −0.325074
\(372\) 0 0
\(373\) −20.0907 −1.04026 −0.520128 0.854088i \(-0.674116\pi\)
−0.520128 + 0.854088i \(0.674116\pi\)
\(374\) −21.0948 −1.09078
\(375\) 0 0
\(376\) 32.6789 1.68529
\(377\) 2.36068 0.121581
\(378\) 0 0
\(379\) 6.15537 0.316180 0.158090 0.987425i \(-0.449466\pi\)
0.158090 + 0.987425i \(0.449466\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −9.89408 −0.506225
\(383\) 31.6094 1.61516 0.807582 0.589755i \(-0.200776\pi\)
0.807582 + 0.589755i \(0.200776\pi\)
\(384\) 0 0
\(385\) −1.61803 −0.0824626
\(386\) −6.18034 −0.314571
\(387\) 0 0
\(388\) −1.79611 −0.0911838
\(389\) 35.1803 1.78371 0.891857 0.452317i \(-0.149403\pi\)
0.891857 + 0.452317i \(0.149403\pi\)
\(390\) 0 0
\(391\) 15.9443 0.806336
\(392\) 20.3682 1.02875
\(393\) 0 0
\(394\) 18.5066 0.932349
\(395\) −8.05748 −0.405416
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) 1.38757 0.0695527
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) 5.42882 0.271103 0.135551 0.990770i \(-0.456719\pi\)
0.135551 + 0.990770i \(0.456719\pi\)
\(402\) 0 0
\(403\) 1.50658 0.0750480
\(404\) −10.9098 −0.542784
\(405\) 0 0
\(406\) 3.81966 0.189567
\(407\) 36.0341 1.78615
\(408\) 0 0
\(409\) 31.6749 1.56622 0.783111 0.621882i \(-0.213631\pi\)
0.783111 + 0.621882i \(0.213631\pi\)
\(410\) −4.14590 −0.204751
\(411\) 0 0
\(412\) −7.77997 −0.383291
\(413\) −7.95148 −0.391267
\(414\) 0 0
\(415\) −4.90983 −0.241014
\(416\) 1.50658 0.0738661
\(417\) 0 0
\(418\) 0 0
\(419\) 7.29180 0.356228 0.178114 0.984010i \(-0.443000\pi\)
0.178114 + 0.984010i \(0.443000\pi\)
\(420\) 0 0
\(421\) 30.1563 1.46973 0.734864 0.678215i \(-0.237246\pi\)
0.734864 + 0.678215i \(0.237246\pi\)
\(422\) 9.79837 0.476977
\(423\) 0 0
\(424\) 31.1803 1.51425
\(425\) −19.5623 −0.948911
\(426\) 0 0
\(427\) −4.47214 −0.216422
\(428\) −4.25325 −0.205589
\(429\) 0 0
\(430\) −2.73466 −0.131877
\(431\) −24.0009 −1.15608 −0.578042 0.816007i \(-0.696183\pi\)
−0.578042 + 0.816007i \(0.696183\pi\)
\(432\) 0 0
\(433\) −22.6134 −1.08673 −0.543364 0.839497i \(-0.682850\pi\)
−0.543364 + 0.839497i \(0.682850\pi\)
\(434\) 2.43769 0.117013
\(435\) 0 0
\(436\) 2.24514 0.107523
\(437\) 0 0
\(438\) 0 0
\(439\) 20.9888 1.00174 0.500869 0.865523i \(-0.333014\pi\)
0.500869 + 0.865523i \(0.333014\pi\)
\(440\) 8.05748 0.384125
\(441\) 0 0
\(442\) 2.23607 0.106359
\(443\) −4.81966 −0.228989 −0.114494 0.993424i \(-0.536525\pi\)
−0.114494 + 0.993424i \(0.536525\pi\)
\(444\) 0 0
\(445\) 6.15537 0.291792
\(446\) 1.58359 0.0749853
\(447\) 0 0
\(448\) 5.38197 0.254274
\(449\) 29.2582 1.38078 0.690391 0.723437i \(-0.257439\pi\)
