Properties

Label 3249.1.ba.b
Level $3249$
Weight $1$
Character orbit 3249.ba
Analytic conductor $1.621$
Analytic rank $0$
Dimension $6$
Projective image $D_{6}$
CM discriminant -3
Inner twists $12$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3249.ba (of order \(18\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.62146222604\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 171)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.22284891.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q -\zeta_{18}^{7} q^{4} -\zeta_{18}^{3} q^{7} +O(q^{10})\) \( q -\zeta_{18}^{7} q^{4} -\zeta_{18}^{3} q^{7} + ( -\zeta_{18} + \zeta_{18}^{7} ) q^{13} -\zeta_{18}^{5} q^{16} -\zeta_{18}^{4} q^{25} -\zeta_{18} q^{28} + ( 1 - \zeta_{18}^{6} ) q^{31} + ( -\zeta_{18}^{3} - \zeta_{18}^{6} ) q^{37} -\zeta_{18}^{2} q^{43} + ( \zeta_{18}^{5} + \zeta_{18}^{8} ) q^{52} -\zeta_{18}^{7} q^{61} -\zeta_{18}^{3} q^{64} + ( \zeta_{18}^{4} + \zeta_{18}^{7} ) q^{67} + \zeta_{18}^{5} q^{73} + ( -\zeta_{18}^{2} + \zeta_{18}^{8} ) q^{79} + ( \zeta_{18} + \zeta_{18}^{4} ) q^{91} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 3q^{7} + O(q^{10}) \) \( 6q - 3q^{7} + 9q^{31} - 3q^{64} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3249\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(2890\)
\(\chi(n)\) \(1\) \(\zeta_{18}^{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
−0.766044 0.642788i
0.939693 0.342020i
−0.766044 + 0.642788i
−0.173648 + 0.984808i
−0.173648 0.984808i
0.939693 + 0.342020i
0 0 0.173648 0.984808i 0 0 −0.500000 + 0.866025i 0 0 0
262.1 0 0 0.766044 + 0.642788i 0 0 −0.500000 + 0.866025i 0 0 0
307.1 0 0 0.173648 + 0.984808i 0 0 −0.500000 0.866025i 0 0 0
694.1 0 0 −0.939693 + 0.342020i 0 0 −0.500000 + 0.866025i 0 0 0
838.1 0 0 −0.939693 0.342020i 0 0 −0.500000 0.866025i 0 0 0
3187.1 0 0 0.766044 0.642788i 0 0 −0.500000 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3187.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
19.c even 3 2 inner
19.f odd 18 3 inner
57.h odd 6 2 inner
57.j even 18 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3249.1.ba.b 6
3.b odd 2 1 CM 3249.1.ba.b 6
19.b odd 2 1 3249.1.ba.a 6
19.c even 3 2 inner 3249.1.ba.b 6
19.d odd 6 2 3249.1.ba.a 6
19.e even 9 1 171.1.p.a 2
19.e even 9 1 3249.1.c.a 2
19.e even 9 1 3249.1.p.b 2
19.e even 9 3 3249.1.ba.a 6
19.f odd 18 1 171.1.p.a 2
19.f odd 18 1 3249.1.c.a 2
19.f odd 18 1 3249.1.p.b 2
19.f odd 18 3 inner 3249.1.ba.b 6
