Properties

Label 3240.2.q.t.1081.1
Level $3240$
Weight $2$
Character 3240.1081
Analytic conductor $25.872$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1081,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1081");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1081.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3240.1081
Dual form 3240.2.q.t.2161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} +(-1.00000 - 1.73205i) q^{11} +(2.50000 - 4.33013i) q^{13} +4.00000 q^{17} -5.00000 q^{19} +(-1.00000 + 1.73205i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(5.00000 + 8.66025i) q^{29} +(4.00000 - 6.92820i) q^{31} +1.00000 q^{35} -3.00000 q^{37} +(3.00000 - 5.19615i) q^{41} +(-2.00000 - 3.46410i) q^{43} +(-4.00000 - 6.92820i) q^{47} +(3.00000 - 5.19615i) q^{49} -6.00000 q^{53} -2.00000 q^{55} +(-2.00000 + 3.46410i) q^{59} +(2.50000 + 4.33013i) q^{61} +(-2.50000 - 4.33013i) q^{65} +(3.50000 - 6.06218i) q^{67} -6.00000 q^{71} -9.00000 q^{73} +(1.00000 - 1.73205i) q^{77} +(-1.50000 - 2.59808i) q^{79} +(1.00000 + 1.73205i) q^{83} +(2.00000 - 3.46410i) q^{85} +5.00000 q^{91} +(-2.50000 + 4.33013i) q^{95} +(-3.50000 - 6.06218i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{5} + q^{7} - 2 q^{11} + 5 q^{13} + 8 q^{17} - 10 q^{19} - 2 q^{23} - q^{25} + 10 q^{29} + 8 q^{31} + 2 q^{35} - 6 q^{37} + 6 q^{41} - 4 q^{43} - 8 q^{47} + 6 q^{49} - 12 q^{53} - 4 q^{55} - 4 q^{59} + 5 q^{61} - 5 q^{65} + 7 q^{67} - 12 q^{71} - 18 q^{73} + 2 q^{77} - 3 q^{79} + 2 q^{83} + 4 q^{85} + 10 q^{91} - 5 q^{95} - 7 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i 0.944911 0.327327i \(-0.106148\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) 2.50000 4.33013i 0.693375 1.20096i −0.277350 0.960769i \(-0.589456\pi\)
0.970725 0.240192i \(-0.0772105\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 + 1.73205i −0.208514 + 0.361158i −0.951247 0.308431i \(-0.900196\pi\)
0.742732 + 0.669588i \(0.233529\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.00000 + 8.66025i 0.928477 + 1.60817i 0.785872 + 0.618389i \(0.212214\pi\)
0.142605 + 0.989780i \(0.454452\pi\)
\(30\) 0 0
\(31\) 4.00000 6.92820i 0.718421 1.24434i −0.243204 0.969975i \(-0.578198\pi\)
0.961625 0.274367i \(-0.0884683\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00000 5.19615i 0.468521 0.811503i −0.530831 0.847477i \(-0.678120\pi\)
0.999353 + 0.0359748i \(0.0114536\pi\)
\(42\) 0 0
\(43\) −2.00000 3.46410i −0.304997 0.528271i 0.672264 0.740312i \(-0.265322\pi\)
−0.977261 + 0.212041i \(0.931989\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 6.92820i −0.583460 1.01058i −0.995066 0.0992202i \(-0.968365\pi\)
0.411606 0.911362i \(-0.364968\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0 0
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.50000 4.33013i −0.310087 0.537086i
\(66\) 0 0
\(67\) 3.50000 6.06218i 0.427593 0.740613i −0.569066 0.822292i \(-0.692695\pi\)
0.996659 + 0.0816792i \(0.0260283\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −9.00000 −1.05337 −0.526685 0.850060i \(-0.676565\pi\)
−0.526685 + 0.850060i \(0.676565\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.00000 1.73205i 0.113961 0.197386i
\(78\) 0 0
\(79\) −1.50000 2.59808i −0.168763 0.292306i 0.769222 0.638982i \(-0.220644\pi\)