0.690391 + 0.723437i \(0.257439\pi\)
\(450\) 0 0
\(451\) 24.1724 1.13824
\(452\) 4.87380 0.229244
\(453\) 0 0
\(454\) 21.5066 1.00935
\(455\) 0.171513 0.00804067
\(456\) 0 0
\(457\) −4.56231 −0.213416 −0.106708 0.994290i \(-0.534031\pi\)
−0.106708 + 0.994290i \(0.534031\pi\)
\(458\) 11.3472 0.530218
\(459\) 0 0
\(460\) −1.43769 −0.0670328
\(461\) 21.9098 1.02044 0.510221 0.860043i \(-0.329564\pi\)
0.510221 + 0.860043i \(0.329564\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −12.5227 −0.581353
\(465\) 0 0
\(466\) −28.0827 −1.30090
\(467\) 6.67376 0.308825 0.154412 0.988006i \(-0.450652\pi\)
0.154412 + 0.988006i \(0.450652\pi\)
\(468\) 0 0
\(469\) 6.32688 0.292148
\(470\) −7.71445 −0.355841
\(471\) 0 0
\(472\) 39.5967 1.82259
\(473\) 15.9443 0.733118
\(474\) 0 0
\(475\) 0 0
\(476\) −1.61803 −0.0741625
\(477\) 0 0
\(478\) 0.171513 0.00784484
\(479\) 23.2148 1.06071 0.530355 0.847776i \(-0.322059\pi\)
0.530355 + 0.847776i \(0.322059\pi\)
\(480\) 0 0
\(481\) −3.81966 −0.174162
\(482\) 12.2361 0.557338
\(483\) 0 0
\(484\) −4.29180 −0.195082
\(485\) 1.79611 0.0815572
\(486\) 0 0
\(487\) −33.2995 −1.50894 −0.754472 0.656332i \(-0.772107\pi\)
−0.754472 + 0.656332i \(0.772107\pi\)
\(488\) 22.2703 1.00813
\(489\) 0 0
\(490\) −4.80828 −0.217216
\(491\) 1.70820 0.0770902 0.0385451 0.999257i \(-0.487728\pi\)
0.0385451 + 0.999257i \(0.487728\pi\)
\(492\) 0 0
\(493\) 22.2703 1.00301
\(494\) 0 0
\(495\) 0 0
\(496\) −7.99197 −0.358850
\(497\) −1.73060 −0.0776280
\(498\) 0 0
\(499\) −13.7639 −0.616158 −0.308079 0.951361i \(-0.599686\pi\)
−0.308079 + 0.951361i \(0.599686\pi\)
\(500\) 3.67376 0.164296
\(501\) 0 0
\(502\) −33.4055 −1.49096
\(503\) −3.96556 −0.176815 −0.0884077 0.996084i \(-0.528178\pi\)
−0.0884077 + 0.996084i \(0.528178\pi\)
\(504\) 0 0
\(505\) 10.9098 0.485481
\(506\) −18.7436 −0.833255
\(507\) 0 0
\(508\) −2.90617 −0.128940
\(509\) 10.4086 0.461354 0.230677 0.973030i \(-0.425906\pi\)
0.230677 + 0.973030i \(0.425906\pi\)
\(510\) 0 0
\(511\) −7.85410 −0.347445
\(512\) −22.6538 −1.00117
\(513\) 0 0
\(514\) −13.2148 −0.582879
\(515\) 7.77997 0.342826
\(516\) 0 0
\(517\) 44.9787 1.97816
\(518\) −6.18034 −0.271549
\(519\) 0 0
\(520\) −0.854102 −0.0374548
\(521\) −27.1441 −1.18921 −0.594603 0.804020i \(-0.702691\pi\)
−0.594603 + 0.804020i \(0.702691\pi\)
\(522\) 0 0
\(523\) −26.6296 −1.16443 −0.582215 0.813035i \(-0.697814\pi\)
−0.582215 + 0.813035i \(0.697814\pi\)
\(524\) −7.56231 −0.330361
\(525\) 0 0
\(526\) −33.4710 −1.45941
\(527\) 14.2128 0.619121
\(528\) 0 0
\(529\) −8.83282 −0.384035
