Properties

Label 3240.2.q.x.2161.1
Level $3240$
Weight $2$
Character 3240.2161
Analytic conductor $25.872$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2161.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3240.2161
Dual form 3240.2.q.x.1081.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{5} +(2.00000 - 3.46410i) q^{7} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{5} +(2.00000 - 3.46410i) q^{7} +(2.00000 - 3.46410i) q^{11} +(1.00000 + 1.73205i) q^{13} -2.00000 q^{17} +4.00000 q^{19} +(2.00000 + 3.46410i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(-1.00000 + 1.73205i) q^{29} +(4.00000 + 6.92820i) q^{31} +4.00000 q^{35} +6.00000 q^{37} +(-3.00000 - 5.19615i) q^{41} +(4.00000 - 6.92820i) q^{43} +(2.00000 - 3.46410i) q^{47} +(-4.50000 - 7.79423i) q^{49} -6.00000 q^{53} +4.00000 q^{55} +(-2.00000 - 3.46410i) q^{59} +(1.00000 - 1.73205i) q^{61} +(-1.00000 + 1.73205i) q^{65} +(-4.00000 - 6.92820i) q^{67} -6.00000 q^{73} +(-8.00000 - 13.8564i) q^{77} +(-8.00000 + 13.8564i) q^{83} +(-1.00000 - 1.73205i) q^{85} +6.00000 q^{89} +8.00000 q^{91} +(2.00000 + 3.46410i) q^{95} +(7.00000 - 12.1244i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{5} + 4q^{7} + O(q^{10}) \) \( 2q + q^{5} + 4q^{7} + 4q^{11} + 2q^{13} - 4q^{17} + 8q^{19} + 4q^{23} - q^{25} - 2q^{29} + 8q^{31} + 8q^{35} + 12q^{37} - 6q^{41} + 8q^{43} + 4q^{47} - 9q^{49} - 12q^{53} + 8q^{55} - 4q^{59} + 2q^{61} - 2q^{65} - 8q^{67} - 12q^{73} - 16q^{77} - 16q^{83} - 2q^{85} + 12q^{89} + 16q^{91} + 4q^{95} + 14q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 2.00000 3.46410i 0.755929 1.30931i −0.188982 0.981981i \(-0.560519\pi\)
0.944911 0.327327i \(-0.106148\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 3.46410i 0.603023 1.04447i −0.389338 0.921095i \(-0.627296\pi\)
0.992361 0.123371i \(-0.0393705\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.73205i 0.277350 + 0.480384i 0.970725 0.240192i \(-0.0772105\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000 + 3.46410i 0.417029 + 0.722315i 0.995639 0.0932891i \(-0.0297381\pi\)
−0.578610 + 0.815604i \(0.696405\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 + 1.73205i −0.185695 + 0.321634i −0.943811 0.330487i \(-0.892787\pi\)
0.758115 + 0.652121i \(0.226120\pi\)
\(30\) 0 0
\(31\) 4.00000 + 6.92820i 0.718421 + 1.24434i 0.961625 + 0.274367i \(0.0884683\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) 0 0
\(43\) 4.00000 6.92820i 0.609994 1.05654i −0.381246 0.924473i \(-0.624505\pi\)
0.991241 0.132068i \(-0.0421616\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.00000 3.46410i 0.291730 0.505291i −0.682489 0.730896i \(-0.739102\pi\)
0.974219 + 0.225605i \(0.0724358\pi\)
\(48\) 0 0
\(49\) −4.50000 7.79423i −0.642857 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.00000 3.46410i −0.260378 0.450988i 0.705965 0.708247i \(-0.250514\pi\)
−0.966342 + 0.257260i \(0.917180\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 + 1.73205i −0.124035 + 0.214834i
\(66\) 0 0
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.00000 13.8564i −0.911685 1.57908i
\(78\) 0 0
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.00000 + 13.8564i −0.878114 + 1.52094i −0.0247060 + 0.999695i \(0.507865\pi\)
−0.853408 + 0.521243i \(0.825468\pi\)
\(84\) 0 0
\(85\) −1.00000 1.73205i −0.108465 0.187867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 + 3.46410i 0.205196 + 0.355409i
\(96\) 0 0
\(97\) 7.00000 12.1244i 0.710742 1.23104i −0.253837 0.967247i \(-0.581693\pi\)
