Properties

Label 3240.2.q.n
Level $3240$
Weight $2$
Character orbit 3240.q
Analytic conductor $25.872$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{5} + ( -2 + 2 \zeta_{6} ) q^{7} +O(q^{10})\) \( q + \zeta_{6} q^{5} + ( -2 + 2 \zeta_{6} ) q^{7} + ( -2 + 2 \zeta_{6} ) q^{11} -4 \zeta_{6} q^{13} -2 q^{17} + 4 q^{19} -8 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} + ( 10 - 10 \zeta_{6} ) q^{29} -4 \zeta_{6} q^{31} -2 q^{35} + ( 8 - 8 \zeta_{6} ) q^{43} + ( -8 + 8 \zeta_{6} ) q^{47} + 3 \zeta_{6} q^{49} + 6 q^{53} -2 q^{55} + 14 \zeta_{6} q^{59} + ( 14 - 14 \zeta_{6} ) q^{61} + ( 4 - 4 \zeta_{6} ) q^{65} + 4 \zeta_{6} q^{67} + 12 q^{71} + 6 q^{73} -4 \zeta_{6} q^{77} + ( 12 - 12 \zeta_{6} ) q^{79} + ( -4 + 4 \zeta_{6} ) q^{83} -2 \zeta_{6} q^{85} -12 q^{89} + 8 q^{91} + 4 \zeta_{6} q^{95} + ( 14 - 14 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{5} - 2q^{7} + O(q^{10}) \) \( 2q + q^{5} - 2q^{7} - 2q^{11} - 4q^{13} - 4q^{17} + 8q^{19} - 8q^{23} - q^{25} + 10q^{29} - 4q^{31} - 4q^{35} + 8q^{43} - 8q^{47} + 3q^{49} + 12q^{53} - 4q^{55} + 14q^{59} + 14q^{61} + 4q^{65} + 4q^{67} + 24q^{71} + 12q^{73} - 4q^{77} + 12q^{79} - 4q^{83} - 2q^{85} - 24q^{89} + 16q^{91} + 4q^{95} + 14q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1081.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0.500000 0.866025i 0 −1.00000 1.73205i 0 0 0
2161.1 0 0 0 0.500000 + 0.866025i 0 −1.00000 + 1.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.2.q.n 2
3.b odd 2 1 3240.2.q.d 2
9.c even 3 1 360.2.a.c 1
9.c even 3 1 inner 3240.2.q.n 2
9.d odd 6 1 360.2.a.d yes 1
9.d odd 6 1 3240.2.q.d 2
36.f odd 6 1 720.2.a.a 1
36.h even 6 1 720.2.a.i 1
45.h odd 6 1 1800.2.a.f 1
45.j even 6 1 1800.2.a.i 1
45.k odd 12 2 1800.2.f.h 2
45.l even 12 2 1800.2.f.d 2
72.j odd 6 1 2880.2.a.n 1
72.l even 6 1 2880.2.a.e 1
72.n even 6 1 2880.2.a.bd 1
72.p odd 6 1 2880.2.a.w 1
180.n even 6 1 3600.2.a.bh 1
180.p odd 6 1 3600.2.a.bd 1
180.v odd 12 2 3600.2.f.q 2
180.x even 12 2 3600.2.f.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.a.c 1 9.c even 3 1
360.2.a.d yes 1 9.d odd 6 1
720.2.a.a 1 36.f odd 6 1
720.2.a.i 1 36.h even 6 1
1800.2.a.f 1 45.h odd 6 1
1800.2.a.i 1 45.j even 6 1
1800.2.f.d 2 45.l even 12 2
1800.2.f.h 2 45.k odd 12 2
2880.2.a.e 1 72.l even 6 1
2880.2.a.n 1 72.j odd 6 1
2880.2.a.w 1 72.p odd 6 1
2880.2.a.bd 1 72.n even 6 1
3240.2.q.d 2 3.b odd 2 1
3240.2.q.d 2 9.d odd 6 1
3240.2.q.n 2 1.a even 1 1 trivial
3240.2.q.n 2 9.c even 3 1 inner
3600.2.a.bd 1 180.p odd 6 1
3600.2.a.bh 1 180.n even 6 1
3600.2.f.g 2 180.x even 12 2
3600.2.f.q 2 180.v odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3240, [\chi])\):

\( T_{7}^{2} + 2 T_{7} + 4 \)
\( T_{11}^{2} + 2 T_{11} + 4 \)
\( T_{17} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( 4 + 2 T + T^{2} \)
$11$ \( 4 + 2 T + T^{2} \)
$13$ \( 16 + 4 T + T^{2} \)
$17$ \( ( 2 + T )^{2} \)
$19$ \( ( -4 + T )^{2} \)
$23$ \( 64 + 8 T + T^{2} \)
$29$ \( 100 - 10 T + T^{2} \)
$31$ \( 16 + 4 T + T^{2} \)
$37$ \( T^{2} \)
$41$ \( T^{2} \)
$43$ \( 64 - 8 T + T^{2} \)
$47$ \( 64 + 8 T + T^{2} \)
$53$ \( ( -6 + T )^{2} \)
$59$ \( 196 - 14 T + T^{2} \)
$61$ \( 196 - 14 T + T^{2} \)
$67$ \( 16 - 4 T + T^{2} \)
$71$ \( ( -12 + T )^{2} \)
$73$ \( ( -6 + T )^{2} \)
$79$ \( 144 - 12 T + T^{2} \)
$83$ \( 16 + 4 T + T^{2} \)
$89$ \( ( 12 + T )^{2} \)
$97$ \( 196 - 14 T + T^{2} \)
show more
show less