\(530\) −7.36068 −0.319727
\(531\) 0 0
\(532\) 0 0
\(533\) −2.56231 −0.110986
\(534\) 0 0
\(535\) 4.25325 0.183884
\(536\) −31.5066 −1.36088
\(537\) 0 0
\(538\) 24.6738 1.06376
\(539\) 28.0344 1.20753
\(540\) 0 0
\(541\) 13.4164 0.576816 0.288408 0.957508i \(-0.406874\pi\)
0.288408 + 0.957508i \(0.406874\pi\)
\(542\) −24.5155 −1.05303
\(543\) 0 0
\(544\) 14.2128 0.609371
\(545\) −2.24514 −0.0961712
\(546\) 0 0
\(547\) −7.99197 −0.341712 −0.170856 0.985296i \(-0.554653\pi\)
−0.170856 + 0.985296i \(0.554653\pi\)
\(548\) −5.47214 −0.233758
\(549\) 0 0
\(550\) 22.9969 0.980590
\(551\) 0 0
\(552\) 0 0
\(553\) −8.05748 −0.342639
\(554\) −15.0454 −0.639217
\(555\) 0 0
\(556\) 13.7082 0.581357
\(557\) −0.944272 −0.0400101 −0.0200050 0.999800i \(-0.506368\pi\)
−0.0200050 + 0.999800i \(0.506368\pi\)
\(558\) 0 0
\(559\) −1.69011 −0.0714841
\(560\) −0.909830 −0.0384473
\(561\) 0 0
\(562\) 31.0557 1.31001
\(563\) −24.0009 −1.01152 −0.505759 0.862675i \(-0.668788\pi\)
−0.505759 + 0.862675i \(0.668788\pi\)
\(564\) 0 0
\(565\) −4.87380 −0.205042
\(566\) 22.5883 0.949458
\(567\) 0 0
\(568\) 8.61803 0.361605
\(569\) 41.9120 1.75704 0.878521 0.477703i \(-0.158531\pi\)
0.878521 + 0.477703i \(0.158531\pi\)
\(570\) 0 0
\(571\) −23.4164 −0.979946 −0.489973 0.871738i \(-0.662993\pi\)
−0.489973 + 0.871738i \(0.662993\pi\)
\(572\) 1.17557 0.0491531
\(573\) 0 0
\(574\) −4.14590 −0.173046
\(575\) −17.3820 −0.724878
\(576\) 0 0
\(577\) −18.1246 −0.754537 −0.377269 0.926104i \(-0.623137\pi\)
−0.377269 + 0.926104i \(0.623137\pi\)
\(578\) 1.11006 0.0461723
\(579\) 0 0
\(580\) −2.00811 −0.0833824
\(581\) −4.90983 −0.203694
\(582\) 0 0
\(583\) 42.9161 1.77740
\(584\) 39.1118 1.61846
\(585\) 0 0
\(586\) 19.4721 0.804387
\(587\) 4.50658 0.186006 0.0930032 0.995666i \(-0.470353\pi\)
0.0930032 + 0.995666i \(0.470353\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −9.34752 −0.384831
\(591\) 0 0
\(592\) 20.2622 0.832772
\(593\) −7.41641 −0.304555 −0.152278 0.988338i \(-0.548661\pi\)
−0.152278 + 0.988338i \(0.548661\pi\)
\(594\) 0 0
\(595\) 1.61803 0.0663329
\(596\) −2.23607 −0.0915929
\(597\) 0 0
\(598\) 1.98684 0.0812481
\(599\) 35.5851 1.45397 0.726984 0.686654i \(-0.240921\pi\)
0.726984 + 0.686654i \(0.240921\pi\)
\(600\) 0 0
\(601\) −37.7647 −1.54046 −0.770228 0.637769i \(-0.779858\pi\)
−0.770228 + 0.637769i \(0.779858\pi\)
\(602\) −2.73466 −0.111456
\(603\) 0 0
\(604\) 11.7557 0.478333
\(605\) 4.29180 0.174486
\(606\) 0 0
\(607\) 29.3893 1.19287 0.596437 0.802660i \(-0.296583\pi\)