−0.937985 + 0.346675i \(0.887311\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.00000 + 1.73205i 0.109764 + 0.190117i 0.915675 0.401920i \(-0.131657\pi\)
−0.805910 + 0.592037i \(0.798324\pi\)
\(84\) 0 0
\(85\) 2.00000 3.46410i 0.216930 0.375735i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 5.00000 0.524142
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.50000 + 4.33013i −0.256495 + 0.444262i
\(96\) 0 0
\(97\) −3.50000 6.06218i −0.355371 0.615521i 0.631810 0.775123i \(-0.282312\pi\)
−0.987181 + 0.159602i \(0.948979\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) 2.50000 4.33013i 0.246332 0.426660i −0.716173 0.697923i \(-0.754108\pi\)
0.962505 + 0.271263i \(0.0874412\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.00000 5.19615i 0.282216 0.488813i −0.689714 0.724082i \(-0.742264\pi\)
0.971930 + 0.235269i \(0.0755971\pi\)
\(114\) 0 0
\(115\) 1.00000 + 1.73205i 0.0932505 + 0.161515i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.00000 + 3.46410i 0.183340 + 0.317554i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) 0 0
\(133\) −2.50000 4.33013i −0.216777 0.375470i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 1.73205i −0.0854358 0.147979i 0.820141 0.572161i \(-0.193895\pi\)
−0.905577 + 0.424182i \(0.860562\pi\)
\(138\) 0 0
\(139\) 7.50000 12.9904i 0.636142 1.10183i −0.350130 0.936701i \(-0.613863\pi\)
0.986272 0.165129i \(-0.0528040\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −10.0000 −0.836242
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.0000 17.3205i 0.819232 1.41895i −0.0870170 0.996207i \(-0.527733\pi\)
0.906249 0.422744i \(-0.138933\pi\)
\(150\) 0 0
\(151\) −11.5000 19.9186i −0.935857 1.62095i −0.773099 0.634285i \(-0.781294\pi\)
−0.162758 0.986666i \(-0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00000 6.92820i −0.321288 0.556487i
\(156\) 0 0
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) 19.0000 1.48819 0.744097 0.668071i \(-0.232880\pi\)
0.744097 + 0.668071i \(0.232880\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 + 20.7846i −0.928588 + 1.60836i −0.142901 + 0.989737i \(0.545643\pi\)
−0.785687 + 0.618624i \(0.787690\pi\)
\(168\) 0 0
\(169\) −6.00000 10.3923i −0.461538 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.0000 + 17.3205i 0.760286 + 1.31685i 0.942703 + 0.333633i \(0.108275\pi\)
−0.182417 + 0.983221i \(0.558392\pi\)
\(174\) 0 0
\(175\) 0.500000 0.866025i 0.0377964 0.0654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −26.0000 −1.94333 −0.971666 0.236360i \(-0.924046\pi\)
−0.971666 + 0.236360i \(0.924046\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.50000 + 2.59808i −0.110282 + 0.191014i
\(186\) 0 0
\(187\) −4.00000 6.92820i −0.292509 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 13.8564i −0.578860 1.00261i −0.995610 0.0935936i \(-0.970165\pi\)
0.416751 0.909021i \(-0.363169\pi\)
\(192\) 0 0
\(193\) −0.500000 + 0.866025i −0.0359908 + 0.0623379i −0.883460 0.468507i \(-0.844792\pi\)
0.847469 + 0.530845i \(0.178125\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.0000 1.42494 0.712470 0.701702i \(-0.247576\pi\)
0.712470 + 0.701702i \(0.247576\pi\)
\(198\) 0 0
\(199\) −7.00000 −0.496217 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.00000 + 8.66025i −0.350931 + 0.607831i
\(204\) 0 0
