Properties

Label 3249.2.a.ba.1.2
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,-2,0,-2,0,0,0,-8,0,0,0,0,-14,8,0,0,-6,0,0,24,0,-14,20, 0,-6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,-24,6,0,0,-38,0,-22,0,0,0,0,0,-6,0,0, -20,0,0,-20,-20,0,8,0,0,0,-6,0,0,0,0,-24,-40,0,0,-6,0,0,12,0,0,4,0,6,0, 0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.17557\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.17557 q^{2} -0.618034 q^{4} +0.618034 q^{5} +0.618034 q^{7} +3.07768 q^{8} -0.726543 q^{10} -4.23607 q^{11} -0.449028 q^{13} -0.726543 q^{14} -2.38197 q^{16} +4.23607 q^{17} -0.381966 q^{20} +4.97980 q^{22} +3.76393 q^{23} -4.61803 q^{25} +0.527864 q^{26} -0.381966 q^{28} -5.25731 q^{29} -3.35520 q^{31} -3.35520 q^{32} -4.97980 q^{34} +0.381966 q^{35} +8.50651 q^{37} +1.90211 q^{40} +5.70634 q^{41} -3.76393 q^{43} +2.61803 q^{44} -4.42477 q^{46} -10.6180 q^{47} -6.61803 q^{49} +5.42882 q^{50} +0.277515 q^{52} +10.1311 q^{53} -2.61803 q^{55} +1.90211 q^{56} +6.18034 q^{58} +12.8658 q^{59} -7.23607 q^{61} +3.94427 q^{62} +8.70820 q^{64} -0.277515 q^{65} -10.2371 q^{67} -2.61803 q^{68} -0.449028 q^{70} +2.80017 q^{71} -12.7082 q^{73} -10.0000 q^{74} -2.61803 q^{77} +13.0373 q^{79} -1.47214 q^{80} -6.70820 q^{82} -7.94427 q^{83} +2.61803 q^{85} +4.42477 q^{86} -13.0373 q^{88} -9.95959 q^{89} -0.277515 q^{91} -2.32624 q^{92} +12.4822 q^{94} -2.90617 q^{97} +7.77997 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{5} - 2 q^{7} - 8 q^{11} - 14 q^{16} + 8 q^{17} - 6 q^{20} + 24 q^{23} - 14 q^{25} + 20 q^{26} - 6 q^{28} + 6 q^{35} - 24 q^{43} + 6 q^{44} - 38 q^{47} - 22 q^{49} - 6 q^{55} - 20 q^{58}+ \cdots + 22 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.17557 −0.831254 −0.415627 0.909535i \(-0.636438\pi\)
−0.415627 + 0.909535i \(0.636438\pi\)
\(3\) 0 0
\(4\) −0.618034 −0.309017
\(5\) 0.618034 0.276393 0.138197 0.990405i \(-0.455869\pi\)
0.138197 + 0.990405i \(0.455869\pi\)
\(6\) 0 0
\(7\) 0.618034 0.233595 0.116797 0.993156i \(-0.462737\pi\)
0.116797 + 0.993156i \(0.462737\pi\)
\(8\) 3.07768 1.08813
\(9\) 0 0
\(10\) −0.726543 −0.229753
\(11\) −4.23607 −1.27722 −0.638611 0.769529i \(-0.720491\pi\)
−0.638611 + 0.769529i \(0.720491\pi\)
\(12\) 0 0
\(13\) −0.449028 −0.124538 −0.0622690 0.998059i \(-0.519834\pi\)
−0.0622690 + 0.998059i \(0.519834\pi\)
\(14\) −0.726543 −0.194177
\(15\) 0 0
\(16\) −2.38197 −0.595492
\(17\) 4.23607 1.02740 0.513699 0.857971i \(-0.328275\pi\)
0.513699 + 0.857971i \(0.328275\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) −0.381966 −0.0854102
\(21\) 0 0
\(22\) 4.97980 1.06170
\(23\) 3.76393 0.784834 0.392417 0.919787i \(-0.371639\pi\)
0.392417 + 0.919787i \(0.371639\pi\)
\(24\) 0 0
\(25\) −4.61803 −0.923607
\(26\) 0.527864 0.103523
\(27\) 0 0
\(28\) −0.381966 −0.0721848
\(29\) −5.25731 −0.976258 −0.488129 0.872771i \(-0.662320\pi\)
−0.488129 + 0.872771i \(0.662320\pi\)
\(30\) 0 0
\(31\) −3.35520 −0.602611 −0.301306 0.953528i \(-0.597422\pi\)
−0.301306 + 0.953528i \(0.597422\pi\)
\(32\) −3.35520 −0.593121
\(33\) 0 0
\(34\) −4.97980 −0.854028
\(35\) 0.381966 0.0645640
\(36\) 0 0
\(37\) 8.50651 1.39846 0.699231 0.714896i \(-0.253526\pi\)
0.699231 + 0.714896i \(0.253526\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.90211 0.300750
\(41\) 5.70634 0.891180 0.445590 0.895237i \(-0.352994\pi\)
0.445590 + 0.895237i \(0.352994\pi\)
\(42\) 0 0
\(43\) −3.76393 −0.573994 −0.286997 0.957931i \(-0.592657\pi\)
−0.286997 + 0.957931i \(0.592657\pi\)
\(44\) 2.61803 0.394683
\(45\) 0 0
\(46\) −4.42477 −0.652396
\(47\) −10.6180 −1.54880 −0.774400 0.632697i \(-0.781948\pi\)
−0.774400 + 0.632697i \(0.781948\pi\)
\(48\) 0 0
\(49\) −6.61803 −0.945433
\(50\) 5.42882 0.767752
\(51\) 0 0
\(52\) 0.277515 0.0384843
\(53\) 10.1311 1.39161 0.695807 0.718229i \(-0.255047\pi\)
0.695807 + 0.718229i \(0.255047\pi\)
\(54\) 0 0
\(55\) −2.61803 −0.353016
\(56\) 1.90211 0.254181
\(57\) 0 0
\(58\) 6.18034 0.811518
\(59\) 12.8658 1.67498 0.837490 0.546453i \(-0.184022\pi\)
0.837490 + 0.546453i \(0.184022\pi\)
\(60\) 0 0
\(61\) −7.23607 −0.926484 −0.463242 0.886232i \(-0.653314\pi\)
−0.463242 + 0.886232i \(0.653314\pi\)
\(62\) 3.94427 0.500923
\(63\) 0 0
\(64\) 8.70820 1.08853
\(65\) −0.277515 −0.0344214
\(66\) 0 0
\(67\) −10.2371 −1.25066 −0.625331 0.780360i \(-0.715036\pi\)
−0.625331 + 0.780360i \(0.715036\pi\)
\(68\) −2.61803 −0.317483
\(69\) 0 0
\(70\) −0.449028 −0.0536691