0.596437 + 0.802660i \(0.296583\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −5.25731 −0.212862
\(611\) −4.76779 −0.192884
\(612\) 0 0
\(613\) 23.4721 0.948031 0.474015 0.880517i \(-0.342804\pi\)
0.474015 + 0.880517i \(0.342804\pi\)
\(614\) −4.02129 −0.162286
\(615\) 0 0
\(616\) 8.05748 0.324645
\(617\) −43.1246 −1.73613 −0.868066 0.496449i \(-0.834637\pi\)
−0.868066 + 0.496449i \(0.834637\pi\)
\(618\) 0 0
\(619\) 2.09017 0.0840110 0.0420055 0.999117i \(-0.486625\pi\)
0.0420055 + 0.999117i \(0.486625\pi\)
\(620\) −1.28157 −0.0514692
\(621\) 0 0
\(622\) −9.47008 −0.379715
\(623\) 6.15537 0.246610
\(624\) 0 0
\(625\) 19.4164 0.776656
\(626\) 26.0746 1.04215
\(627\) 0 0
\(628\) 3.96556 0.158243
\(629\) −36.0341 −1.43678
\(630\) 0 0
\(631\) 16.8328 0.670104 0.335052 0.942200i \(-0.391246\pi\)
0.335052 + 0.942200i \(0.391246\pi\)
\(632\) 40.1246 1.59607
\(633\) 0 0
\(634\) 5.20163 0.206583
\(635\) 2.90617 0.115328
\(636\) 0 0
\(637\) −2.97168 −0.117742
\(638\) −26.1803 −1.03649
\(639\) 0 0
\(640\) 2.17963 0.0861573
\(641\) −37.3157 −1.47388 −0.736941 0.675957i \(-0.763731\pi\)
−0.736941 + 0.675957i \(0.763731\pi\)
\(642\) 0 0
\(643\) 33.5623 1.32357 0.661784 0.749695i \(-0.269800\pi\)
0.661784 + 0.749695i \(0.269800\pi\)
\(644\) −1.43769 −0.0566531
\(645\) 0 0
\(646\) 0 0
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) 54.5002 2.13932
\(650\) −2.43769 −0.0956142
\(651\) 0 0
\(652\) 10.0902 0.395162
\(653\) 17.9443 0.702214 0.351107 0.936335i \(-0.385805\pi\)
0.351107 + 0.936335i \(0.385805\pi\)
\(654\) 0 0
\(655\) 7.56231 0.295484
\(656\) 13.5923 0.530690
\(657\) 0 0
\(658\) −7.71445 −0.300741
\(659\) 36.2057 1.41037 0.705186 0.709022i \(-0.250863\pi\)
0.705186 + 0.709022i \(0.250863\pi\)
\(660\) 0 0
\(661\) −29.3893 −1.14311 −0.571555 0.820564i \(-0.693660\pi\)
−0.571555 + 0.820564i \(0.693660\pi\)
\(662\) −12.5623 −0.488248
\(663\) 0 0
\(664\) 24.4500 0.948842
\(665\) 0 0
\(666\) 0 0
\(667\) 19.7882 0.766201
\(668\) −5.60034 −0.216684
\(669\) 0 0
\(670\) 7.43769 0.287343
\(671\) 30.6525 1.18333
\(672\) 0 0
\(673\) −47.2348 −1.82077 −0.910384 0.413764i \(-0.864214\pi\)
−0.910384 + 0.413764i \(0.864214\pi\)
\(674\) −12.2361 −0.471316
\(675\) 0 0
\(676\) 7.90983 0.304224
\(677\) −7.60845 −0.292417 −0.146208 0.989254i \(-0.546707\pi\)
−0.146208 + 0.989254i \(0.546707\pi\)
\(678\) 0 0
\(679\) 1.79611 0.0689284
\(680\) −8.05748 −0.308990
\(681\) 0 0
\(682\) −16.7082 −0.639790
\(683\) −30.8828 −1.18170 −0.590849 0.806782i \(-0.701207\pi\)
−0.590849 + 0.806782i \(0.701207\pi\)
\(684\) 0 0
\(685\) 5.47214 0.209080
\(686\) −9.89408 −0.377758
