Properties

Label 3240.2.q.v.2161.1
Level $3240$
Weight $2$
Character 3240.2161
Analytic conductor $25.872$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1081,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1081");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2161.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3240.2161
Dual form 3240.2.q.v.1081.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{5} +(1.00000 - 1.73205i) q^{7} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{5} +(1.00000 - 1.73205i) q^{7} +(3.00000 + 5.19615i) q^{13} +7.00000 q^{17} +7.00000 q^{19} +(-3.50000 - 6.06218i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(-3.00000 + 5.19615i) q^{29} +(-1.50000 - 2.59808i) q^{31} +2.00000 q^{35} -6.00000 q^{37} +(-2.00000 - 3.46410i) q^{41} +(-4.00000 + 6.92820i) q^{43} +(2.00000 - 3.46410i) q^{47} +(1.50000 + 2.59808i) q^{49} -5.00000 q^{53} +(-3.00000 - 5.19615i) q^{59} +(1.50000 - 2.59808i) q^{61} +(-3.00000 + 5.19615i) q^{65} +(5.00000 + 8.66025i) q^{67} +12.0000 q^{71} +16.0000 q^{73} +(-0.500000 + 0.866025i) q^{79} +(-4.50000 + 7.79423i) q^{83} +(3.50000 + 6.06218i) q^{85} -4.00000 q^{89} +12.0000 q^{91} +(3.50000 + 6.06218i) q^{95} +(8.00000 - 13.8564i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{5} + 2 q^{7} + 6 q^{13} + 14 q^{17} + 14 q^{19} - 7 q^{23} - q^{25} - 6 q^{29} - 3 q^{31} + 4 q^{35} - 12 q^{37} - 4 q^{41} - 8 q^{43} + 4 q^{47} + 3 q^{49} - 10 q^{53} - 6 q^{59} + 3 q^{61} - 6 q^{65} + 10 q^{67} + 24 q^{71} + 32 q^{73} - q^{79} - 9 q^{83} + 7 q^{85} - 8 q^{89} + 24 q^{91} + 7 q^{95} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.00000 1.73205i 0.377964 0.654654i −0.612801 0.790237i \(-0.709957\pi\)
0.990766 + 0.135583i \(0.0432908\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 3.00000 + 5.19615i 0.832050 + 1.44115i 0.896410 + 0.443227i \(0.146166\pi\)
−0.0643593 + 0.997927i \(0.520500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.50000 6.06218i −0.729800 1.26405i −0.956967 0.290196i \(-0.906280\pi\)
0.227167 0.973856i \(-0.427054\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) −1.50000 2.59808i −0.269408 0.466628i 0.699301 0.714827i \(-0.253495\pi\)
−0.968709 + 0.248199i \(0.920161\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 3.46410i −0.312348 0.541002i 0.666523 0.745485i \(-0.267782\pi\)
−0.978870 + 0.204483i \(0.934449\pi\)
\(42\) 0 0
\(43\) −4.00000 + 6.92820i −0.609994 + 1.05654i 0.381246 + 0.924473i \(0.375495\pi\)
−0.991241 + 0.132068i \(0.957838\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.00000 3.46410i 0.291730 0.505291i −0.682489 0.730896i \(-0.739102\pi\)
0.974219 + 0.225605i \(0.0724358\pi\)
\(48\) 0 0
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.00000 −0.686803 −0.343401 0.939189i \(-0.611579\pi\)
−0.343401 + 0.939189i \(0.611579\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) 0 0
\(61\) 1.50000 2.59808i 0.192055 0.332650i −0.753876 0.657017i \(-0.771818\pi\)
0.945931 + 0.324367i \(0.105151\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.00000 + 5.19615i −0.372104 + 0.644503i
\(66\) 0 0
\(67\) 5.00000 + 8.66025i 0.610847 + 1.05802i 0.991098 + 0.133135i \(0.0425044\pi\)
−0.380251 + 0.924883i \(0.624162\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 16.0000 1.87266 0.936329 0.351123i \(-0.114200\pi\)
0.936329 + 0.351123i \(0.114200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.500000 + 0.866025i −0.0562544 + 0.0974355i −0.892781 0.450490i \(-0.851249\pi\)
0.836527 + 0.547926i \(0.184582\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.50000 + 7.79423i −0.493939 + 0.855528i −0.999976 0.00698436i \(-0.997777\pi\)
0.506036 + 0.862512i \(0.331110\pi\)
\(84\) 0 0
\(85\) 3.50000 + 6.06218i 0.379628 + 0.657536i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.50000 + 6.06218i 0.359092 + 0.621966i