\(71\) 2.80017 0.332319 0.166159 0.986099i \(-0.446863\pi\)
0.166159 + 0.986099i \(0.446863\pi\)
\(72\) 0 0
\(73\) −12.7082 −1.48738 −0.743691 0.668523i \(-0.766927\pi\)
−0.743691 + 0.668523i \(0.766927\pi\)
\(74\) −10.0000 −1.16248
\(75\) 0 0
\(76\) 0 0
\(77\) −2.61803 −0.298353
\(78\) 0 0
\(79\) 13.0373 1.46681 0.733404 0.679793i \(-0.237930\pi\)
0.733404 + 0.679793i \(0.237930\pi\)
\(80\) −1.47214 −0.164590
\(81\) 0 0
\(82\) −6.70820 −0.740797
\(83\) −7.94427 −0.871997 −0.435999 0.899947i \(-0.643605\pi\)
−0.435999 + 0.899947i \(0.643605\pi\)
\(84\) 0 0
\(85\) 2.61803 0.283966
\(86\) 4.42477 0.477135
\(87\) 0 0
\(88\) −13.0373 −1.38978
\(89\) −9.95959 −1.05571 −0.527857 0.849333i \(-0.677004\pi\)
−0.527857 + 0.849333i \(0.677004\pi\)
\(90\) 0 0
\(91\) −0.277515 −0.0290914
\(92\) −2.32624 −0.242527
\(93\) 0 0
\(94\) 12.4822 1.28745
\(95\) 0 0
\(96\) 0 0
\(97\) −2.90617 −0.295077 −0.147538 0.989056i \(-0.547135\pi\)
−0.147538 + 0.989056i \(0.547135\pi\)
\(98\) 7.77997 0.785895
\(99\) 0 0
\(100\) 2.85410 0.285410
\(101\) 17.6525 1.75649 0.878243 0.478214i \(-0.158716\pi\)
0.878243 + 0.478214i \(0.158716\pi\)
\(102\) 0 0
\(103\) −12.5882 −1.24036 −0.620179 0.784461i \(-0.712940\pi\)
−0.620179 + 0.784461i \(0.712940\pi\)
\(104\) −1.38197 −0.135513
\(105\) 0 0
\(106\) −11.9098 −1.15678
\(107\) −6.88191 −0.665299 −0.332650 0.943050i \(-0.607943\pi\)
−0.332650 + 0.943050i \(0.607943\pi\)
\(108\) 0 0
\(109\) 3.63271 0.347951 0.173975 0.984750i \(-0.444339\pi\)
0.173975 + 0.984750i \(0.444339\pi\)
\(110\) 3.07768 0.293446
\(111\) 0 0
\(112\) −1.47214 −0.139104
\(113\) 7.88597 0.741849 0.370925 0.928663i \(-0.379041\pi\)
0.370925 + 0.928663i \(0.379041\pi\)
\(114\) 0 0
\(115\) 2.32624 0.216923
\(116\) 3.24920 0.301680
\(117\) 0 0
\(118\) −15.1246 −1.39233
\(119\) 2.61803 0.239995
\(120\) 0 0
\(121\) 6.94427 0.631297
\(122\) 8.50651 0.770143
\(123\) 0 0
\(124\) 2.07363 0.186217
\(125\) −5.94427 −0.531672
\(126\) 0 0
\(127\) −4.70228 −0.417260 −0.208630 0.977995i \(-0.566900\pi\)
−0.208630 + 0.977995i \(0.566900\pi\)
\(128\) −3.52671 −0.311720
\(129\) 0 0
\(130\) 0.326238 0.0286130
\(131\) 12.2361 1.06907 0.534535 0.845146i \(-0.320487\pi\)
0.534535 + 0.845146i \(0.320487\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0344 1.03962
\(135\) 0 0
\(136\) 13.0373 1.11794
\(137\) 8.85410 0.756457 0.378228 0.925712i \(-0.376533\pi\)
0.378228 + 0.925712i \(0.376533\pi\)
\(138\) 0 0
\(139\) −22.1803 −1.88131 −0.940656 0.339362i \(-0.889789\pi\)
−0.940656 + 0.339362i \(0.889789\pi\)
\(140\) −0.236068 −0.0199514
\(141\) 0 0
\(142\) −3.29180 −0.276241
\(143\) 1.90211 0.159063
\(144\) 0 0
\(145\) −3.24920 −0.269831
\(146\) 14.9394 1.23639
\(147\) 0 0
\(148\) −5.25731 −0.432148
\(149\) 3.61803 0.296401 0.148200 0.988957i \(-0.452652\pi\)
0.148200 + 0.988957i \(0.452652\pi\)
\(150\) 0 0
\(151\) 19.0211 1.54792 0.773959 0.633236i \(-0.218274\pi\)
0.773959 + 0.633236i \(0.218274\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 3.07768 0.248007
\(155\) −2.07363 −0.166558
\(156\) 0 0
\(157\) −6.41641 −0.512085 −0.256043 0.966666i \(-0.582419\pi\)
−0.256043 + 0.966666i \(0.582419\pi\)
\(158\) −15.3262 −1.21929
\(159\) 0 0
\(160\) −2.07363 −0.163935
\(161\) 2.32624 0.183333
\(162\) 0 0
\(163\) −16.3262 −1.27877 −0.639385 0.768887i \(-0.720811\pi\)
−0.639385 + 0.768887i \(0.720811\pi\)
\(164\) −3.52671 −0.275390
\(165\) 0 0
\(166\) 9.33905 0.724851
\(167\) −9.06154 −0.701203 −0.350601 0.936525i \(-0.614023\pi\)
−0.350601 + 0.936525i \(0.614023\pi\)
\(168\) 0 0
\(169\) −12.7984 −0.984490
\(170\) −3.07768 −0.236048
\(171\) 0 0
\(172\) 2.32624 0.177374
\(173\) −15.5599 −1.18300 −0.591500 0.806305i \(-0.701464\pi\)
−0.591500 + 0.806305i \(0.701464\pi\)
\(174\) 0 0
\(175\) −2.85410 −0.215750
\(176\) 10.0902 0.760575
\(177\) 0 0
\(178\) 11.7082 0.877567
\(179\) 1.17557 0.0878663 0.0439331 0.999034i \(-0.486011\pi\)
0.0439331 + 0.999034i \(0.486011\pi\)
\(180\) 0 0
\(181\) −18.0171 −1.33920 −0.669599 0.742723i \(-0.733534\pi\)
−0.669599 + 0.742723i \(0.733534\pi\)
\(182\) 0.326238 0.0241824
\(183\) 0 0
\(184\) 11.5842 0.853998
\(185\) 5.25731 0.386525
\(186\) 0 0
\(187\) −17.9443 −1.31222
\(188\) 6.56231 0.478605
\(189\) 0 0
\(190\) 0 0
\(191\) −8.41641 −0.608990 −0.304495 0.952514i \(-0.598488\pi\)
−0.304495 + 0.952514i \(0.598488\pi\)
\(192\) 0 0
\(193\) 5.25731 0.378430 0.189215 0.981936i \(-0.439406\pi\)