\(687\) 0 0
\(688\) 8.96556 0.341809
\(689\) −4.54915 −0.173309
\(690\) 0 0
\(691\) −50.7771 −1.93165 −0.965826 0.259192i \(-0.916544\pi\)
−0.965826 + 0.259192i \(0.916544\pi\)
\(692\) −9.61657 −0.365567
\(693\) 0 0
\(694\) −18.1231 −0.687942
\(695\) −13.7082 −0.519982
\(696\) 0 0
\(697\) −24.1724 −0.915596
\(698\) −6.11488 −0.231452
\(699\) 0 0
\(700\) 1.76393 0.0666704
\(701\) 19.1803 0.724431 0.362216 0.932094i \(-0.382020\pi\)
0.362216 + 0.932094i \(0.382020\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −36.8885 −1.39029
\(705\) 0 0
\(706\) 25.1110 0.945064
\(707\) 10.9098 0.410306
\(708\) 0 0
\(709\) 37.6869 1.41536 0.707681 0.706532i \(-0.249741\pi\)
0.707681 + 0.706532i \(0.249741\pi\)
\(710\) −2.03444 −0.0763512
\(711\) 0 0
\(712\) −30.6525 −1.14875
\(713\) 12.6287 0.472950
\(714\) 0 0
\(715\) −1.17557 −0.0439638
\(716\) 0.726543 0.0271522
\(717\) 0 0
\(718\) −7.64894 −0.285456
\(719\) 45.3262 1.69038 0.845192 0.534463i \(-0.179486\pi\)
0.845192 + 0.534463i \(0.179486\pi\)
\(720\) 0 0
\(721\) 7.77997 0.289741
\(722\) 0 0
\(723\) 0 0
\(724\) −11.1352 −0.413835
\(725\) −24.2784 −0.901679
\(726\) 0 0
\(727\) −40.1591 −1.48942 −0.744708 0.667390i \(-0.767411\pi\)
−0.744708 + 0.667390i \(0.767411\pi\)
\(728\) −0.854102 −0.0316551
\(729\) 0 0
\(730\) −9.23305 −0.341731
\(731\) −15.9443 −0.589720
\(732\) 0 0
\(733\) 35.1803 1.29942 0.649708 0.760184i \(-0.274891\pi\)
0.649708 + 0.760184i \(0.274891\pi\)
\(734\) 5.74683 0.212119
\(735\) 0 0
\(736\) 12.6287 0.465501
\(737\) −43.3651 −1.59737
\(738\) 0 0
\(739\) 19.7984 0.728295 0.364147 0.931341i \(-0.381360\pi\)
0.364147 + 0.931341i \(0.381360\pi\)
\(740\) 3.24920 0.119443
\(741\) 0 0
\(742\) −7.36068 −0.270219
\(743\) −1.62460 −0.0596007 −0.0298004 0.999556i \(-0.509487\pi\)
−0.0298004 + 0.999556i \(0.509487\pi\)
\(744\) 0 0
\(745\) 2.23607 0.0819232
\(746\) −23.6180 −0.864718
\(747\) 0 0
\(748\) 11.0902 0.405497
\(749\) 4.25325 0.155411
\(750\) 0 0
\(751\) 17.0785 0.623204 0.311602 0.950213i \(-0.399134\pi\)
0.311602 + 0.950213i \(0.399134\pi\)
\(752\) 25.2918 0.922297
\(753\) 0 0
\(754\) 2.77515 0.101065
\(755\) −11.7557 −0.427834
\(756\) 0 0
\(757\) −12.1246 −0.440677 −0.220338 0.975424i \(-0.570716\pi\)
−0.220338 + 0.975424i \(0.570716\pi\)
\(758\) 7.23607 0.262826
\(759\) 0 0
\(760\) 0 0
\(761\) 43.3050 1.56980 0.784902 0.619620i \(-0.212713\pi\)
0.784902 + 0.619620i \(0.212713\pi\)
\(762\) 0 0
\(763\) −2.24514 −0.0812795
\(764\) 5.20163 0.188188
\(765\) 0 0
\(766\) 37.1591 1.34261
\(767\) −5.77709 −0.208599
\(768\) 0 0