\(205\) −3.00000 5.19615i −0.209529 0.362915i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.00000 + 8.66025i 0.345857 + 0.599042i
\(210\) 0 0
\(211\) −2.50000 + 4.33013i −0.172107 + 0.298098i −0.939156 0.343490i \(-0.888391\pi\)
0.767049 + 0.641588i \(0.221724\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.0000 17.3205i 0.672673 1.16510i
\(222\) 0 0
\(223\) −4.00000 6.92820i −0.267860 0.463947i 0.700449 0.713702i \(-0.252983\pi\)
−0.968309 + 0.249756i \(0.919650\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.00000 + 15.5885i 0.597351 + 1.03464i 0.993210 + 0.116331i \(0.0371134\pi\)
−0.395860 + 0.918311i \(0.629553\pi\)
\(228\) 0 0
\(229\) −11.0000 + 19.0526i −0.726900 + 1.25903i 0.231287 + 0.972886i \(0.425707\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.00000 15.5885i 0.582162 1.00833i −0.413061 0.910703i \(-0.635540\pi\)
0.995223 0.0976302i \(-0.0311262\pi\)
\(240\) 0 0
\(241\) −8.50000 14.7224i −0.547533 0.948355i −0.998443 0.0557856i \(-0.982234\pi\)
0.450910 0.892570i \(-0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00000 5.19615i −0.191663 0.331970i
\(246\) 0 0
\(247\) −12.5000 + 21.6506i −0.795356 + 1.37760i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.0000 + 20.7846i −0.748539 + 1.29651i 0.199983 + 0.979799i \(0.435911\pi\)
−0.948523 + 0.316709i \(0.897422\pi\)
\(258\) 0 0
\(259\) −1.50000 2.59808i −0.0932055 0.161437i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) 0 0
\(265\) −3.00000 + 5.19615i −0.184289 + 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.00000 0.243884 0.121942 0.992537i \(-0.461088\pi\)
0.121942 + 0.992537i \(0.461088\pi\)
\(270\) 0 0
\(271\) 3.00000 0.182237 0.0911185 0.995840i \(-0.470956\pi\)
0.0911185 + 0.995840i \(0.470956\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 + 1.73205i −0.0603023 + 0.104447i
\(276\) 0 0
\(277\) −13.0000 22.5167i −0.781094 1.35290i −0.931305 0.364241i \(-0.881328\pi\)
0.150210 0.988654i \(-0.452005\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.0000 27.7128i −0.954480 1.65321i −0.735554 0.677466i \(-0.763078\pi\)
−0.218926 0.975741i \(-0.570255\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.0000 19.0526i 0.642627 1.11306i −0.342217 0.939621i \(-0.611178\pi\)
0.984844 0.173442i \(-0.0554888\pi\)
\(294\) 0 0
\(295\) 2.00000 + 3.46410i 0.116445 + 0.201688i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.00000 + 8.66025i 0.289157 + 0.500835i
\(300\) 0 0
\(301\) 2.00000 3.46410i 0.115278 0.199667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.00000 0.286299
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.0000 17.3205i 0.567048 0.982156i −0.429808 0.902920i \(-0.641419\pi\)
0.996856 0.0792356i \(-0.0252479\pi\)
\(312\) 0 0
\(313\) 9.50000 + 16.4545i 0.536972 + 0.930062i 0.999065 + 0.0432311i \(0.0137652\pi\)
−0.462093 + 0.886831i \(0.652902\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000 + 10.3923i 0.336994 + 0.583690i 0.983866 0.178908i \(-0.0572566\pi\)
−0.646872 + 0.762598i \(0.723923\pi\)
\(318\) 0 0
\(319\) 10.0000 17.3205i 0.559893 0.969762i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.0000 −1.11283
\(324\) 0 0
\(325\) −5.00000 −0.277350
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.00000 6.92820i 0.220527 0.381964i
\(330\) 0 0