0.189215 + 0.981936i \(0.439406\pi\)
\(194\) 3.41641 0.245284
\(195\) 0 0
\(196\) 4.09017 0.292155
\(197\) 15.7426 1.12162 0.560809 0.827946i \(-0.310490\pi\)
0.560809 + 0.827946i \(0.310490\pi\)
\(198\) 0 0
\(199\) 1.18034 0.0836721 0.0418360 0.999124i \(-0.486679\pi\)
0.0418360 + 0.999124i \(0.486679\pi\)
\(200\) −14.2128 −1.00500
\(201\) 0 0
\(202\) −20.7517 −1.46009
\(203\) −3.24920 −0.228049
\(204\) 0 0
\(205\) 3.52671 0.246316
\(206\) 14.7984 1.03105
\(207\) 0 0
\(208\) 1.06957 0.0741613
\(209\) 0 0
\(210\) 0 0
\(211\) −8.33499 −0.573805 −0.286902 0.957960i \(-0.592626\pi\)
−0.286902 + 0.957960i \(0.592626\pi\)
\(212\) −6.26137 −0.430033
\(213\) 0 0
\(214\) 8.09017 0.553033
\(215\) −2.32624 −0.158648
\(216\) 0 0
\(217\) −2.07363 −0.140767
\(218\) −4.27051 −0.289235
\(219\) 0 0
\(220\) 1.61803 0.109088
\(221\) −1.90211 −0.127950
\(222\) 0 0
\(223\) −1.34708 −0.0902074 −0.0451037 0.998982i \(-0.514362\pi\)
−0.0451037 + 0.998982i \(0.514362\pi\)
\(224\) −2.07363 −0.138550
\(225\) 0 0
\(226\) −9.27051 −0.616665
\(227\) −18.2946 −1.21425 −0.607127 0.794605i \(-0.707678\pi\)
−0.607127 + 0.794605i \(0.707678\pi\)
\(228\) 0 0
\(229\) 9.65248 0.637854 0.318927 0.947779i \(-0.396678\pi\)
0.318927 + 0.947779i \(0.396678\pi\)
\(230\) −2.73466 −0.180318
\(231\) 0 0
\(232\) −16.1803 −1.06229
\(233\) −23.8885 −1.56499 −0.782495 0.622657i \(-0.786053\pi\)
−0.782495 + 0.622657i \(0.786053\pi\)
\(234\) 0 0
\(235\) −6.56231 −0.428078
\(236\) −7.95148 −0.517597
\(237\) 0 0
\(238\) −3.07768 −0.199497
\(239\) 0.145898 0.00943736 0.00471868 0.999989i \(-0.498498\pi\)
0.00471868 + 0.999989i \(0.498498\pi\)
\(240\) 0 0
\(241\) −10.4086 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(242\) −8.16348 −0.524768
\(243\) 0 0
\(244\) 4.47214 0.286299
\(245\) −4.09017 −0.261311
\(246\) 0 0
\(247\) 0 0
\(248\) −10.3262 −0.655717
\(249\) 0 0
\(250\) 6.98791 0.441954
\(251\) −28.4164 −1.79363 −0.896814 0.442408i \(-0.854124\pi\)
−0.896814 + 0.442408i \(0.854124\pi\)
\(252\) 0 0
\(253\) −15.9443 −1.00241
\(254\) 5.52786 0.346849
\(255\) 0 0
\(256\) −13.2705 −0.829407
\(257\) 11.2412 0.701205 0.350602 0.936524i \(-0.385977\pi\)
0.350602 + 0.936524i \(0.385977\pi\)
\(258\) 0 0
\(259\) 5.25731 0.326673
\(260\) 0.171513 0.0106368
\(261\) 0 0
\(262\) −14.3844 −0.888669
\(263\) −28.4721 −1.75567 −0.877834 0.478966i \(-0.841012\pi\)
−0.877834 + 0.478966i \(0.841012\pi\)
\(264\) 0 0
\(265\) 6.26137 0.384633
\(266\) 0 0
\(267\) 0 0
\(268\) 6.32688 0.386476
\(269\) −20.9888 −1.27971 −0.639854 0.768497i \(-0.721005\pi\)
−0.639854 + 0.768497i \(0.721005\pi\)
\(270\) 0 0
\(271\) −20.8541 −1.26680 −0.633398 0.773826i \(-0.718340\pi\)
−0.633398 + 0.773826i \(0.718340\pi\)
\(272\) −10.0902 −0.611806
\(273\) 0 0
\(274\) −10.4086 −0.628808
\(275\) 19.5623 1.17965
\(276\) 0 0
\(277\) −12.7984 −0.768980 −0.384490 0.923129i \(-0.625623\pi\)
−0.384490 + 0.923129i \(0.625623\pi\)
\(278\) 26.0746 1.56385
\(279\) 0 0
\(280\) 1.17557 0.0702538
\(281\) −26.4176 −1.57594 −0.787970 0.615713i \(-0.788868\pi\)
−0.787970 + 0.615713i \(0.788868\pi\)
\(282\) 0 0
\(283\) 19.2148 1.14220 0.571100 0.820880i \(-0.306517\pi\)
0.571100 + 0.820880i \(0.306517\pi\)
\(284\) −1.73060 −0.102692
\(285\) 0 0
\(286\) −2.23607 −0.132221
\(287\) 3.52671 0.208175
\(288\) 0 0
\(289\) 0.944272 0.0555454
\(290\) 3.81966 0.224298
\(291\) 0 0
\(292\) 7.85410 0.459627
\(293\) −16.5640 −0.967679 −0.483839 0.875157i \(-0.660758\pi\)
−0.483839 + 0.875157i \(0.660758\pi\)
\(294\) 0 0
\(295\) 7.95148 0.462953
\(296\) 26.1803 1.52170
\(297\) 0 0
\(298\) −4.25325 −0.246384
\(299\) −1.69011 −0.0977416
\(300\) 0 0
\(301\) −2.32624 −0.134082
\(302\) −22.3607 −1.28671
\(303\) 0 0
\(304\) 0 0
\(305\) −4.47214 −0.256074
\(306\) 0 0
\(307\) 3.42071 0.195230 0.0976151 0.995224i \(-0.468879\pi\)
0.0976151 + 0.995224i \(0.468879\pi\)
\(308\) 1.61803 0.0921960
\(309\) 0 0
\(310\) 2.43769 0.138452
\(311\) −8.05573 −0.456798 −0.228399 0.973568i \(-0.573349\pi\)
−0.228399 + 0.973568i \(0.573349\pi\)
\(312\) 0 0
\(313\) 22.1803 1.25371 0.626853 0.779137i \(-0.284342\pi\)
0.626853 + 0.779137i \(0.284342\pi\)
\(314\) 7.54294 0.425673
\(315\) 0 0
\(316\) −8.05748 −0.453269
\(317\) −4.42477 −0.248520 −0.124260 0.992250i \(-0.539656\pi\)
−0.124260 + 0.992250i \(0.539656\pi\)
\(318\) 0 0
\(319\) 22.2703 1.24690
\(320\) 5.38197 0.300861
\(321\) 0 0
\(322\) −2.73466 −0.152396
\(323\) 0 0