\(769\) 1.96556 0.0708798 0.0354399 0.999372i \(-0.488717\pi\)
0.0354399 + 0.999372i \(0.488717\pi\)
\(770\) −1.90211 −0.0685474
\(771\) 0 0
\(772\) 3.24920 0.116941
\(773\) −19.0866 −0.686499 −0.343249 0.939244i \(-0.611528\pi\)
−0.343249 + 0.939244i \(0.611528\pi\)
\(774\) 0 0
\(775\) −15.4944 −0.556576
\(776\) −8.94427 −0.321081
\(777\) 0 0
\(778\) 41.3570 1.48272
\(779\) 0 0
\(780\) 0 0
\(781\) 11.8617 0.424445
\(782\) 18.7436 0.670270
\(783\) 0 0
\(784\) 15.7639 0.562998
\(785\) −3.96556 −0.141537
\(786\) 0 0
\(787\) 17.8456 0.636126 0.318063 0.948070i \(-0.396968\pi\)
0.318063 + 0.948070i \(0.396968\pi\)
\(788\) −9.72949 −0.346599
\(789\) 0 0
\(790\) −9.47214 −0.337003
\(791\) −4.87380 −0.173292
\(792\) 0 0
\(793\) −3.24920 −0.115382
\(794\) −8.22899 −0.292036
\(795\) 0 0
\(796\) −0.729490 −0.0258561
\(797\) −27.0786 −0.959174 −0.479587 0.877494i \(-0.659213\pi\)
−0.479587 + 0.877494i \(0.659213\pi\)
\(798\) 0 0
\(799\) −44.9787 −1.59123
\(800\) −15.4944 −0.547810
\(801\) 0 0
\(802\) 6.38197 0.225355
\(803\) 53.8328 1.89972
\(804\) 0 0
\(805\) 1.43769 0.0506721
\(806\) 1.77109 0.0623839
\(807\) 0 0
\(808\) −54.3287 −1.91128
\(809\) −29.5410 −1.03861 −0.519303 0.854590i \(-0.673809\pi\)
−0.519303 + 0.854590i \(0.673809\pi\)
\(810\) 0 0
\(811\) −22.4418 −0.788040 −0.394020 0.919102i \(-0.628916\pi\)
−0.394020 + 0.919102i \(0.628916\pi\)
\(812\) −2.00811 −0.0704710
\(813\) 0 0
\(814\) 42.3607 1.48474
\(815\) −10.0902 −0.353443
\(816\) 0 0
\(817\) 0 0
\(818\) 37.2361 1.30193
\(819\) 0 0
\(820\) 2.17963 0.0761159
\(821\) 45.3262 1.58190 0.790948 0.611883i \(-0.209588\pi\)
0.790948 + 0.611883i \(0.209588\pi\)
\(822\) 0 0
\(823\) −22.3050 −0.777502 −0.388751 0.921343i \(-0.627093\pi\)
−0.388751 + 0.921343i \(0.627093\pi\)
\(824\) −38.7426 −1.34966
\(825\) 0 0
\(826\) −9.34752 −0.325242
\(827\) −13.8293 −0.480893 −0.240446 0.970662i \(-0.577294\pi\)
−0.240446 + 0.970662i \(0.577294\pi\)
\(828\) 0 0
\(829\) −29.6418 −1.02950 −0.514750 0.857340i \(-0.672115\pi\)
−0.514750 + 0.857340i \(0.672115\pi\)
\(830\) −5.77185 −0.200344
\(831\) 0 0
\(832\) 3.91023 0.135563
\(833\) −28.0344 −0.971336
\(834\) 0 0
\(835\) 5.60034 0.193808
\(836\) 0 0
\(837\) 0 0
\(838\) 8.57202 0.296116
\(839\) −57.6184 −1.98921 −0.994604 0.103741i \(-0.966919\pi\)
−0.994604 + 0.103741i \(0.966919\pi\)
\(840\) 0 0
\(841\) −1.36068 −0.0469200
\(842\) 35.4508 1.22172
\(843\) 0 0
\(844\) −5.15131 −0.177315
\(845\) −7.90983 −0.272106
\(846\) 0 0
\(847\) 4.29180 0.147468
\(848\) 24.1320 0.828695
\(849\) 0 0
\(850\) −22.9969 −0.788786
\(851\) −32.0179 −1.09756