\(96\) 0 0
\(97\) 8.00000 13.8564i 0.812277 1.40690i −0.0989899 0.995088i \(-0.531561\pi\)
0.911267 0.411816i \(-0.135106\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.00000 + 3.46410i −0.199007 + 0.344691i −0.948207 0.317653i \(-0.897105\pi\)
0.749199 + 0.662344i \(0.230438\pi\)
\(102\) 0 0
\(103\) −2.00000 3.46410i −0.197066 0.341328i 0.750510 0.660859i \(-0.229808\pi\)
−0.947576 + 0.319531i \(0.896475\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) 3.50000 6.06218i 0.326377 0.565301i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.00000 12.1244i 0.641689 1.11144i
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 14.0000 1.24230 0.621150 0.783692i \(-0.286666\pi\)
0.621150 + 0.783692i \(0.286666\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.00000 + 12.1244i 0.611593 + 1.05931i 0.990972 + 0.134069i \(0.0428042\pi\)
−0.379379 + 0.925241i \(0.623862\pi\)
\(132\) 0 0
\(133\) 7.00000 12.1244i 0.606977 1.05131i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) −6.00000 10.3923i −0.508913 0.881464i −0.999947 0.0103230i \(-0.996714\pi\)
0.491033 0.871141i \(-0.336619\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 10.3923i −0.491539 0.851371i 0.508413 0.861113i \(-0.330232\pi\)
−0.999953 + 0.00974235i \(0.996899\pi\)
\(150\) 0 0
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.50000 2.59808i 0.120483 0.208683i
\(156\) 0 0
\(157\) 10.0000 + 17.3205i 0.798087 + 1.38233i 0.920860 + 0.389892i \(0.127488\pi\)
−0.122774 + 0.992435i \(0.539179\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −14.0000 −1.10335
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.50000 16.4545i −0.735132 1.27329i −0.954665 0.297681i \(-0.903787\pi\)
0.219533 0.975605i \(-0.429547\pi\)
\(168\) 0 0
\(169\) −11.5000 + 19.9186i −0.884615 + 1.53220i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.50000 + 7.79423i −0.342129 + 0.592584i −0.984828 0.173534i \(-0.944481\pi\)
0.642699 + 0.766119i \(0.277815\pi\)
\(174\) 0 0
\(175\) 1.00000 + 1.73205i 0.0755929 + 0.130931i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.00000 + 1.73205i −0.0723575 + 0.125327i −0.899934 0.436026i \(-0.856386\pi\)
0.827577 + 0.561353i \(0.189719\pi\)
\(192\) 0 0
\(193\) −3.00000 5.19615i −0.215945 0.374027i 0.737620 0.675216i \(-0.235950\pi\)
−0.953564 + 0.301189i \(0.902616\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.0000 −1.63868 −0.819341 0.573306i \(-0.805660\pi\)
−0.819341 + 0.573306i \(0.805660\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.00000 + 10.3923i 0.421117 + 0.729397i
\(204\) 0 0
\(205\) 2.00000 3.46410i 0.139686 0.241943i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 7.50000 + 12.9904i 0.516321 + 0.894295i 0.999820 + 0.0189499i \(0.00603229\pi\)
−0.483499 + 0.875345i \(0.660634\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 21.0000 + 36.3731i 1.41261 + 2.44672i
\(222\) 0 0
\(223\) −3.00000 + 5.19615i −0.200895 + 0.347960i −0.948817 0.315826i \(-0.897718\pi\)
0.747922 + 0.663786i \(0.231052\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.5000 23.3827i 0.896026 1.55196i 0.0634974 0.997982i \(-0.479775\pi\)
0.832529 0.553981i \(-0.186892\pi\)
\(228\) 0 0
\(229\) −1.50000 2.59808i −0.0991228 0.171686i 0.812199 0.583380i \(-0.198270\pi\)
−0.911322 + 0.411695i \(0.864937\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 4.00000 0.260931
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.00000 + 15.5885i 0.582162 + 1.00833i 0.995223 + 0.0976302i \(0.0311262\pi\)
−0.413061 + 0.910703i \(0.635540\pi\)
\(240\) 0 0
\(241\) −5.50000 + 9.52628i −0.354286 + 0.613642i −0.986996 0.160748i \(-0.948609\pi\)
0.632709 + 0.774389i \(0.281943\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.50000 + 2.59808i −0.0958315 + 0.165985i
\(246\) 0 0