0.964579 0.263795i \(-0.0849741\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) 0 0
\(103\) −2.00000 3.46410i −0.197066 0.341328i 0.750510 0.660859i \(-0.229808\pi\)
−0.947576 + 0.319531i \(0.896475\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.00000 + 15.5885i 0.846649 + 1.46644i 0.884182 + 0.467143i \(0.154717\pi\)
−0.0375328 + 0.999295i \(0.511950\pi\)
\(114\) 0 0
\(115\) −2.00000 + 3.46410i −0.186501 + 0.323029i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 + 6.92820i −0.366679 + 0.635107i
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) 8.00000 13.8564i 0.693688 1.20150i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.00000 8.66025i 0.427179 0.739895i −0.569442 0.822031i \(-0.692841\pi\)
0.996621 + 0.0821359i \(0.0261741\pi\)
\(138\) 0 0
\(139\) −6.00000 10.3923i −0.508913 0.881464i −0.999947 0.0103230i \(-0.996714\pi\)
0.491033 0.871141i \(-0.336619\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.00000 0.668994
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.00000 8.66025i −0.409616 0.709476i 0.585231 0.810867i \(-0.301004\pi\)
−0.994847 + 0.101391i \(0.967671\pi\)
\(150\) 0 0
\(151\) 8.00000 13.8564i 0.651031 1.12762i −0.331842 0.943335i \(-0.607670\pi\)
0.982873 0.184284i \(-0.0589965\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00000 + 6.92820i −0.321288 + 0.556487i
\(156\) 0 0
\(157\) 1.00000 + 1.73205i 0.0798087 + 0.138233i 0.903167 0.429289i \(-0.141236\pi\)
−0.823359 + 0.567521i \(0.807902\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 + 10.3923i 0.464294 + 0.804181i 0.999169 0.0407502i \(-0.0129748\pi\)
−0.534875 + 0.844931i \(0.679641\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.00000 12.1244i 0.532200 0.921798i −0.467093 0.884208i \(-0.654699\pi\)
0.999293 0.0375896i \(-0.0119679\pi\)
\(174\) 0 0
\(175\) 2.00000 + 3.46410i 0.151186 + 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 + 5.19615i 0.220564 + 0.382029i
\(186\) 0 0
\(187\) −4.00000 + 6.92820i −0.292509 + 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 6.92820i 0.289430 0.501307i −0.684244 0.729253i \(-0.739868\pi\)
0.973674 + 0.227946i \(0.0732010\pi\)
\(192\) 0 0
\(193\) 7.00000 + 12.1244i 0.503871 + 0.872730i 0.999990 + 0.00447566i \(0.00142465\pi\)
−0.496119 + 0.868255i \(0.665242\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −22.0000 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.00000 + 6.92820i 0.280745 + 0.486265i
\(204\) 0 0
\(205\) 3.00000 5.19615i 0.209529 0.362915i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.00000 13.8564i 0.553372 0.958468i
\(210\) 0 0
\(211\) 2.00000 + 3.46410i 0.137686 + 0.238479i 0.926620 0.375999i \(-0.122700\pi\)
−0.788935 + 0.614477i \(0.789367\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 32.0000 2.17230
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.00000 3.46410i −0.134535 0.233021i
\(222\) 0 0
\(223\) 2.00000 3.46410i 0.133930 0.231973i −0.791258 0.611482i \(-0.790574\pi\)
0.925188 + 0.379509i \(0.123907\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.0000 + 20.7846i −0.796468 + 1.37952i 0.125435 + 0.992102i \(0.459967\pi\)
−0.921903 + 0.387421i \(0.873366\pi\)
\(228\) 0 0
\(229\) 13.0000 + 22.5167i 0.859064 + 1.48794i 0.872823 + 0.488037i \(0.162287\pi\)
−0.0137585 + 0.999905i \(0.504380\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 4.00000 0.260931
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) 0 0
\(241\) −1.00000 + 1.73205i −0.0644157 + 0.111571i −0.896435 0.443176i \(-0.853852\pi\)