\(852\) 0 0
\(853\) −15.5967 −0.534022 −0.267011 0.963693i \(-0.586036\pi\)
−0.267011 + 0.963693i \(0.586036\pi\)
\(854\) −5.25731 −0.179901
\(855\) 0 0
\(856\) −21.1803 −0.723929
\(857\) −3.63271 −0.124091 −0.0620455 0.998073i \(-0.519762\pi\)
−0.0620455 + 0.998073i \(0.519762\pi\)
\(858\) 0 0
\(859\) 42.1591 1.43845 0.719224 0.694778i \(-0.244497\pi\)
0.719224 + 0.694778i \(0.244497\pi\)
\(860\) 1.43769 0.0490250
\(861\) 0 0
\(862\) −28.2148 −0.960999
\(863\) −46.1653 −1.57148 −0.785742 0.618555i \(-0.787719\pi\)
−0.785742 + 0.618555i \(0.787719\pi\)
\(864\) 0 0
\(865\) 9.61657 0.326973
\(866\) −26.5836 −0.903347
\(867\) 0 0
\(868\) −1.28157 −0.0434994
\(869\) 55.2268 1.87344
\(870\) 0 0
\(871\) 4.59675 0.155755
\(872\) 11.1803 0.378614
\(873\) 0 0
\(874\) 0 0
\(875\) −3.67376 −0.124196
\(876\) 0 0
\(877\) 41.8060 1.41169 0.705844 0.708367i \(-0.250568\pi\)
0.705844 + 0.708367i \(0.250568\pi\)
\(878\) 24.6738 0.832699
\(879\) 0 0
\(880\) 6.23607 0.210218
\(881\) −40.3607 −1.35979 −0.679893 0.733311i \(-0.737974\pi\)
−0.679893 + 0.733311i \(0.737974\pi\)
\(882\) 0 0
\(883\) 13.4721 0.453373 0.226687 0.973968i \(-0.427211\pi\)
0.226687 + 0.973968i \(0.427211\pi\)
\(884\) −1.17557 −0.0395387
\(885\) 0 0
\(886\) −5.66585 −0.190348
\(887\) 30.4338 1.02187 0.510934 0.859620i \(-0.329300\pi\)
0.510934 + 0.859620i \(0.329300\pi\)
\(888\) 0 0
\(889\) 2.90617 0.0974698
\(890\) 7.23607 0.242554
\(891\) 0 0
\(892\) −0.832544 −0.0278756
\(893\) 0 0
\(894\) 0 0
\(895\) −0.726543 −0.0242856
\(896\) 2.17963 0.0728162
\(897\) 0 0
\(898\) 34.3951 1.14778
\(899\) 17.6393 0.588304
\(900\) 0 0
\(901\) −42.9161 −1.42974
\(902\) 28.4164 0.946163
\(903\) 0 0
\(904\) 24.2705 0.807225
\(905\) 11.1352 0.370145
\(906\) 0 0
\(907\) 33.2995 1.10569 0.552846 0.833284i \(-0.313542\pi\)
0.552846 + 0.833284i \(0.313542\pi\)
\(908\) −11.3067 −0.375225
\(909\) 0 0
\(910\) 0.201626 0.00668384
\(911\) −34.6466 −1.14789 −0.573946 0.818893i \(-0.694588\pi\)
−0.573946 + 0.818893i \(0.694588\pi\)
\(912\) 0 0
\(913\) 33.6525 1.11373
\(914\) −5.36331 −0.177403
\(915\) 0 0
\(916\) −5.96556 −0.197108
\(917\) 7.56231 0.249729
\(918\) 0 0
\(919\) −16.0557 −0.529630 −0.264815 0.964299i \(-0.585311\pi\)
−0.264815 + 0.964299i \(0.585311\pi\)
\(920\) −7.15942 −0.236039
\(921\) 0 0
\(922\) 25.7565 0.848247
\(923\) −1.25735 −0.0413863
\(924\) 0 0
\(925\) 39.2833 1.29163
\(926\) −28.2137 −0.927159
\(927\) 0 0
\(928\) 17.6393 0.579039
\(929\) −37.1803 −1.21985 −0.609924 0.792460i \(-0.708800\pi\)
−0.609924 + 0.792460i \(0.708800\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 14.7639 0.483609