\(247\) 21.0000 + 36.3731i 1.33620 + 2.31436i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.50000 7.79423i −0.280702 0.486191i 0.690856 0.722993i \(-0.257234\pi\)
−0.971558 + 0.236802i \(0.923901\pi\)
\(258\) 0 0
\(259\) −6.00000 + 10.3923i −0.372822 + 0.645746i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 20.7846i 0.739952 1.28163i −0.212565 0.977147i \(-0.568182\pi\)
0.952517 0.304487i \(-0.0984850\pi\)
\(264\) 0 0
\(265\) −2.50000 4.33013i −0.153574 0.265998i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −13.0000 −0.789694 −0.394847 0.918747i \(-0.629202\pi\)
−0.394847 + 0.918747i \(0.629202\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.00000 6.92820i 0.240337 0.416275i −0.720473 0.693482i \(-0.756075\pi\)
0.960810 + 0.277207i \(0.0894088\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −13.0000 + 22.5167i −0.775515 + 1.34323i 0.158990 + 0.987280i \(0.449176\pi\)
−0.934505 + 0.355951i \(0.884157\pi\)
\(282\) 0 0
\(283\) −2.00000 3.46410i −0.118888 0.205919i 0.800439 0.599414i \(-0.204600\pi\)
−0.919327 + 0.393494i \(0.871266\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.50000 + 9.52628i 0.321313 + 0.556531i 0.980759 0.195221i \(-0.0625424\pi\)
−0.659446 + 0.751752i \(0.729209\pi\)
\(294\) 0 0
\(295\) 3.00000 5.19615i 0.174667 0.302532i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 21.0000 36.3731i 1.21446 2.10351i
\(300\) 0 0
\(301\) 8.00000 + 13.8564i 0.461112 + 0.798670i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) −26.0000 −1.48390 −0.741949 0.670456i \(-0.766098\pi\)
−0.741949 + 0.670456i \(0.766098\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.00000 8.66025i −0.283524 0.491078i 0.688726 0.725022i \(-0.258170\pi\)
−0.972250 + 0.233944i \(0.924837\pi\)
\(312\) 0 0
\(313\) −8.00000 + 13.8564i −0.452187 + 0.783210i −0.998522 0.0543564i \(-0.982689\pi\)
0.546335 + 0.837567i \(0.316023\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.500000 0.866025i 0.0280828 0.0486408i −0.851642 0.524123i \(-0.824393\pi\)
0.879725 + 0.475482i \(0.157726\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 49.0000 2.72643
\(324\) 0 0
\(325\) −6.00000 −0.332820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.00000 6.92820i −0.220527 0.381964i
\(330\) 0 0
\(331\) −2.00000 + 3.46410i −0.109930 + 0.190404i −0.915742 0.401768i \(-0.868396\pi\)
0.805812 + 0.592172i \(0.201729\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.00000 + 8.66025i −0.273179 + 0.473160i
\(336\) 0 0
\(337\) −17.0000 29.4449i −0.926049 1.60396i −0.789865 0.613280i \(-0.789850\pi\)
−0.136184 0.990684i \(-0.543484\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 0 0
\(349\) 17.5000 30.3109i 0.936754 1.62250i 0.165277 0.986247i \(-0.447148\pi\)
0.771477 0.636257i \(-0.219518\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.00000 15.5885i 0.479022 0.829690i −0.520689 0.853746i \(-0.674325\pi\)
0.999711 + 0.0240566i \(0.00765819\pi\)
\(354\) 0 0
\(355\) 6.00000 + 10.3923i 0.318447 + 0.551566i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.00000 + 13.8564i 0.418739 + 0.725277i
\(366\) 0 0
\(367\) 13.0000 22.5167i 0.678594 1.17536i −0.296810 0.954937i \(-0.595923\pi\)
0.975404 0.220423i \(-0.0707439\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.00000 + 8.66025i −0.259587 + 0.449618i
\(372\) 0 0
\(373\) −4.00000 6.92820i −0.207112 0.358729i 0.743691 0.668523i \(-0.233073\pi\)
−0.950804 + 0.309794i \(0.899740\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.0000 −1.85409
\(378\) 0 0
\(379\) −35.0000 −1.79783 −0.898915 0.438124i \(-0.855643\pi\)
−0.898915 + 0.438124i \(0.855643\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −17.5000 30.3109i −0.894208 1.54881i −0.834781 0.550581i \(-0.814406\pi\)
−0.0594268 0.998233i \(-0.518927\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.0000 + 20.7846i −0.608424 + 1.05382i 0.383076 + 0.923717i \(0.374865\pi\)