\(324\) 0 0
\(325\) 2.07363 0.115024
\(326\) 19.1926 1.06298
\(327\) 0 0
\(328\) 17.5623 0.969716
\(329\) −6.56231 −0.361792
\(330\) 0 0
\(331\) 10.6861 0.587363 0.293682 0.955903i \(-0.405119\pi\)
0.293682 + 0.955903i \(0.405119\pi\)
\(332\) 4.90983 0.269462
\(333\) 0 0
\(334\) 10.6525 0.582878
\(335\) −6.32688 −0.345674
\(336\) 0 0
\(337\) 10.4086 0.566994 0.283497 0.958973i \(-0.408505\pi\)
0.283497 + 0.958973i \(0.408505\pi\)
\(338\) 15.0454 0.818361
\(339\) 0 0
\(340\) −1.61803 −0.0877502
\(341\) 14.2128 0.769669
\(342\) 0 0
\(343\) −8.41641 −0.454443
\(344\) −11.5842 −0.624578
\(345\) 0 0
\(346\) 18.2918 0.983373
\(347\) −15.4164 −0.827596 −0.413798 0.910369i \(-0.635798\pi\)
−0.413798 + 0.910369i \(0.635798\pi\)
\(348\) 0 0
\(349\) −5.20163 −0.278437 −0.139218 0.990262i \(-0.544459\pi\)
−0.139218 + 0.990262i \(0.544459\pi\)
\(350\) 3.35520 0.179343
\(351\) 0 0
\(352\) 14.2128 0.757547
\(353\) 21.3607 1.13691 0.568457 0.822713i \(-0.307541\pi\)
0.568457 + 0.822713i \(0.307541\pi\)
\(354\) 0 0
\(355\) 1.73060 0.0918507
\(356\) 6.15537 0.326234
\(357\) 0 0
\(358\) −1.38197 −0.0730392
\(359\) −6.50658 −0.343404 −0.171702 0.985149i \(-0.554927\pi\)
−0.171702 + 0.985149i \(0.554927\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 21.1803 1.11321
\(363\) 0 0
\(364\) 0.171513 0.00898975
\(365\) −7.85410 −0.411102
\(366\) 0 0
\(367\) 4.88854 0.255180 0.127590 0.991827i \(-0.459276\pi\)
0.127590 + 0.991827i \(0.459276\pi\)
\(368\) −8.96556 −0.467362
\(369\) 0 0
\(370\) −6.18034 −0.321301
\(371\) 6.26137 0.325074
\(372\) 0 0
\(373\) 20.0907 1.04026 0.520128 0.854088i \(-0.325884\pi\)
0.520128 + 0.854088i \(0.325884\pi\)
\(374\) 21.0948 1.09078
\(375\) 0 0
\(376\) −32.6789 −1.68529
\(377\) 2.36068 0.121581
\(378\) 0 0
\(379\) −6.15537 −0.316180 −0.158090 0.987425i \(-0.550534\pi\)
−0.158090 + 0.987425i \(0.550534\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 9.89408 0.506225
\(383\) −31.6094 −1.61516 −0.807582 0.589755i \(-0.799224\pi\)
−0.807582 + 0.589755i \(0.799224\pi\)
\(384\) 0 0
\(385\) −1.61803 −0.0824626
\(386\) −6.18034 −0.314571
\(387\) 0 0
\(388\) 1.79611 0.0911838
\(389\) 35.1803 1.78371 0.891857 0.452317i \(-0.149403\pi\)
0.891857 + 0.452317i \(0.149403\pi\)
\(390\) 0 0
\(391\) 15.9443 0.806336
\(392\) −20.3682 −1.02875
\(393\) 0 0
\(394\) −18.5066 −0.932349
\(395\) 8.05748 0.405416
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) −1.38757 −0.0695527
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −5.42882 −0.271103 −0.135551 0.990770i \(-0.543281\pi\)
−0.135551 + 0.990770i \(0.543281\pi\)
\(402\) 0 0
\(403\) 1.50658 0.0750480
\(404\) −10.9098 −0.542784
\(405\) 0 0
\(406\) 3.81966 0.189567
\(407\) −36.0341 −1.78615
\(408\) 0 0
\(409\) −31.6749 −1.56622 −0.783111 0.621882i \(-0.786369\pi\)
−0.783111 + 0.621882i \(0.786369\pi\)
\(410\) −4.14590 −0.204751
\(411\) 0 0
\(412\) 7.77997 0.383291
\(413\) 7.95148 0.391267
\(414\) 0 0
\(415\) −4.90983 −0.241014
\(416\) 1.50658 0.0738661
\(417\) 0 0
\(418\) 0 0
\(419\) 7.29180 0.356228 0.178114 0.984010i \(-0.443000\pi\)
0.178114 + 0.984010i \(0.443000\pi\)
\(420\) 0 0
\(421\) −30.1563 −1.46973 −0.734864 0.678215i \(-0.762754\pi\)
−0.734864 + 0.678215i \(0.762754\pi\)
\(422\) 9.79837 0.476977
\(423\) 0 0
\(424\) 31.1803 1.51425
\(425\) −19.5623 −0.948911
\(426\) 0 0
\(427\) −4.47214 −0.216422
\(428\) 4.25325 0.205589
\(429\) 0 0
\(430\) 2.73466 0.131877
\(431\) 24.0009 1.15608 0.578042 0.816007i \(-0.303817\pi\)
0.578042 + 0.816007i \(0.303817\pi\)
\(432\) 0 0
\(433\) 22.6134 1.08673 0.543364 0.839497i \(-0.317150\pi\)
0.543364 + 0.839497i \(0.317150\pi\)
\(434\) 2.43769 0.117013
\(435\) 0 0
\(436\) −2.24514 −0.107523
\(437\) 0 0
\(438\) 0 0
\(439\) −20.9888 −1.00174 −0.500869 0.865523i \(-0.666986\pi\)
−0.500869 + 0.865523i \(0.666986\pi\)
\(440\) −8.05748 −0.384125
\(441\) 0 0
\(442\) 2.23607 0.106359
\(443\) −4.81966 −0.228989 −0.114494 0.993424i \(-0.536525\pi\)
−0.114494 + 0.993424i \(0.536525\pi\)
\(444\) 0 0
\(445\) −6.15537 −0.291792
\(446\) 1.58359 0.0749853
\(447\) 0 0
\(448\) 5.38197 0.254274
\(449\) −29.2582 −1.38078 −0.690391 0.723437i \(-0.742561\pi\)
−0.690391 + 0.723437i \(0.742561\pi\)
\(450\) 0 0
\(451\) −24.1724 −1.13824
\(452\) −4.87380 −0.229244
\(453\) 0 0
\(454\) 21.5066 1.00935
\(455\) −0.171513 −0.00804067
\(456\) 0 0
\(457\) −4.56231 −0.213416 −0.106708 0.994290i \(-0.534031\pi\)