0.832019 + 0.554747i \(0.187185\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.50000 7.79423i 0.287494 0.497955i
\(246\) 0 0
\(247\) 4.00000 + 6.92820i 0.254514 + 0.440831i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.0000 25.9808i −0.935674 1.62064i −0.773427 0.633885i \(-0.781459\pi\)
−0.162247 0.986750i \(-0.551874\pi\)
\(258\) 0 0
\(259\) 12.0000 20.7846i 0.745644 1.29149i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.00000 + 10.3923i −0.369976 + 0.640817i −0.989561 0.144112i \(-0.953967\pi\)
0.619586 + 0.784929i \(0.287301\pi\)
\(264\) 0 0
\(265\) −3.00000 5.19615i −0.184289 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000 + 3.46410i 0.120605 + 0.208893i
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.00000 8.66025i 0.298275 0.516627i −0.677466 0.735554i \(-0.736922\pi\)
0.975741 + 0.218926i \(0.0702554\pi\)
\(282\) 0 0
\(283\) −4.00000 6.92820i −0.237775 0.411839i 0.722300 0.691580i \(-0.243085\pi\)
−0.960076 + 0.279741i \(0.909752\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.0000 22.5167i −0.759468 1.31544i −0.943122 0.332446i \(-0.892126\pi\)
0.183654 0.982991i \(-0.441207\pi\)
\(294\) 0 0
\(295\) 2.00000 3.46410i 0.116445 0.201688i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.00000 + 6.92820i −0.231326 + 0.400668i
\(300\) 0 0
\(301\) −16.0000 27.7128i −0.922225 1.59734i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.0000 + 27.7128i 0.907277 + 1.57145i 0.817832 + 0.575458i \(0.195176\pi\)
0.0894452 + 0.995992i \(0.471491\pi\)
\(312\) 0 0
\(313\) −13.0000 + 22.5167i −0.734803 + 1.27272i 0.220006 + 0.975499i \(0.429392\pi\)
−0.954810 + 0.297218i \(0.903941\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 4.00000 + 6.92820i 0.223957 + 0.387905i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.00000 −0.445132
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.00000 13.8564i −0.441054 0.763928i
\(330\) 0 0
\(331\) 6.00000 10.3923i 0.329790 0.571213i −0.652680 0.757634i \(-0.726355\pi\)
0.982470 + 0.186421i \(0.0596888\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.00000 6.92820i 0.218543 0.378528i
\(336\) 0 0
\(337\) 7.00000 + 12.1244i 0.381314 + 0.660456i 0.991250 0.131995i \(-0.0421382\pi\)
−0.609936 + 0.792451i \(0.708805\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 32.0000 1.73290
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 13.8564i −0.429463 0.743851i 0.567363 0.823468i \(-0.307964\pi\)
−0.996826 + 0.0796169i \(0.974630\pi\)
\(348\) 0 0
\(349\) −15.0000 + 25.9808i −0.802932 + 1.39072i 0.114747 + 0.993395i \(0.463394\pi\)
−0.917679 + 0.397324i \(0.869939\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.00000 1.73205i 0.0532246 0.0921878i −0.838186 0.545385i \(-0.816383\pi\)
0.891410 + 0.453197i \(0.149717\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.00000 5.19615i −0.157027 0.271979i
\(366\) 0 0
\(367\) −10.0000 + 17.3205i −0.521996 + 0.904123i 0.477677 + 0.878536i \(0.341479\pi\)
−0.999673 + 0.0255875i \(0.991854\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.0000 + 20.7846i −0.623009 + 1.07908i
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.0000 31.1769i −0.919757 1.59307i −0.799783 0.600289i \(-0.795052\pi\)
−0.119974 0.992777i \(-0.538281\pi\)
\(384\) 0 0
\(385\) 8.00000 13.8564i 0.407718 0.706188i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.00000 5.19615i 0.152106 0.263455i −0.779895 0.625910i \(-0.784728\pi\)
0.932002 + 0.362454i \(0.118061\pi\)
\(390\) 0 0