\(331\) 7.50000 + 12.9904i 0.412237 + 0.714016i 0.995134 0.0985303i \(-0.0314141\pi\)
−0.582897 + 0.812546i \(0.698081\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.50000 6.06218i −0.191225 0.331212i
\(336\) 0 0
\(337\) 14.5000 25.1147i 0.789865 1.36809i −0.136184 0.990684i \(-0.543484\pi\)
0.926049 0.377403i \(-0.123183\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.0000 + 29.4449i −0.912608 + 1.58068i −0.102241 + 0.994760i \(0.532601\pi\)
−0.810366 + 0.585923i \(0.800732\pi\)
\(348\) 0 0
\(349\) −7.50000 12.9904i −0.401466 0.695359i 0.592437 0.805617i \(-0.298166\pi\)
−0.993903 + 0.110257i \(0.964832\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.00000 3.46410i −0.106449 0.184376i 0.807880 0.589347i \(-0.200615\pi\)
−0.914329 + 0.404971i \(0.867282\pi\)
\(354\) 0 0
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.50000 + 7.79423i −0.235541 + 0.407969i
\(366\) 0 0
\(367\) 12.5000 + 21.6506i 0.652495 + 1.13015i 0.982516 + 0.186180i \(0.0596109\pi\)
−0.330021 + 0.943974i \(0.607056\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.00000 5.19615i −0.155752 0.269771i
\(372\) 0 0
\(373\) 5.50000 9.52628i 0.284779 0.493252i −0.687776 0.725923i \(-0.741413\pi\)
0.972556 + 0.232671i \(0.0747464\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 50.0000 2.57513
\(378\) 0 0
\(379\) 7.00000 0.359566 0.179783 0.983706i \(-0.442460\pi\)
0.179783 + 0.983706i \(0.442460\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000 20.7846i 0.613171 1.06204i −0.377531 0.925997i \(-0.623227\pi\)
0.990702 0.136047i \(-0.0434398\pi\)
\(384\) 0 0
\(385\) −1.00000 1.73205i −0.0509647 0.0882735i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.00000 + 10.3923i 0.304212 + 0.526911i 0.977086 0.212847i \(-0.0682735\pi\)
−0.672874 + 0.739758i \(0.734940\pi\)
\(390\) 0 0
\(391\) −4.00000 + 6.92820i −0.202289 + 0.350374i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.00000 −0.150946
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.00000 + 15.5885i −0.449439 + 0.778450i −0.998350 0.0574304i \(-0.981709\pi\)
0.548911 + 0.835881i \(0.315043\pi\)
\(402\) 0 0
\(403\) −20.0000 34.6410i −0.996271 1.72559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.00000 + 5.19615i 0.148704 + 0.257564i
\(408\) 0 0
\(409\) −12.5000 + 21.6506i −0.618085 + 1.07056i 0.371750 + 0.928333i \(0.378758\pi\)
−0.989835 + 0.142222i \(0.954575\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.00000 −0.196827
\(414\) 0 0
\(415\) 2.00000 0.0981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) 13.5000 + 23.3827i 0.657950 + 1.13960i 0.981146 + 0.193270i \(0.0619094\pi\)
−0.323196 + 0.946332i \(0.604757\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.00000 3.46410i −0.0970143 0.168034i
\(426\) 0 0
\(427\) −2.50000 + 4.33013i −0.120983 + 0.209550i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −38.0000 −1.83040 −0.915198 0.403005i \(-0.867966\pi\)
−0.915198 + 0.403005i \(0.867966\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.00000 8.66025i 0.239182 0.414276i
\(438\) 0 0
\(439\) 16.0000 + 27.7128i 0.763638 + 1.32266i 0.940963 + 0.338508i \(0.109922\pi\)
−0.177325 + 0.984152i \(0.556744\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.0000 + 31.1769i 0.855206 + 1.48126i 0.876454 + 0.481486i \(0.159903\pi\)