−0.106708 + 0.994290i \(0.534031\pi\)
\(458\) −11.3472 −0.530218
\(459\) 0 0
\(460\) −1.43769 −0.0670328
\(461\) 21.9098 1.02044 0.510221 0.860043i \(-0.329564\pi\)
0.510221 + 0.860043i \(0.329564\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 12.5227 0.581353
\(465\) 0 0
\(466\) 28.0827 1.30090
\(467\) 6.67376 0.308825 0.154412 0.988006i \(-0.450652\pi\)
0.154412 + 0.988006i \(0.450652\pi\)
\(468\) 0 0
\(469\) −6.32688 −0.292148
\(470\) 7.71445 0.355841
\(471\) 0 0
\(472\) 39.5967 1.82259
\(473\) 15.9443 0.733118
\(474\) 0 0
\(475\) 0 0
\(476\) −1.61803 −0.0741625
\(477\) 0 0
\(478\) −0.171513 −0.00784484
\(479\) 23.2148 1.06071 0.530355 0.847776i \(-0.322059\pi\)
0.530355 + 0.847776i \(0.322059\pi\)
\(480\) 0 0
\(481\) −3.81966 −0.174162
\(482\) 12.2361 0.557338
\(483\) 0 0
\(484\) −4.29180 −0.195082
\(485\) −1.79611 −0.0815572
\(486\) 0 0
\(487\) 33.2995 1.50894 0.754472 0.656332i \(-0.227893\pi\)
0.754472 + 0.656332i \(0.227893\pi\)
\(488\) −22.2703 −1.00813
\(489\) 0 0
\(490\) 4.80828 0.217216
\(491\) 1.70820 0.0770902 0.0385451 0.999257i \(-0.487728\pi\)
0.0385451 + 0.999257i \(0.487728\pi\)
\(492\) 0 0
\(493\) −22.2703 −1.00301
\(494\) 0 0
\(495\) 0 0
\(496\) 7.99197 0.358850
\(497\) 1.73060 0.0776280
\(498\) 0 0
\(499\) −13.7639 −0.616158 −0.308079 0.951361i \(-0.599686\pi\)
−0.308079 + 0.951361i \(0.599686\pi\)
\(500\) 3.67376 0.164296
\(501\) 0 0
\(502\) 33.4055 1.49096
\(503\) −3.96556 −0.176815 −0.0884077 0.996084i \(-0.528178\pi\)
−0.0884077 + 0.996084i \(0.528178\pi\)
\(504\) 0 0
\(505\) 10.9098 0.485481
\(506\) 18.7436 0.833255
\(507\) 0 0
\(508\) 2.90617 0.128940
\(509\) −10.4086 −0.461354 −0.230677 0.973030i \(-0.574094\pi\)
−0.230677 + 0.973030i \(0.574094\pi\)
\(510\) 0 0
\(511\) −7.85410 −0.347445
\(512\) 22.6538 1.00117
\(513\) 0 0
\(514\) −13.2148 −0.582879
\(515\) −7.77997 −0.342826
\(516\) 0 0
\(517\) 44.9787 1.97816
\(518\) −6.18034 −0.271549
\(519\) 0 0
\(520\) −0.854102 −0.0374548
\(521\) 27.1441 1.18921 0.594603 0.804020i \(-0.297309\pi\)
0.594603 + 0.804020i \(0.297309\pi\)
\(522\) 0 0
\(523\) 26.6296 1.16443 0.582215 0.813035i \(-0.302186\pi\)
0.582215 + 0.813035i \(0.302186\pi\)
\(524\) −7.56231 −0.330361
\(525\) 0 0
\(526\) 33.4710 1.45941
\(527\) −14.2128 −0.619121
\(528\) 0 0
\(529\) −8.83282 −0.384035
\(530\) −7.36068 −0.319727
\(531\) 0 0
\(532\) 0 0
\(533\) −2.56231 −0.110986
\(534\) 0 0
\(535\) −4.25325 −0.183884
\(536\) −31.5066 −1.36088
\(537\) 0 0
\(538\) 24.6738 1.06376
\(539\) 28.0344 1.20753
\(540\) 0 0
\(541\) 13.4164 0.576816 0.288408 0.957508i \(-0.406874\pi\)
0.288408 + 0.957508i \(0.406874\pi\)
\(542\) 24.5155 1.05303
\(543\) 0 0
\(544\) −14.2128 −0.609371
\(545\) 2.24514 0.0961712
\(546\) 0 0
\(547\) 7.99197 0.341712 0.170856 0.985296i \(-0.445347\pi\)
0.170856 + 0.985296i \(0.445347\pi\)
\(548\) −5.47214 −0.233758
\(549\) 0 0
\(550\) −22.9969 −0.980590
\(551\) 0 0
\(552\) 0 0
\(553\) 8.05748 0.342639
\(554\) 15.0454 0.639217
\(555\) 0 0
\(556\) 13.7082 0.581357
\(557\) −0.944272 −0.0400101 −0.0200050 0.999800i \(-0.506368\pi\)
−0.0200050 + 0.999800i \(0.506368\pi\)
\(558\) 0 0
\(559\) 1.69011 0.0714841
\(560\) −0.909830 −0.0384473
\(561\) 0 0
\(562\) 31.0557 1.31001
\(563\) 24.0009 1.01152 0.505759 0.862675i \(-0.331212\pi\)
0.505759 + 0.862675i \(0.331212\pi\)
\(564\) 0 0
\(565\) 4.87380 0.205042
\(566\) −22.5883 −0.949458
\(567\) 0 0
\(568\) 8.61803 0.361605
\(569\) −41.9120 −1.75704 −0.878521 0.477703i \(-0.841469\pi\)
−0.878521 + 0.477703i \(0.841469\pi\)
\(570\) 0 0
\(571\) −23.4164 −0.979946 −0.489973 0.871738i \(-0.662993\pi\)
−0.489973 + 0.871738i \(0.662993\pi\)
\(572\) −1.17557 −0.0491531
\(573\) 0 0
\(574\) −4.14590 −0.173046
\(575\) −17.3820 −0.724878
\(576\) 0 0
\(577\) −18.1246 −0.754537 −0.377269 0.926104i \(-0.623137\pi\)
−0.377269 + 0.926104i \(0.623137\pi\)
\(578\) −1.11006 −0.0461723
\(579\) 0 0
\(580\) 2.00811 0.0833824
\(581\) −4.90983 −0.203694
\(582\) 0 0
\(583\) −42.9161 −1.77740
\(584\) −39.1118 −1.61846
\(585\) 0 0
\(586\) 19.4721 0.804387
\(587\) 4.50658 0.186006 0.0930032 0.995666i \(-0.470353\pi\)
0.0930032 + 0.995666i \(0.470353\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −9.34752 −0.384831
\(591\) 0 0
\(592\) −20.2622 −0.832772
\(593\) −7.41641 −0.304555 −0.152278 0.988338i \(-0.548661\pi\)
−0.152278 + 0.988338i \(0.548661\pi\)
\(594\) 0 0
\(595\) 1.61803 0.0663329
\(596\) −2.23607 −0.0915929
\(597\) 0 0