\(933\) 0 0
\(934\) 7.84548 0.256712
\(935\) −11.0902 −0.362687
\(936\) 0 0
\(937\) 4.18034 0.136566 0.0682829 0.997666i \(-0.478248\pi\)
0.0682829 + 0.997666i \(0.478248\pi\)
\(938\) 7.43769 0.242849
\(939\) 0 0
\(940\) 4.05573 0.132283
\(941\) −7.50245 −0.244573 −0.122286 0.992495i \(-0.539023\pi\)
−0.122286 + 0.992495i \(0.539023\pi\)
\(942\) 0 0
\(943\) −21.4783 −0.699429
\(944\) 30.6458 0.997436
\(945\) 0 0
\(946\) 18.7436 0.609408
\(947\) −15.8885 −0.516308 −0.258154 0.966104i \(-0.583114\pi\)
−0.258154 + 0.966104i \(0.583114\pi\)
\(948\) 0 0
\(949\) −5.70634 −0.185236
\(950\) 0 0
\(951\) 0 0
\(952\) −8.05748 −0.261144
\(953\) 10.0001 0.323934 0.161967 0.986796i \(-0.448216\pi\)
0.161967 + 0.986796i \(0.448216\pi\)
\(954\) 0 0
\(955\) −5.20163 −0.168321
\(956\) −0.0901699 −0.00291630
\(957\) 0 0
\(958\) 27.2906 0.881720
\(959\) 5.47214 0.176704
\(960\) 0 0
\(961\) −19.7426 −0.636860
\(962\) −4.49028 −0.144772
\(963\) 0 0
\(964\) −6.43288 −0.207189
\(965\) −3.24920 −0.104595
\(966\) 0 0
\(967\) 27.2705 0.876960 0.438480 0.898741i \(-0.355517\pi\)
0.438480 + 0.898741i \(0.355517\pi\)
\(968\) −21.3723 −0.686931
\(969\) 0 0
\(970\) 2.11146 0.0677948
\(971\) −5.42882 −0.174219 −0.0871096 0.996199i \(-0.527763\pi\)
−0.0871096 + 0.996199i \(0.527763\pi\)
\(972\) 0 0
\(973\) −13.7082 −0.439465
\(974\) −39.1459 −1.25432
\(975\) 0 0
\(976\) 17.2361 0.551713
\(977\) −26.6296 −0.851956 −0.425978 0.904734i \(-0.640070\pi\)
−0.425978 + 0.904734i \(0.640070\pi\)
\(978\) 0 0
\(979\) −42.1895 −1.34838
\(980\) 2.52786 0.0807497
\(981\) 0 0
\(982\) 2.00811 0.0640815
\(983\) −26.4176 −0.842590 −0.421295 0.906924i \(-0.638424\pi\)
−0.421295 + 0.906924i \(0.638424\pi\)
\(984\) 0 0
\(985\) 9.72949 0.310007
\(986\) 26.1803 0.833752
\(987\) 0 0
\(988\) 0 0
\(989\) −14.1672 −0.450490
\(990\) 0 0
\(991\) −3.63271 −0.115397 −0.0576985 0.998334i \(-0.518376\pi\)
−0.0576985 + 0.998334i \(0.518376\pi\)
\(992\) 11.2574 0.357421
\(993\) 0 0
\(994\) −2.03444 −0.0645286
\(995\) 0.729490 0.0231264
\(996\) 0 0
\(997\) 28.1246 0.890715 0.445358 0.895353i \(-0.353077\pi\)
0.445358 + 0.895353i \(0.353077\pi\)
\(998\) −16.1805 −0.512184
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.ba.1.3 yes 4
3.2 odd 2 3249.2.a.bb.1.2 yes 4
19.18 odd 2 inner 3249.2.a.ba.1.2 4
57.56 even 2 3249.2.a.bb.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3249.2.a.ba.1.2 4 19.18 odd 2 inner
3249.2.a.ba.1.3 yes 4 1.1 even 1 trivial
3249.2.a.bb.1.2 yes 4 3.2 odd 2
3249.2.a.bb.1.3 yes 4 57.56 even 2