−0.0212481 + 0.999774i \(0.506764\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.50000 4.33013i 0.117202 0.202999i
\(456\) 0 0
\(457\) 13.0000 + 22.5167i 0.608114 + 1.05328i 0.991551 + 0.129718i \(0.0414071\pi\)
−0.383437 + 0.923567i \(0.625260\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0 0
\(463\) −13.5000 + 23.3827i −0.627398 + 1.08669i 0.360674 + 0.932692i \(0.382547\pi\)
−0.988072 + 0.153993i \(0.950787\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.00000 + 6.92820i −0.183920 + 0.318559i
\(474\) 0 0
\(475\) 2.50000 + 4.33013i 0.114708 + 0.198680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.0000 + 29.4449i 0.776750 + 1.34537i 0.933806 + 0.357780i \(0.116466\pi\)
−0.157056 + 0.987590i \(0.550200\pi\)
\(480\) 0 0
\(481\) −7.50000 + 12.9904i −0.341971 + 0.592310i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.00000 −0.317854
\(486\) 0 0
\(487\) −17.0000 −0.770344 −0.385172 0.922845i \(-0.625858\pi\)
−0.385172 + 0.922845i \(0.625858\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.00000 + 5.19615i −0.135388 + 0.234499i −0.925746 0.378147i \(-0.876561\pi\)
0.790358 + 0.612646i \(0.209895\pi\)
\(492\) 0 0
\(493\) 20.0000 + 34.6410i 0.900755 + 1.56015i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.00000 5.19615i −0.134568 0.233079i
\(498\) 0 0
\(499\) 20.0000 34.6410i 0.895323 1.55074i 0.0619186 0.998081i \(-0.480278\pi\)
0.833404 0.552664i \(-0.186389\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.00000 + 1.73205i −0.0443242 + 0.0767718i −0.887336 0.461123i \(-0.847447\pi\)
0.843012 + 0.537895i \(0.180780\pi\)
\(510\) 0 0
\(511\) −4.50000 7.79423i −0.199068 0.344796i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.50000 4.33013i −0.110163 0.190808i
\(516\) 0 0
\(517\) −8.00000 + 13.8564i −0.351840 + 0.609404i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −35.0000 −1.53044 −0.765222 0.643767i \(-0.777371\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000 27.7128i 0.696971 1.20719i
\(528\) 0 0
\(529\) 9.50000 + 16.4545i 0.413043 + 0.715412i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −15.0000 25.9808i −0.649722 1.12535i
\(534\) 0 0
\(535\) 9.00000 15.5885i 0.389104 0.673948i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) −11.0000 −0.472927 −0.236463 0.971640i \(-0.575988\pi\)
−0.236463 + 0.971640i \(0.575988\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.00000 12.1244i 0.299847 0.519350i
\(546\) 0 0
\(547\) 18.5000 + 32.0429i 0.791003 + 1.37006i 0.925347 + 0.379122i \(0.123774\pi\)
−0.134344 + 0.990935i \(0.542893\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −25.0000 43.3013i −1.06504 1.84470i
\(552\) 0 0
\(553\) 1.50000 2.59808i 0.0637865 0.110481i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.0000 0.677942 0.338971 0.940797i \(-0.389921\pi\)
0.338971 + 0.940797i \(0.389921\pi\)
\(558\) 0 0
\(559\) −20.0000 −0.845910
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.0000 + 17.3205i −0.421450 + 0.729972i −0.996082 0.0884397i \(-0.971812\pi\)
0.574632 + 0.818412i \(0.305145\pi\)
\(564\) 0 0
\(565\) −3.00000 5.19615i −0.126211 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.00000 3.46410i −0.0838444 0.145223i 0.821054 0.570851i \(-0.193387\pi\)
−0.904898 + 0.425628i \(0.860053\pi\)
\(570\) 0 0
\(571\) −15.5000 + 26.8468i −0.648655 + 1.12350i 0.334790 + 0.942293i \(0.391335\pi\)