\(598\) 1.98684 0.0812481
\(599\) −35.5851 −1.45397 −0.726984 0.686654i \(-0.759079\pi\)
−0.726984 + 0.686654i \(0.759079\pi\)
\(600\) 0 0
\(601\) 37.7647 1.54046 0.770228 0.637769i \(-0.220142\pi\)
0.770228 + 0.637769i \(0.220142\pi\)
\(602\) 2.73466 0.111456
\(603\) 0 0
\(604\) −11.7557 −0.478333
\(605\) 4.29180 0.174486
\(606\) 0 0
\(607\) −29.3893 −1.19287 −0.596437 0.802660i \(-0.703417\pi\)
−0.596437 + 0.802660i \(0.703417\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 5.25731 0.212862
\(611\) 4.76779 0.192884
\(612\) 0 0
\(613\) 23.4721 0.948031 0.474015 0.880517i \(-0.342804\pi\)
0.474015 + 0.880517i \(0.342804\pi\)
\(614\) −4.02129 −0.162286
\(615\) 0 0
\(616\) −8.05748 −0.324645
\(617\) −43.1246 −1.73613 −0.868066 0.496449i \(-0.834637\pi\)
−0.868066 + 0.496449i \(0.834637\pi\)
\(618\) 0 0
\(619\) 2.09017 0.0840110 0.0420055 0.999117i \(-0.486625\pi\)
0.0420055 + 0.999117i \(0.486625\pi\)
\(620\) 1.28157 0.0514692
\(621\) 0 0
\(622\) 9.47008 0.379715
\(623\) −6.15537 −0.246610
\(624\) 0 0
\(625\) 19.4164 0.776656
\(626\) −26.0746 −1.04215
\(627\) 0 0
\(628\) 3.96556 0.158243
\(629\) 36.0341 1.43678
\(630\) 0 0
\(631\) 16.8328 0.670104 0.335052 0.942200i \(-0.391246\pi\)
0.335052 + 0.942200i \(0.391246\pi\)
\(632\) 40.1246 1.59607
\(633\) 0 0
\(634\) 5.20163 0.206583
\(635\) −2.90617 −0.115328
\(636\) 0 0
\(637\) 2.97168 0.117742
\(638\) −26.1803 −1.03649
\(639\) 0 0
\(640\) −2.17963 −0.0861573
\(641\) 37.3157 1.47388 0.736941 0.675957i \(-0.236269\pi\)
0.736941 + 0.675957i \(0.236269\pi\)
\(642\) 0 0
\(643\) 33.5623 1.32357 0.661784 0.749695i \(-0.269800\pi\)
0.661784 + 0.749695i \(0.269800\pi\)
\(644\) −1.43769 −0.0566531
\(645\) 0 0
\(646\) 0 0
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) −54.5002 −2.13932
\(650\) −2.43769 −0.0956142
\(651\) 0 0
\(652\) 10.0902 0.395162
\(653\) 17.9443 0.702214 0.351107 0.936335i \(-0.385805\pi\)
0.351107 + 0.936335i \(0.385805\pi\)
\(654\) 0 0
\(655\) 7.56231 0.295484
\(656\) −13.5923 −0.530690
\(657\) 0 0
\(658\) 7.71445 0.300741
\(659\) −36.2057 −1.41037 −0.705186 0.709022i \(-0.749137\pi\)
−0.705186 + 0.709022i \(0.749137\pi\)
\(660\) 0 0
\(661\) 29.3893 1.14311 0.571555 0.820564i \(-0.306340\pi\)
0.571555 + 0.820564i \(0.306340\pi\)
\(662\) −12.5623 −0.488248
\(663\) 0 0
\(664\) −24.4500 −0.948842
\(665\) 0 0
\(666\) 0 0
\(667\) −19.7882 −0.766201
\(668\) 5.60034 0.216684
\(669\) 0 0
\(670\) 7.43769 0.287343
\(671\) 30.6525 1.18333
\(672\) 0 0
\(673\) 47.2348 1.82077 0.910384 0.413764i \(-0.135786\pi\)
0.910384 + 0.413764i \(0.135786\pi\)
\(674\) −12.2361 −0.471316
\(675\) 0 0
\(676\) 7.90983 0.304224
\(677\) 7.60845 0.292417 0.146208 0.989254i \(-0.453293\pi\)
0.146208 + 0.989254i \(0.453293\pi\)
\(678\) 0 0
\(679\) −1.79611 −0.0689284
\(680\) 8.05748 0.308990
\(681\) 0 0
\(682\) −16.7082 −0.639790
\(683\) 30.8828 1.18170 0.590849 0.806782i \(-0.298793\pi\)
0.590849 + 0.806782i \(0.298793\pi\)
\(684\) 0 0
\(685\) 5.47214 0.209080
\(686\) 9.89408 0.377758
\(687\) 0 0
\(688\) 8.96556 0.341809
\(689\) −4.54915 −0.173309
\(690\) 0 0
\(691\) −50.7771 −1.93165 −0.965826 0.259192i \(-0.916544\pi\)
−0.965826 + 0.259192i \(0.916544\pi\)
\(692\) 9.61657 0.365567
\(693\) 0 0
\(694\) 18.1231 0.687942
\(695\) −13.7082 −0.519982
\(696\) 0 0
\(697\) 24.1724 0.915596
\(698\) 6.11488 0.231452
\(699\) 0 0
\(700\) 1.76393 0.0666704
\(701\) 19.1803 0.724431 0.362216 0.932094i \(-0.382020\pi\)
0.362216 + 0.932094i \(0.382020\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −36.8885 −1.39029
\(705\) 0 0
\(706\) −25.1110 −0.945064
\(707\) 10.9098 0.410306
\(708\) 0 0
\(709\) 37.6869 1.41536 0.707681 0.706532i \(-0.249741\pi\)
0.707681 + 0.706532i \(0.249741\pi\)
\(710\) −2.03444 −0.0763512
\(711\) 0 0
\(712\) −30.6525 −1.14875
\(713\) −12.6287 −0.472950
\(714\) 0 0
\(715\) 1.17557 0.0439638
\(716\) −0.726543 −0.0271522
\(717\) 0 0
\(718\) 7.64894 0.285456
\(719\) 45.3262 1.69038 0.845192 0.534463i \(-0.179486\pi\)
0.845192 + 0.534463i \(0.179486\pi\)
\(720\) 0 0
\(721\) −7.77997 −0.289741
\(722\) 0 0
\(723\) 0 0
\(724\) 11.1352 0.413835
\(725\) 24.2784 0.901679
\(726\) 0 0
\(727\) −40.1591 −1.48942 −0.744708 0.667390i \(-0.767411\pi\)
−0.744708 + 0.667390i \(0.767411\pi\)
\(728\) −0.854102 −0.0316551
\(729\) 0 0
\(730\) 9.23305 0.341731
\(731\) −15.9443 −0.589720
\(732\) 0 0
\(733\) 35.1803 1.29942 0.649708 0.760184i \(-0.274891\pi\)