−0.991500 + 0.130105i \(0.958469\pi\)
\(390\) 0 0
\(391\) −24.5000 42.4352i −1.23902 2.14604i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.00000 −0.0503155
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.00000 + 15.5885i 0.449439 + 0.778450i 0.998350 0.0574304i \(-0.0182907\pi\)
−0.548911 + 0.835881i \(0.684957\pi\)
\(402\) 0 0
\(403\) 9.00000 15.5885i 0.448322 0.776516i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.500000 0.866025i −0.0247234 0.0428222i 0.853399 0.521258i \(-0.174537\pi\)
−0.878122 + 0.478436i \(0.841204\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −12.0000 −0.590481
\(414\) 0 0
\(415\) −9.00000 −0.441793
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.00000 + 13.8564i 0.390826 + 0.676930i 0.992559 0.121768i \(-0.0388562\pi\)
−0.601733 + 0.798697i \(0.705523\pi\)
\(420\) 0 0
\(421\) −1.50000 + 2.59808i −0.0731055 + 0.126622i −0.900261 0.435351i \(-0.856624\pi\)
0.827155 + 0.561973i \(0.189958\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.50000 + 6.06218i −0.169775 + 0.294059i
\(426\) 0 0
\(427\) −3.00000 5.19615i −0.145180 0.251459i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.0000 −1.25238 −0.626188 0.779672i \(-0.715386\pi\)
−0.626188 + 0.779672i \(0.715386\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −24.5000 42.4352i −1.17199 2.02995i
\(438\) 0 0
\(439\) −9.50000 + 16.4545i −0.453410 + 0.785330i −0.998595 0.0529862i \(-0.983126\pi\)
0.545185 + 0.838316i \(0.316459\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.50000 + 7.79423i −0.213801 + 0.370315i −0.952901 0.303281i \(-0.901918\pi\)
0.739100 + 0.673596i \(0.235251\pi\)
\(444\) 0 0
\(445\) −2.00000 3.46410i −0.0948091 0.164214i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.00000 + 10.3923i 0.281284 + 0.487199i
\(456\) 0 0
\(457\) −2.00000 + 3.46410i −0.0935561 + 0.162044i −0.909005 0.416785i \(-0.863157\pi\)
0.815449 + 0.578829i \(0.196490\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.00000 + 12.1244i −0.326023 + 0.564688i −0.981719 0.190337i \(-0.939042\pi\)
0.655696 + 0.755025i \(0.272375\pi\)
\(462\) 0 0
\(463\) 13.0000 + 22.5167i 0.604161 + 1.04644i 0.992183 + 0.124788i \(0.0398251\pi\)
−0.388022 + 0.921650i \(0.626842\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.0000 1.71216 0.856078 0.516847i \(-0.172894\pi\)
0.856078 + 0.516847i \(0.172894\pi\)
\(468\) 0 0
\(469\) 20.0000 0.923514
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −3.50000 + 6.06218i −0.160591 + 0.278152i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.0000 + 20.7846i −0.548294 + 0.949673i 0.450098 + 0.892979i \(0.351389\pi\)
−0.998392 + 0.0566937i \(0.981944\pi\)
\(480\) 0 0
\(481\) −18.0000 31.1769i −0.820729 1.42154i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.0000 0.726523
\(486\) 0 0
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.0000 + 29.4449i 0.767199 + 1.32883i 0.939076 + 0.343710i \(0.111684\pi\)
−0.171877 + 0.985118i \(0.554983\pi\)
\(492\) 0 0
\(493\) −21.0000 + 36.3731i −0.945792 + 1.63816i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.0000 20.7846i 0.538274 0.932317i
\(498\) 0 0
\(499\) −5.50000 9.52628i −0.246214 0.426455i 0.716258 0.697835i \(-0.245853\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9.00000 −0.401290 −0.200645 0.979664i \(-0.564304\pi\)
−0.200645 + 0.979664i \(0.564304\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.0000 31.1769i −0.797836 1.38189i −0.921023 0.389509i \(-0.872645\pi\)
0.123187 0.992384i \(-0.460689\pi\)
\(510\) 0 0
\(511\) 16.0000 27.7128i 0.707798 1.22594i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.00000 3.46410i 0.0881305 0.152647i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 0 0
\(523\) −18.0000 −0.787085 −0.393543 0.919306i \(-0.628751\pi\)
−0.393543 + 0.919306i \(0.628751\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.5000 18.1865i −0.457387 0.792218i