−0.983444 + 0.181210i \(0.941999\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.00000 0.0834058
\(576\) 0 0
\(577\) −19.0000 −0.790980 −0.395490 0.918470i \(-0.629425\pi\)
−0.395490 + 0.918470i \(0.629425\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.00000 + 1.73205i −0.0414870 + 0.0718576i
\(582\) 0 0
\(583\) 6.00000 + 10.3923i 0.248495 + 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.00000 + 5.19615i 0.123823 + 0.214468i 0.921272 0.388918i \(-0.127151\pi\)
−0.797449 + 0.603386i \(0.793818\pi\)
\(588\) 0 0
\(589\) −20.0000 + 34.6410i −0.824086 + 1.42736i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.00000 + 5.19615i −0.122577 + 0.212309i −0.920783 0.390075i \(-0.872449\pi\)
0.798206 + 0.602384i \(0.205782\pi\)
\(600\) 0 0
\(601\) 13.0000 + 22.5167i 0.530281 + 0.918474i 0.999376 + 0.0353259i \(0.0112469\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.50000 6.06218i −0.142295 0.246463i
\(606\) 0 0
\(607\) −13.5000 + 23.3827i −0.547948 + 0.949074i 0.450467 + 0.892793i \(0.351258\pi\)
−0.998415 + 0.0562808i \(0.982076\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −40.0000 −1.61823
\(612\) 0 0
\(613\) −15.0000 −0.605844 −0.302922 0.953015i \(-0.597962\pi\)
−0.302922 + 0.953015i \(0.597962\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 5.19615i 0.120775 0.209189i −0.799298 0.600935i \(-0.794795\pi\)
0.920074 + 0.391745i \(0.128129\pi\)
\(618\) 0 0
\(619\) 0.500000 + 0.866025i 0.0200967 + 0.0348085i 0.875899 0.482495i \(-0.160269\pi\)
−0.855802 + 0.517303i \(0.826936\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −5.00000 −0.199047 −0.0995234 0.995035i \(-0.531732\pi\)
−0.0995234 + 0.995035i \(0.531732\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −15.0000 25.9808i −0.594322 1.02940i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.0000 20.7846i −0.473972 0.820943i 0.525584 0.850741i \(-0.323847\pi\)
−0.999556 + 0.0297987i \(0.990513\pi\)
\(642\) 0 0
\(643\) −6.00000 + 10.3923i −0.236617 + 0.409832i −0.959741 0.280885i \(-0.909372\pi\)
0.723124 + 0.690718i \(0.242705\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18.0000 0.707653 0.353827 0.935311i \(-0.384880\pi\)
0.353827 + 0.935311i \(0.384880\pi\)
\(648\) 0 0
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.0000 + 24.2487i −0.547862 + 0.948925i 0.450558 + 0.892747i \(0.351225\pi\)
−0.998421 + 0.0561784i \(0.982108\pi\)
\(654\) 0 0
\(655\) 6.00000 + 10.3923i 0.234439 + 0.406061i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000 + 20.7846i 0.467454 + 0.809653i 0.999309 0.0371821i \(-0.0118382\pi\)
−0.531855 + 0.846836i \(0.678505\pi\)
\(660\) 0 0
\(661\) 22.5000 38.9711i 0.875149 1.51580i 0.0185442 0.999828i \(-0.494097\pi\)
0.856604 0.515974i \(-0.172570\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.00000 −0.193892
\(666\) 0 0
\(667\) −20.0000 −0.774403
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.00000 8.66025i 0.193023 0.334325i
\(672\) 0 0
\(673\) 1.50000 + 2.59808i 0.0578208 + 0.100148i 0.893487 0.449089i \(-0.148251\pi\)
−0.835666 + 0.549238i \(0.814918\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.0000 + 34.6410i 0.768662 + 1.33136i 0.938288 + 0.345854i \(0.112411\pi\)
−0.169626 + 0.985509i \(0.554256\pi\)
\(678\) 0 0