57.d even 2 1 3249.1.ba.a 6
57.f even 6 2 3249.1.ba.a 6
57.h odd 6 2 inner 3249.1.ba.b 6
57.j even 18 1 171.1.p.a 2
57.j even 18 1 3249.1.c.a 2
57.j even 18 1 3249.1.p.b 2
57.j even 18 3 inner 3249.1.ba.b 6
57.l odd 18 1 171.1.p.a 2
57.l odd 18 1 3249.1.c.a 2
57.l odd 18 1 3249.1.p.b 2
57.l odd 18 3 3249.1.ba.a 6
76.k even 18 1 2736.1.cd.a 2
76.l odd 18 1 2736.1.cd.a 2
171.v even 9 1 1539.1.i.a 2
171.w even 9 1 1539.1.s.a 2
171.x even 18 1 1539.1.s.a 2
171.z odd 18 1 1539.1.i.a 2
171.bc odd 18 1 1539.1.s.a 2
171.bd even 18 1 1539.1.i.a 2
171.be odd 18 1 1539.1.i.a 2
171.bf odd 18 1 1539.1.s.a 2
228.u odd 18 1 2736.1.cd.a 2
228.v even 18 1 2736.1.cd.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
171.1.p.a 2 19.e even 9 1
171.1.p.a 2 19.f odd 18 1
171.1.p.a 2 57.j even 18 1
171.1.p.a 2 57.l odd 18 1
1539.1.i.a 2 171.v even 9 1
1539.1.i.a 2 171.z odd 18 1
1539.1.i.a 2 171.bd even 18 1
1539.1.i.a 2 171.be odd 18 1
1539.1.s.a 2 171.w even 9 1
1539.1.s.a 2 171.x even 18 1
1539.1.s.a 2 171.bc odd 18 1
1539.1.s.a 2 171.bf odd 18 1
2736.1.cd.a 2 76.k even 18 1
2736.1.cd.a 2 76.l odd 18 1
2736.1.cd.a 2 228.u odd 18 1
2736.1.cd.a 2 228.v even 18 1
3249.1.c.a 2 19.e even 9 1
3249.1.c.a 2 19.f odd 18 1
3249.1.c.a 2 57.j even 18 1
3249.1.c.a 2 57.l odd 18 1
3249.1.p.b 2 19.e even 9 1
3249.1.p.b 2 19.f odd 18 1
3249.1.p.b 2 57.j even 18 1
3249.1.p.b 2 57.l odd 18 1
3249.1.ba.a 6 19.b odd 2 1
3249.1.ba.a 6 19.d odd 6 2
3249.1.ba.a 6 19.e even 9 3
3249.1.ba.a 6 57.d even 2 1
3249.1.ba.a 6 57.f even 6 2
3249.1.ba.a 6 57.l odd 18 3
3249.1.ba.b 6 1.a even 1 1 trivial
3249.1.ba.b 6 3.b odd 2 1 CM
3249.1.ba.b 6 19.c even 3 2 inner
3249.1.ba.b 6 19.f odd 18 3 inner
3249.1.ba.b 6 57.h odd 6 2 inner
3249.1.ba.b 6 57.j even 18 3 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3249, [\chi])\):

\( T_{7}^{2} + T_{7} + 1 \)
\( T_{13}^{6} + 9 T_{13}^{3} + 27 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \)
$3$ \( T^{6} \)
$5$ \( T^{6} \)
$7$ \( ( 1 + T + T^{2} )^{3} \)
$11$ \( T^{6} \)
$13$ \( 27 + 9 T^{3} + T^{6} \)
$17$ \( T^{6} \)
$19$ \( T^{6} \)
$23$ \( T^{6} \)
$29$ \( T^{6} \)
$31$ \( ( 3 - 3 T + T^{2} )^{3} \)
$37$ \( ( 3 + T^{2} )^{3} \)
$41$ \( T^{6} \)
$43$ \( 1 - T^{3} + T^{6} \)
$47$ \( T^{6} \)
$53$ \( T^{6} \)
$59$ \( T^{6} \)
$61$ \( 1 + T^{3} + T^{6} \)
$67$ \( 27 - 9 T^{3} + T^{6} \)
$71$ \( T^{6} \)
$73$ \( 1 - T^{3} + T^{6} \)
$79$ \( 27 + 9 T^{3} + T^{6} \)
$83$ \( T^{6} \)
$89$ \( T^{6} \)
$97$ \( T^{6} \)
show more
show less