\(391\) −4.00000 6.92820i −0.202289 0.350374i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.00000 + 15.5885i 0.449439 + 0.778450i 0.998350 0.0574304i \(-0.0182907\pi\)
−0.548911 + 0.835881i \(0.684957\pi\)
\(402\) 0 0
\(403\) −8.00000 + 13.8564i −0.398508 + 0.690237i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.0000 20.7846i 0.594818 1.03025i
\(408\) 0 0
\(409\) −5.00000 8.66025i −0.247234 0.428222i 0.715523 0.698589i \(-0.246188\pi\)
−0.962757 + 0.270367i \(0.912855\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) −16.0000 −0.785409
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.0000 + 31.1769i 0.879358 + 1.52309i 0.852047 + 0.523465i \(0.175361\pi\)
0.0273103 + 0.999627i \(0.491306\pi\)
\(420\) 0 0
\(421\) −3.00000 + 5.19615i −0.146211 + 0.253245i −0.929824 0.368004i \(-0.880041\pi\)
0.783613 + 0.621249i \(0.213375\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.00000 1.73205i 0.0485071 0.0840168i
\(426\) 0 0
\(427\) −4.00000 6.92820i −0.193574 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 40.0000 1.92673 0.963366 0.268190i \(-0.0864254\pi\)
0.963366 + 0.268190i \(0.0864254\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.00000 + 13.8564i 0.382692 + 0.662842i
\(438\) 0 0
\(439\) 4.00000 6.92820i 0.190910 0.330665i −0.754642 0.656136i \(-0.772190\pi\)
0.945552 + 0.325471i \(0.105523\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 20.7846i 0.570137 0.987507i −0.426414 0.904528i \(-0.640223\pi\)
0.996551 0.0829786i \(-0.0264433\pi\)
\(444\) 0 0
\(445\) 3.00000 + 5.19615i 0.142214 + 0.246321i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.00000 + 6.92820i 0.187523 + 0.324799i
\(456\) 0 0
\(457\) −5.00000 + 8.66025i −0.233890 + 0.405110i −0.958950 0.283577i \(-0.908479\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −9.00000 + 15.5885i −0.419172 + 0.726027i −0.995856 0.0909401i \(-0.971013\pi\)
0.576685 + 0.816967i \(0.304346\pi\)
\(462\) 0 0
\(463\) −6.00000 10.3923i −0.278844 0.482971i 0.692254 0.721654i \(-0.256618\pi\)
−0.971098 + 0.238683i \(0.923284\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) −32.0000 −1.47762
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16.0000 27.7128i −0.735681 1.27424i
\(474\) 0 0
\(475\) −2.00000 + 3.46410i −0.0917663 + 0.158944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.00000 13.8564i 0.365529 0.633115i −0.623332 0.781958i \(-0.714221\pi\)
0.988861 + 0.148842i \(0.0475547\pi\)
\(480\) 0 0
\(481\) 6.00000 + 10.3923i 0.273576 + 0.473848i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.0000 + 31.1769i 0.812329 + 1.40699i 0.911230 + 0.411897i \(0.135134\pi\)
−0.0989017 + 0.995097i \(0.531533\pi\)
\(492\) 0 0
\(493\) 2.00000 3.46410i 0.0900755 0.156015i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.0000 + 24.2487i 0.626726 + 1.08552i 0.988204 + 0.153141i \(0.0489388\pi\)
−0.361478 + 0.932381i \(0.617728\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.00000 1.73205i −0.0443242 0.0767718i 0.843012 0.537895i \(-0.180780\pi\)
−0.887336 + 0.461123i \(0.847447\pi\)
\(510\) 0 0
\(511\) −12.0000 + 20.7846i −0.530849 + 0.919457i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.00000 3.46410i 0.0881305 0.152647i
\(516\) 0 0
\(517\) −8.00000 13.8564i −0.351840 0.609404i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −8.00000 −0.349816 −0.174908 0.984585i \(-0.555963\pi\)
−0.174908 + 0.984585i \(0.555963\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.00000 13.8564i −0.348485 0.603595i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.00000 10.3923i 0.259889 0.450141i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −36.0000 −1.55063