\(679\) 3.50000 6.06218i 0.134318 0.232645i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.0000 1.14792 0.573959 0.818884i \(-0.305407\pi\)
0.573959 + 0.818884i \(0.305407\pi\)
\(684\) 0 0
\(685\) −2.00000 −0.0764161
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.0000 + 25.9808i −0.571454 + 0.989788i
\(690\) 0 0
\(691\) 14.0000 + 24.2487i 0.532585 + 0.922464i 0.999276 + 0.0380440i \(0.0121127\pi\)
−0.466691 + 0.884420i \(0.654554\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.50000 12.9904i −0.284491 0.492753i
\(696\) 0 0
\(697\) 12.0000 20.7846i 0.454532 0.787273i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.00000 −0.0755390 −0.0377695 0.999286i \(-0.512025\pi\)
−0.0377695 + 0.999286i \(0.512025\pi\)
\(702\) 0 0
\(703\) 15.0000 0.565736
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 21.5000 + 37.2391i 0.807449 + 1.39854i 0.914625 + 0.404303i \(0.132486\pi\)
−0.107176 + 0.994240i \(0.534181\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.00000 + 13.8564i 0.299602 + 0.518927i
\(714\) 0 0
\(715\) −5.00000 + 8.66025i −0.186989 + 0.323875i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −10.0000 −0.372937 −0.186469 0.982461i \(-0.559704\pi\)
−0.186469 + 0.982461i \(0.559704\pi\)
\(720\) 0 0
\(721\) 5.00000 0.186210
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.00000 8.66025i 0.185695 0.321634i
\(726\) 0 0
\(727\) −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i \(-0.214063\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.00000 13.8564i −0.295891 0.512498i
\(732\) 0 0
\(733\) −9.00000 + 15.5885i −0.332423 + 0.575773i −0.982986 0.183679i \(-0.941199\pi\)
0.650564 + 0.759452i \(0.274533\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.0000 −0.515697
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.00000 10.3923i 0.220119 0.381257i −0.734725 0.678365i \(-0.762689\pi\)
0.954844 + 0.297108i \(0.0960222\pi\)
\(744\) 0 0
\(745\) −10.0000 17.3205i −0.366372 0.634574i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.00000 + 15.5885i 0.328853 + 0.569590i
\(750\) 0 0
\(751\) 16.5000 28.5788i 0.602094 1.04286i −0.390410 0.920641i \(-0.627667\pi\)
0.992504 0.122216i \(-0.0389999\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −23.0000 −0.837056
\(756\) 0 0
\(757\) 35.0000 1.27210 0.636048 0.771649i \(-0.280568\pi\)
0.636048 + 0.771649i \(0.280568\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.00000 + 5.19615i −0.108750 + 0.188360i −0.915264 0.402854i \(-0.868018\pi\)
0.806514 + 0.591215i \(0.201351\pi\)
\(762\) 0 0
\(763\) 7.00000 + 12.1244i 0.253417 + 0.438931i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.0000 + 17.3205i 0.361079 + 0.625407i
\(768\) 0 0
\(769\) −21.5000 + 37.2391i −0.775310 + 1.34288i 0.159310 + 0.987229i \(0.449073\pi\)
−0.934620 + 0.355647i \(0.884260\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −15.0000 + 25.9808i −0.537431 + 0.930857i
\(780\) 0 0
\(781\) 6.00000 + 10.3923i 0.214697 + 0.371866i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.00000 12.1244i −0.249841 0.432737i
\(786\) 0 0
\(787\) −20.5000 + 35.5070i −0.730746 + 1.26569i 0.225819 + 0.974169i \(0.427494\pi\)
−0.956565 + 0.291520i \(0.905839\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 25.0000 0.887776
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 <