Properties

Label 3240.2.q.be
Level $3240$
Weight $2$
Character orbit 3240.q
Analytic conductor $25.872$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Defining polynomial: \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{5} + ( -1 - \beta_{1} + \beta_{3} ) q^{7} +O(q^{10})\) \( q -\beta_{1} q^{5} + ( -1 - \beta_{1} + \beta_{3} ) q^{7} + ( 2 + 2 \beta_{1} + \beta_{3} ) q^{11} + ( 3 \beta_{1} + \beta_{2} - \beta_{3} ) q^{13} -2 q^{17} + q^{19} + ( 3 \beta_{1} - \beta_{2} + \beta_{3} ) q^{23} + ( -1 - \beta_{1} ) q^{25} + ( 2 + 2 \beta_{1} + \beta_{3} ) q^{29} + ( 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{31} + ( -1 + \beta_{2} ) q^{35} + ( -2 - 2 \beta_{2} ) q^{37} + ( \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{41} + ( -4 - 4 \beta_{1} ) q^{43} + ( 3 + 3 \beta_{1} - \beta_{3} ) q^{47} + ( 8 \beta_{1} + \beta_{2} - \beta_{3} ) q^{49} + ( -5 + \beta_{2} ) q^{53} + ( 2 + \beta_{2} ) q^{55} + 13 \beta_{1} q^{59} -2 \beta_{3} q^{61} + ( 3 + 3 \beta_{1} - \beta_{3} ) q^{65} + ( -8 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{67} + ( 4 + \beta_{2} ) q^{71} + ( -2 + 4 \beta_{2} ) q^{73} + ( 12 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{77} + ( -2 - 2 \beta_{1} - 2 \beta_{3} ) q^{79} + ( 6 + 6 \beta_{1} - 2 \beta_{3} ) q^{83} + 2 \beta_{1} q^{85} -3 \beta_{2} q^{89} + ( 17 - 3 \beta_{2} ) q^{91} -\beta_{1} q^{95} + ( -16 - 16 \beta_{1} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{5} - q^{7} + O(q^{10}) \) \( 4q + 2q^{5} - q^{7} + 5q^{11} - 5q^{13} - 8q^{17} + 4q^{19} - 7q^{23} - 2q^{25} + 5q^{29} - 5q^{31} - 2q^{35} - 12q^{37} - 8q^{43} + 5q^{47} - 15q^{49} - 18q^{53} + 10q^{55} - 26q^{59} - 2q^{61} + 5q^{65} + 14q^{67} + 18q^{71} - 26q^{77} - 6q^{79} + 10q^{83} - 4q^{85} - 6q^{89} + 62q^{91} + 2q^{95} - 32q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + 4 \nu^{2} - 4 \nu - 25 \)\()/20\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{3} + \nu^{2} + 9 \nu + 5 \)\()/5\)
\(\beta_{3}\)\(=\)\((\)\( 3 \nu^{3} + 2 \nu^{2} + 8 \nu - 25 \)\()/10\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} + \beta_{2} - 2 \beta_{1} - 1\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{3} + 2 \beta_{2} + 14 \beta_{1} + 13\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(8 \beta_{3} - 4 \beta_{2} - 4 \beta_{1} + 19\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1081.1
−1.63746 1.52274i
2.13746 + 0.656712i
−1.63746 + 1.52274i
2.13746 0.656712i
0 0 0 0.500000 0.866025i 0 −2.13746 3.70219i 0 0 0
1081.2 0 0 0 0.500000 0.866025i 0 1.63746 + 2.83616i 0 0 0
2161.1 0 0 0 0.500000 + 0.866025i 0 −2.13746 + 3.70219i 0 0 0
2161.2 0 0 0 0.500000 + 0.866025i 0 1.63746 2.83616i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.2.q.be 4
3.b odd 2 1 3240.2.q.y 4
9.c even 3 1 3240.2.a.h 2
9.c even 3 1 inner 3240.2.q.be 4
9.d odd 6 1 3240.2.a.n yes 2
9.d odd 6 1 3240.2.q.y 4
36.f odd 6 1 6480.2.a.bf 2
36.h even 6 1 6480.2.a.bm 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3240.2.a.h 2 9.c even 3 1
3240.2.a.n yes 2 9.d odd 6 1
3240.2.q.y 4 3.b odd 2 1
3240.2.q.y 4 9.d odd 6 1
3240.2.q.be 4 1.a even 1 1 trivial
3240.2.q.be 4 9.c even 3 1 inner
6480.2.a.bf 2 36.f odd 6 1
6480.2.a.bm 2 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3240, [\chi])\):

\( T_{7}^{4} + T_{7}^{3} + 15 T_{7}^{2} - 14 T_{7} + 196 \)
\( T_{11}^{4} - 5 T_{11}^{3} + 33 T_{11}^{2} + 40 T_{11} + 64 \)
\( T_{17} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( 1 - T + T^{2} )^{2} \)
$7$ \( 196 - 14 T + 15 T^{2} + T^{3} + T^{4} \)
$11$ \( 64 + 40 T + 33 T^{2} - 5 T^{3} + T^{4} \)
$13$ \( 64 - 40 T + 33 T^{2} + 5 T^{3} + T^{4} \)
$17$ \( ( 2 + T )^{4} \)
$19$ \( ( -1 + T )^{4} \)
$23$ \( 4 - 14 T + 51 T^{2} + 7 T^{3} + T^{4} \)
$29$ \( 64 + 40 T + 33 T^{2} - 5 T^{3} + T^{4} \)
$31$ \( 64 - 40 T + 33 T^{2} + 5 T^{3} + T^{4} \)
$37$ \( ( -48 + 6 T + T^{2} )^{2} \)
$41$ \( 3249 + 57 T^{2} + T^{4} \)
$43$ \( ( 16 + 4 T + T^{2} )^{2} \)
$47$ \( 64 + 40 T + 33 T^{2} - 5 T^{3} + T^{4} \)
$53$ \( ( 6 + 9 T + T^{2} )^{2} \)
$59$ \( ( 169 + 13 T + T^{2} )^{2} \)
$61$ \( 3136 - 112 T + 60 T^{2} + 2 T^{3} + T^{4} \)
$67$ \( 64 + 112 T + 204 T^{2} - 14 T^{3} + T^{4} \)
$71$ \( ( 6 - 9 T + T^{2} )^{2} \)
$73$ \( ( -228 + T^{2} )^{2} \)
$79$ \( 2304 - 288 T + 84 T^{2} + 6 T^{3} + T^{4} \)
$83$ \( 1024 + 320 T + 132 T^{2} - 10 T^{3} + T^{4} \)
$89$ \( ( -126 + 3 T + T^{2} )^{2} \)
$97$ \( ( 256 + 16 T + T^{2} )^{2} \)
show more
show less