\(528\) 0 0
\(529\) −13.0000 + 22.5167i −0.565217 + 0.978985i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.0000 20.7846i 0.519778 0.900281i
\(534\) 0 0
\(535\) 2.00000 + 3.46410i 0.0864675 + 0.149766i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.50000 + 4.33013i 0.107088 + 0.185482i
\(546\) 0 0
\(547\) 4.00000 6.92820i 0.171028 0.296229i −0.767752 0.640747i \(-0.778625\pi\)
0.938779 + 0.344519i \(0.111958\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.0000 + 36.3731i −0.894630 + 1.54954i
\(552\) 0 0
\(553\) 1.00000 + 1.73205i 0.0425243 + 0.0736543i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 34.0000 1.44063 0.720313 0.693649i \(-0.243998\pi\)
0.720313 + 0.693649i \(0.243998\pi\)
\(558\) 0 0
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.0000 31.1769i −0.758610 1.31395i −0.943560 0.331202i \(-0.892546\pi\)
0.184950 0.982748i \(-0.440788\pi\)
\(564\) 0 0
\(565\) −3.00000 + 5.19615i −0.126211 + 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.0000 + 19.0526i −0.461144 + 0.798725i −0.999018 0.0443003i \(-0.985894\pi\)
0.537874 + 0.843025i \(0.319228\pi\)
\(570\) 0 0
\(571\) 8.50000 + 14.7224i 0.355714 + 0.616115i 0.987240 0.159240i \(-0.0509044\pi\)
−0.631526 + 0.775355i \(0.717571\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.00000 0.291920
\(576\) 0 0
\(577\) −20.0000 −0.832611 −0.416305 0.909225i \(-0.636675\pi\)
−0.416305 + 0.909225i \(0.636675\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.00000 + 15.5885i 0.373383 + 0.646718i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.50000 7.79423i 0.185735 0.321702i −0.758089 0.652151i \(-0.773867\pi\)
0.943824 + 0.330449i \(0.107200\pi\)
\(588\) 0 0
\(589\) −10.5000 18.1865i −0.432645 0.749363i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.0000 0.533846 0.266923 0.963718i \(-0.413993\pi\)
0.266923 + 0.963718i \(0.413993\pi\)
\(594\) 0 0
\(595\) 14.0000 0.573944
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −13.0000 22.5167i −0.531166 0.920006i −0.999338 0.0363689i \(-0.988421\pi\)
0.468173 0.883637i \(-0.344912\pi\)
\(600\) 0 0
\(601\) −2.50000 + 4.33013i −0.101977 + 0.176630i −0.912499 0.409079i \(-0.865850\pi\)
0.810522 + 0.585708i \(0.199184\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.50000 + 9.52628i −0.223607 + 0.387298i
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.5000 + 25.1147i 0.583748 + 1.01108i 0.995030 + 0.0995732i \(0.0317477\pi\)
−0.411282 + 0.911508i \(0.634919\pi\)
\(618\) 0 0
\(619\) −4.00000 + 6.92820i −0.160774 + 0.278468i −0.935146 0.354262i \(-0.884732\pi\)
0.774373 + 0.632730i \(0.218066\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.00000 + 6.92820i −0.160257 + 0.277573i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −42.0000 −1.67465
\(630\) 0 0
\(631\) −47.0000 −1.87104 −0.935520 0.353273i \(-0.885069\pi\)
−0.935520 + 0.353273i \(0.885069\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.00000 + 12.1244i 0.277787 + 0.481140i
\(636\) 0 0
\(637\) −9.00000 + 15.5885i −0.356593 + 0.617637i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −24.0000 + 41.5692i −0.947943 + 1.64189i −0.198194 + 0.980163i \(0.563508\pi\)
−0.749749 + 0.661723i \(0.769826\pi\)
\(642\) 0 0
\(643\) −21.0000 36.3731i −0.828159 1.43441i −0.899481 0.436960i \(-0.856055\pi\)
0.0713216 0.997453i \(-0.477278\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.00000 −0.353827 −0.176913 0.984226i \(-0.556611\pi\)
−0.176913 + 0.984226i \(0.556611\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.50000 2.59808i −0.0586995 0.101671i 0.835182 0.549973i \(-0.185362\pi\)
−0.893882 + 0.448303i \(0.852029\pi\)
\(654\) 0 0
\(655\) −7.00000 + 12.1244i −0.273513 + 0.473738i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23.0000 39.8372i 0.895953 1.55184i 0.0633318 0.997993i \(-0.479827\pi\)