0.649708 + 0.760184i \(0.274891\pi\)
\(734\) −5.74683 −0.212119
\(735\) 0 0
\(736\) −12.6287 −0.465501
\(737\) 43.3651 1.59737
\(738\) 0 0
\(739\) 19.7984 0.728295 0.364147 0.931341i \(-0.381360\pi\)
0.364147 + 0.931341i \(0.381360\pi\)
\(740\) −3.24920 −0.119443
\(741\) 0 0
\(742\) −7.36068 −0.270219
\(743\) 1.62460 0.0596007 0.0298004 0.999556i \(-0.490513\pi\)
0.0298004 + 0.999556i \(0.490513\pi\)
\(744\) 0 0
\(745\) 2.23607 0.0819232
\(746\) −23.6180 −0.864718
\(747\) 0 0
\(748\) 11.0902 0.405497
\(749\) −4.25325 −0.155411
\(750\) 0 0
\(751\) −17.0785 −0.623204 −0.311602 0.950213i \(-0.600866\pi\)
−0.311602 + 0.950213i \(0.600866\pi\)
\(752\) 25.2918 0.922297
\(753\) 0 0
\(754\) −2.77515 −0.101065
\(755\) 11.7557 0.427834
\(756\) 0 0
\(757\) −12.1246 −0.440677 −0.220338 0.975424i \(-0.570716\pi\)
−0.220338 + 0.975424i \(0.570716\pi\)
\(758\) 7.23607 0.262826
\(759\) 0 0
\(760\) 0 0
\(761\) 43.3050 1.56980 0.784902 0.619620i \(-0.212713\pi\)
0.784902 + 0.619620i \(0.212713\pi\)
\(762\) 0 0
\(763\) 2.24514 0.0812795
\(764\) 5.20163 0.188188
\(765\) 0 0
\(766\) 37.1591 1.34261
\(767\) −5.77709 −0.208599
\(768\) 0 0
\(769\) 1.96556 0.0708798 0.0354399 0.999372i \(-0.488717\pi\)
0.0354399 + 0.999372i \(0.488717\pi\)
\(770\) 1.90211 0.0685474
\(771\) 0 0
\(772\) −3.24920 −0.116941
\(773\) 19.0866 0.686499 0.343249 0.939244i \(-0.388472\pi\)
0.343249 + 0.939244i \(0.388472\pi\)
\(774\) 0 0
\(775\) 15.4944 0.556576
\(776\) −8.94427 −0.321081
\(777\) 0 0
\(778\) −41.3570 −1.48272
\(779\) 0 0
\(780\) 0 0
\(781\) −11.8617 −0.424445
\(782\) −18.7436 −0.670270
\(783\) 0 0
\(784\) 15.7639 0.562998
\(785\) −3.96556 −0.141537
\(786\) 0 0
\(787\) −17.8456 −0.636126 −0.318063 0.948070i \(-0.603032\pi\)
−0.318063 + 0.948070i \(0.603032\pi\)
\(788\) −9.72949 −0.346599
\(789\) 0 0
\(790\) −9.47214 −0.337003
\(791\) 4.87380 0.173292
\(792\) 0 0
\(793\) 3.24920 0.115382
\(794\) 8.22899 0.292036
\(795\) 0 0
\(796\) −0.729490 −0.0258561
\(797\) 27.0786 0.959174 0.479587 0.877494i \(-0.340787\pi\)
0.479587 + 0.877494i \(0.340787\pi\)
\(798\) 0 0
\(799\) −44.9787 −1.59123
\(800\) 15.4944 0.547810
\(801\) 0 0
\(802\) 6.38197 0.225355
\(803\) 53.8328 1.89972
\(804\) 0 0
\(805\) 1.43769 0.0506721
\(806\) −1.77109 −0.0623839
\(807\) 0 0
\(808\) 54.3287 1.91128
\(809\) −29.5410 −1.03861 −0.519303 0.854590i \(-0.673809\pi\)
−0.519303 + 0.854590i \(0.673809\pi\)
\(810\) 0 0
\(811\) 22.4418 0.788040 0.394020 0.919102i \(-0.371084\pi\)
0.394020 + 0.919102i \(0.371084\pi\)
\(812\) 2.00811 0.0704710
\(813\) 0 0
\(814\) 42.3607 1.48474
\(815\) −10.0902 −0.353443
\(816\) 0 0
\(817\) 0 0
\(818\) 37.2361 1.30193
\(819\) 0 0
\(820\) −2.17963 −0.0761159
\(821\) 45.3262 1.58190 0.790948 0.611883i \(-0.209588\pi\)
0.790948 + 0.611883i \(0.209588\pi\)
\(822\) 0 0
\(823\) −22.3050 −0.777502 −0.388751 0.921343i \(-0.627093\pi\)
−0.388751 + 0.921343i \(0.627093\pi\)
\(824\) −38.7426 −1.34966
\(825\) 0 0
\(826\) −9.34752 −0.325242
\(827\) 13.8293 0.480893 0.240446 0.970662i \(-0.422706\pi\)
0.240446 + 0.970662i \(0.422706\pi\)
\(828\) 0 0
\(829\) 29.6418 1.02950 0.514750 0.857340i \(-0.327885\pi\)
0.514750 + 0.857340i \(0.327885\pi\)
\(830\) 5.77185 0.200344
\(831\) 0 0
\(832\) −3.91023 −0.135563
\(833\) −28.0344 −0.971336
\(834\) 0 0
\(835\) −5.60034 −0.193808
\(836\) 0 0
\(837\) 0 0
\(838\) −8.57202 −0.296116
\(839\) 57.6184 1.98921 0.994604 0.103741i \(-0.0330812\pi\)
0.994604 + 0.103741i \(0.0330812\pi\)
\(840\) 0 0
\(841\) −1.36068 −0.0469200
\(842\) 35.4508 1.22172
\(843\) 0 0
\(844\) 5.15131 0.177315
\(845\) −7.90983 −0.272106
\(846\) 0 0
\(847\) 4.29180 0.147468
\(848\) −24.1320 −0.828695
\(849\) 0 0
\(850\) 22.9969 0.788786
\(851\) 32.0179 1.09756
\(852\) 0 0
\(853\) −15.5967 −0.534022 −0.267011 0.963693i \(-0.586036\pi\)
−0.267011 + 0.963693i \(0.586036\pi\)
\(854\) 5.25731 0.179901
\(855\) 0 0
\(856\) −21.1803 −0.723929
\(857\) 3.63271 0.124091 0.0620455 0.998073i \(-0.480238\pi\)
0.0620455 + 0.998073i \(0.480238\pi\)
\(858\) 0 0
\(859\) 42.1591 1.43845 0.719224 0.694778i \(-0.244497\pi\)
0.719224 + 0.694778i \(0.244497\pi\)
\(860\) 1.43769 0.0490250
\(861\) 0 0
\(862\) −28.2148 −0.960999
\(863\) 46.1653 1.57148 0.785742 0.618555i \(-0.212281\pi\)
0.785742 + 0.618555i \(0.212281\pi\)
\(864\) 0 0
\(865\) −9.61657 −0.326973
\(866\) −26.5836 −0.903347
\(867\) 0 0
\(868\) 1.28157 0.0434994
\(869\) −55.2268 −1.87344
\(870\) 0 0