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.00000 + 12.1244i 0.299847 + 0.519350i
\(546\) 0 0
\(547\) −4.00000 + 6.92820i −0.171028 + 0.296229i −0.938779 0.344519i \(-0.888042\pi\)
0.767752 + 0.640747i \(0.221375\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.00000 + 6.92820i −0.170406 + 0.295151i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.00000 + 13.8564i 0.337160 + 0.583978i 0.983897 0.178735i \(-0.0572004\pi\)
−0.646737 + 0.762713i \(0.723867\pi\)
\(564\) 0 0
\(565\) −9.00000 + 15.5885i −0.378633 + 0.655811i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.0000 + 19.0526i −0.461144 + 0.798725i −0.999018 0.0443003i \(-0.985894\pi\)
0.537874 + 0.843025i \(0.319228\pi\)
\(570\) 0 0
\(571\) −2.00000 3.46410i −0.0836974 0.144968i 0.821138 0.570730i \(-0.193340\pi\)
−0.904835 + 0.425762i \(0.860006\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 32.0000 + 55.4256i 1.32758 + 2.29944i
\(582\) 0 0
\(583\) −12.0000 + 20.7846i −0.496989 + 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.0000 + 41.5692i −0.990586 + 1.71575i −0.376741 + 0.926319i \(0.622955\pi\)
−0.613845 + 0.789427i \(0.710378\pi\)
\(588\) 0 0
\(589\) 16.0000 + 27.7128i 0.659269 + 1.14189i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) −8.00000 −0.327968
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.0000 20.7846i −0.490307 0.849236i 0.509631 0.860393i \(-0.329782\pi\)
−0.999938 + 0.0111569i \(0.996449\pi\)
\(600\) 0 0
\(601\) −5.00000 + 8.66025i −0.203954 + 0.353259i −0.949799 0.312861i \(-0.898713\pi\)
0.745845 + 0.666120i \(0.232046\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.50000 4.33013i 0.101639 0.176045i
\(606\) 0 0
\(607\) 6.00000 + 10.3923i 0.243532 + 0.421811i 0.961718 0.274041i \(-0.0883604\pi\)
−0.718186 + 0.695852i \(0.755027\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) −42.0000 −1.69636 −0.848182 0.529705i \(-0.822303\pi\)
−0.848182 + 0.529705i \(0.822303\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 5.19615i −0.120775 0.209189i 0.799298 0.600935i \(-0.205205\pi\)
−0.920074 + 0.391745i \(0.871871\pi\)
\(618\) 0 0
\(619\) 2.00000 3.46410i 0.0803868 0.139234i −0.823029 0.567999i \(-0.807718\pi\)
0.903416 + 0.428765i \(0.141051\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000 20.7846i 0.480770 0.832718i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.00000 10.3923i −0.238103 0.412406i
\(636\) 0 0
\(637\) 9.00000 15.5885i 0.356593 0.617637i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.00000 15.5885i 0.355479 0.615707i −0.631721 0.775196i \(-0.717651\pi\)
0.987200 + 0.159489i \(0.0509845\pi\)
\(642\) 0 0
\(643\) 24.0000 + 41.5692i 0.946468 + 1.63933i 0.752786 + 0.658266i \(0.228710\pi\)
0.193682 + 0.981064i \(0.437957\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) −16.0000 −0.628055
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.0000 29.4449i −0.665261 1.15227i −0.979214 0.202828i \(-0.934987\pi\)
0.313953 0.949439i \(-0.398347\pi\)
\(654\) 0 0
\(655\) −6.00000 + 10.3923i −0.234439 + 0.406061i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.00000 + 10.3923i −0.233727 + 0.404827i −0.958902 0.283738i \(-0.908425\pi\)
0.725175 + 0.688565i \(0.241759\pi\)
\(660\) 0 0
\(661\) 21.0000 + 36.3731i 0.816805 + 1.41475i 0.908024 + 0.418917i \(0.137590\pi\)
−0.0912190 + 0.995831i \(0.529076\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.00000 6.92820i −0.154418 0.267460i