0.832621 0.553843i \(-0.186839\pi\)
\(660\) 0 0
\(661\) 1.00000 + 1.73205i 0.0388955 + 0.0673690i 0.884818 0.465937i \(-0.154283\pi\)
−0.845922 + 0.533306i \(0.820949\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 14.0000 0.542897
\(666\) 0 0
\(667\) 42.0000 1.62625
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 11.0000 19.0526i 0.424019 0.734422i −0.572309 0.820038i \(-0.693952\pi\)
0.996328 + 0.0856156i \(0.0272857\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.00000 + 15.5885i −0.345898 + 0.599113i −0.985517 0.169580i \(-0.945759\pi\)
0.639618 + 0.768693i \(0.279092\pi\)
\(678\) 0 0
\(679\) −16.0000 27.7128i −0.614024 1.06352i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.00000 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(684\) 0 0
\(685\) 3.00000 0.114624
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.0000 25.9808i −0.571454 0.989788i
\(690\) 0 0
\(691\) −0.500000 + 0.866025i −0.0190209 + 0.0329452i −0.875379 0.483437i \(-0.839388\pi\)
0.856358 + 0.516382i \(0.172722\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.00000 10.3923i 0.227593 0.394203i
\(696\) 0 0
\(697\) −14.0000 24.2487i −0.530288 0.918485i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −38.0000 −1.43524 −0.717620 0.696435i \(-0.754769\pi\)
−0.717620 + 0.696435i \(0.754769\pi\)
\(702\) 0 0
\(703\) −42.0000 −1.58406
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.00000 + 6.92820i 0.150435 + 0.260562i
\(708\) 0 0
\(709\) 7.00000 12.1244i 0.262891 0.455340i −0.704118 0.710083i \(-0.748658\pi\)
0.967009 + 0.254743i \(0.0819909\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −10.5000 + 18.1865i −0.393228 + 0.681091i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.00000 5.19615i −0.111417 0.192980i
\(726\) 0 0
\(727\) −4.00000 + 6.92820i −0.148352 + 0.256953i −0.930618 0.365991i \(-0.880730\pi\)
0.782267 + 0.622944i \(0.214063\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −28.0000 + 48.4974i −1.03562 + 1.79374i
\(732\) 0 0
\(733\) 8.00000 + 13.8564i 0.295487 + 0.511798i 0.975098 0.221774i \(-0.0711849\pi\)
−0.679611 + 0.733572i \(0.737852\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −35.0000 −1.28750 −0.643748 0.765238i \(-0.722621\pi\)
−0.643748 + 0.765238i \(0.722621\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 6.00000 10.3923i 0.219823 0.380745i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.00000 6.92820i 0.146157 0.253151i
\(750\) 0 0
\(751\) 7.50000 + 12.9904i 0.273679 + 0.474026i 0.969801 0.243898i \(-0.0784261\pi\)
−0.696122 + 0.717923i \(0.745093\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6.00000 −0.218074 −0.109037 0.994038i \(-0.534777\pi\)
−0.109037 + 0.994038i \(0.534777\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.0000 + 19.0526i 0.398750 + 0.690655i 0.993572 0.113203i \(-0.0361109\pi\)
−0.594822 + 0.803857i \(0.702778\pi\)
\(762\) 0 0
\(763\) 5.00000 8.66025i 0.181012 0.313522i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.0000 31.1769i 0.649942 1.12573i
\(768\) 0 0
\(769\) 13.5000 + 23.3827i 0.486822 + 0.843201i 0.999885 0.0151499i \(-0.00482254\pi\)
−0.513063 + 0.858351i \(0.671489\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.00000 −0.179838 −0.0899188 0.995949i \(-0.528661\pi\)
−0.0899188 + 0.995949i \(0.528661\pi\)
\(774\) 0 0
\(775\) 3.00000 0.107763
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.0000 24.2487i −0.501602 0.868800i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.0000 + 17.3205i −0.356915 + 0.618195i
\(786\) 0 0
\(787\) 6.00000 + 10.3923i 0.213877 + 0.370446i 0.952925 0.303207i \(-0.0980575\pi\)
−0.739048 + 0.673653i \(0.764724\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.5000 21.6506i −0.442773 0.766905i 0.555121 0.831769i \(-0.312672\pi\)
−0.997894 + 0.0648645i