\(871\) 4.59675 0.155755
\(872\) 11.1803 0.378614
\(873\) 0 0
\(874\) 0 0
\(875\) −3.67376 −0.124196
\(876\) 0 0
\(877\) −41.8060 −1.41169 −0.705844 0.708367i \(-0.749432\pi\)
−0.705844 + 0.708367i \(0.749432\pi\)
\(878\) 24.6738 0.832699
\(879\) 0 0
\(880\) 6.23607 0.210218
\(881\) −40.3607 −1.35979 −0.679893 0.733311i \(-0.737974\pi\)
−0.679893 + 0.733311i \(0.737974\pi\)
\(882\) 0 0
\(883\) 13.4721 0.453373 0.226687 0.973968i \(-0.427211\pi\)
0.226687 + 0.973968i \(0.427211\pi\)
\(884\) 1.17557 0.0395387
\(885\) 0 0
\(886\) 5.66585 0.190348
\(887\) −30.4338 −1.02187 −0.510934 0.859620i \(-0.670700\pi\)
−0.510934 + 0.859620i \(0.670700\pi\)
\(888\) 0 0
\(889\) −2.90617 −0.0974698
\(890\) 7.23607 0.242554
\(891\) 0 0
\(892\) 0.832544 0.0278756
\(893\) 0 0
\(894\) 0 0
\(895\) 0.726543 0.0242856
\(896\) −2.17963 −0.0728162
\(897\) 0 0
\(898\) 34.3951 1.14778
\(899\) 17.6393 0.588304
\(900\) 0 0
\(901\) 42.9161 1.42974
\(902\) 28.4164 0.946163
\(903\) 0 0
\(904\) 24.2705 0.807225
\(905\) −11.1352 −0.370145
\(906\) 0 0
\(907\) −33.2995 −1.10569 −0.552846 0.833284i \(-0.686458\pi\)
−0.552846 + 0.833284i \(0.686458\pi\)
\(908\) 11.3067 0.375225
\(909\) 0 0
\(910\) 0.201626 0.00668384
\(911\) 34.6466 1.14789 0.573946 0.818893i \(-0.305412\pi\)
0.573946 + 0.818893i \(0.305412\pi\)
\(912\) 0 0
\(913\) 33.6525 1.11373
\(914\) 5.36331 0.177403
\(915\) 0 0
\(916\) −5.96556 −0.197108
\(917\) 7.56231 0.249729
\(918\) 0 0
\(919\) −16.0557 −0.529630 −0.264815 0.964299i \(-0.585311\pi\)
−0.264815 + 0.964299i \(0.585311\pi\)
\(920\) 7.15942 0.236039
\(921\) 0 0
\(922\) −25.7565 −0.848247
\(923\) −1.25735 −0.0413863
\(924\) 0 0
\(925\) −39.2833 −1.29163
\(926\) 28.2137 0.927159
\(927\) 0 0
\(928\) 17.6393 0.579039
\(929\) −37.1803 −1.21985 −0.609924 0.792460i \(-0.708800\pi\)
−0.609924 + 0.792460i \(0.708800\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 14.7639 0.483609
\(933\) 0 0
\(934\) −7.84548 −0.256712
\(935\) −11.0902 −0.362687
\(936\) 0 0
\(937\) 4.18034 0.136566 0.0682829 0.997666i \(-0.478248\pi\)
0.0682829 + 0.997666i \(0.478248\pi\)
\(938\) 7.43769 0.242849
\(939\) 0 0
\(940\) 4.05573 0.132283
\(941\) 7.50245 0.244573 0.122286 0.992495i \(-0.460977\pi\)
0.122286 + 0.992495i \(0.460977\pi\)
\(942\) 0 0
\(943\) 21.4783 0.699429
\(944\) −30.6458 −0.997436
\(945\) 0 0
\(946\) −18.7436 −0.609408
\(947\) −15.8885 −0.516308 −0.258154 0.966104i \(-0.583114\pi\)
−0.258154 + 0.966104i \(0.583114\pi\)
\(948\) 0 0
\(949\) 5.70634 0.185236
\(950\) 0 0
\(951\) 0 0
\(952\) 8.05748 0.261144
\(953\) −10.0001 −0.323934 −0.161967 0.986796i \(-0.551784\pi\)
−0.161967 + 0.986796i \(0.551784\pi\)
\(954\) 0 0
\(955\) −5.20163 −0.168321
\(956\) −0.0901699 −0.00291630
\(957\) 0 0
\(958\) −27.2906 −0.881720
\(959\) 5.47214 0.176704
\(960\) 0 0
\(961\) −19.7426 −0.636860
\(962\) 4.49028 0.144772
\(963\) 0 0
\(964\) 6.43288 0.207189
\(965\) 3.24920 0.104595
\(966\) 0 0
\(967\) 27.2705 0.876960 0.438480 0.898741i \(-0.355517\pi\)
0.438480 + 0.898741i \(0.355517\pi\)
\(968\) 21.3723 0.686931
\(969\) 0 0
\(970\) 2.11146 0.0677948
\(971\) 5.42882 0.174219 0.0871096 0.996199i \(-0.472237\pi\)
0.0871096 + 0.996199i \(0.472237\pi\)
\(972\) 0 0
\(973\) −13.7082 −0.439465
\(974\) −39.1459 −1.25432
\(975\) 0 0
\(976\) 17.2361 0.551713
\(977\) 26.6296 0.851956 0.425978 0.904734i \(-0.359930\pi\)
0.425978 + 0.904734i \(0.359930\pi\)
\(978\) 0 0
\(979\) 42.1895 1.34838
\(980\) 2.52786 0.0807497
\(981\) 0 0
\(982\) −2.00811 −0.0640815
\(983\) 26.4176 0.842590 0.421295 0.906924i \(-0.361576\pi\)
0.421295 + 0.906924i \(0.361576\pi\)
\(984\) 0 0
\(985\) 9.72949 0.310007
\(986\) 26.1803 0.833752
\(987\) 0 0
\(988\) 0 0
\(989\) −14.1672 −0.450490
\(990\) 0 0
\(991\) 3.63271 0.115397 0.0576985 0.998334i \(-0.481624\pi\)
0.0576985 + 0.998334i \(0.481624\pi\)
\(992\) 11.2574 0.357421
\(993\) 0 0
\(994\) −2.03444 −0.0645286
\(995\) 0.729490 0.0231264
\(996\) 0 0
\(997\) 28.1246 0.890715 0.445358 0.895353i \(-0.353077\pi\)
0.445358 + 0.895353i \(0.353077\pi\)
\(998\) 16.1805 0.512184
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.ba.1.2 4
3.2 odd 2 3249.2.a.bb.1.3 yes 4
19.18 odd 2 inner 3249.2.a.ba.1.3 yes 4
57.56 even 2 3249.2.a.bb.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3249.2.a.ba.1.2 4 1.1 even 1 trivial
3249.2.a.ba.1.3 yes 4 19.18 odd 2 inner
3249.2.a.bb.1.2 yes 4 57.56 even 2
3249.2.a.bb.1.3 yes 4 3.2 odd 2