\(672\) 0 0
\(673\) −9.00000 + 15.5885i −0.346925 + 0.600891i −0.985701 0.168501i \(-0.946107\pi\)
0.638777 + 0.769392i \(0.279441\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.0000 19.0526i 0.422764 0.732249i −0.573444 0.819244i \(-0.694393\pi\)
0.996209 + 0.0869952i \(0.0277265\pi\)
\(678\) 0 0
\(679\) −28.0000 48.4974i −1.07454 1.86116i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 10.0000 0.382080
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.00000 10.3923i −0.228582 0.395915i
\(690\) 0 0
\(691\) −22.0000 + 38.1051i −0.836919 + 1.44959i 0.0555386 + 0.998457i \(0.482312\pi\)
−0.892458 + 0.451130i \(0.851021\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.00000 10.3923i 0.227593 0.394203i
\(696\) 0 0
\(697\) 6.00000 + 10.3923i 0.227266 + 0.393637i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.0000 20.7846i −0.451306 0.781686i
\(708\) 0 0
\(709\) −19.0000 + 32.9090i −0.713560 + 1.23592i 0.249952 + 0.968258i \(0.419585\pi\)
−0.963512 + 0.267664i \(0.913748\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.0000 + 27.7128i −0.599205 + 1.03785i
\(714\) 0 0
\(715\) 4.00000 + 6.92820i 0.149592 + 0.259100i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 32.0000 1.19340 0.596699 0.802465i \(-0.296479\pi\)
0.596699 + 0.802465i \(0.296479\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.00000 1.73205i −0.0371391 0.0643268i
\(726\) 0 0
\(727\) −22.0000 + 38.1051i −0.815935 + 1.41324i 0.0927199 + 0.995692i \(0.470444\pi\)
−0.908655 + 0.417548i \(0.862889\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.00000 + 13.8564i −0.295891 + 0.512498i
\(732\) 0 0
\(733\) −15.0000 25.9808i −0.554038 0.959621i −0.997978 0.0635649i \(-0.979753\pi\)
0.443940 0.896056i \(-0.353580\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.0000 −1.17874
\(738\) 0 0
\(739\) 36.0000 1.32428 0.662141 0.749380i \(-0.269648\pi\)
0.662141 + 0.749380i \(0.269648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.0000 + 31.1769i 0.660356 + 1.14377i 0.980522 + 0.196409i \(0.0629279\pi\)
−0.320166 + 0.947361i \(0.603739\pi\)
\(744\) 0 0
\(745\) 5.00000 8.66025i 0.183186 0.317287i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 12.0000 + 20.7846i 0.437886 + 0.758441i 0.997526 0.0702946i \(-0.0223939\pi\)
−0.559640 + 0.828736i \(0.689061\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.00000 5.19615i −0.108750 0.188360i 0.806514 0.591215i \(-0.201351\pi\)
−0.915264 + 0.402854i \(0.868018\pi\)
\(762\) 0 0
\(763\) 28.0000 48.4974i 1.01367 1.75572i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.00000 6.92820i 0.144432 0.250163i
\(768\) 0 0
\(769\) −17.0000 29.4449i −0.613036 1.06181i −0.990726 0.135877i \(-0.956615\pi\)
0.377690 0.925932i \(-0.376718\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.0000 20.7846i −0.429945 0.744686i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.00000 + 1.73205i −0.0356915 + 0.0618195i
\(786\) 0 0
\(787\) −4.00000 6.92820i −0.142585 0.246964i 0.785885 0.618373i \(-0.212208\pi\)
−0.928469 + 0.371409i \(0.878875\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 72.0000 2.56003
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.00000 15.5885i −0.318796 0.552171i 0.661441 0.749997i \(-0.269945\pi\)
−0.980237 + 0.197826i \(0.936612\pi\)
\(798\) 0 0
\(799\) −4.00000 + 6.92820i −0.141510 + 0.245102i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −12.0000 + 20.7846i −0.423471 + 0.733473i
\(804\) 0