Properties

Label 3240.2.q.bd.2161.1
Level $3240$
Weight $2$
Character 3240.2161
Analytic conductor $25.872$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1081,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1081");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2161.1
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 3240.2161
Dual form 3240.2.q.bd.1081.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{5} +(-1.68614 + 2.92048i) q^{7} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{5} +(-1.68614 + 2.92048i) q^{7} +(1.18614 - 2.05446i) q^{11} +(1.68614 + 2.92048i) q^{13} +6.74456 q^{17} +1.00000 q^{19} +(2.68614 + 4.65253i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(1.18614 - 2.05446i) q^{29} +(-5.55842 - 9.62747i) q^{31} -3.37228 q^{35} +6.00000 q^{37} +(0.127719 + 0.221215i) q^{41} +(2.37228 - 4.10891i) q^{43} +(-4.68614 + 8.11663i) q^{47} +(-2.18614 - 3.78651i) q^{49} -10.1168 q^{53} +2.37228 q^{55} +(2.50000 + 4.33013i) q^{59} +(-6.37228 + 11.0371i) q^{61} +(-1.68614 + 2.92048i) q^{65} +(0.372281 + 0.644810i) q^{67} +4.37228 q^{71} +14.7446 q^{73} +(4.00000 + 6.92820i) q^{77} +(1.37228 - 2.37686i) q^{79} +(-5.00000 + 8.66025i) q^{83} +(3.37228 + 5.84096i) q^{85} +4.37228 q^{89} -11.3723 q^{91} +(0.500000 + 0.866025i) q^{95} +(2.37228 - 4.10891i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} - q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{5} - q^{7} - q^{11} + q^{13} + 4 q^{17} + 4 q^{19} + 5 q^{23} - 2 q^{25} - q^{29} - 5 q^{31} - 2 q^{35} + 24 q^{37} + 12 q^{41} - 2 q^{43} - 13 q^{47} - 3 q^{49} - 6 q^{53} - 2 q^{55} + 10 q^{59} - 14 q^{61} - q^{65} - 10 q^{67} + 6 q^{71} + 36 q^{73} + 16 q^{77} - 6 q^{79} - 20 q^{83} + 2 q^{85} + 6 q^{89} - 34 q^{91} + 2 q^{95} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.68614 + 2.92048i −0.637301 + 1.10384i 0.348721 + 0.937226i \(0.386616\pi\)
−0.986023 + 0.166612i \(0.946717\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.18614 2.05446i 0.357635 0.619442i −0.629930 0.776652i \(-0.716917\pi\)
0.987565 + 0.157210i \(0.0502499\pi\)
\(12\) 0 0
\(13\) 1.68614 + 2.92048i 0.467651 + 0.809996i 0.999317 0.0369586i \(-0.0117670\pi\)
−0.531666 + 0.846954i \(0.678434\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.74456 1.63580 0.817898 0.575363i \(-0.195139\pi\)
0.817898 + 0.575363i \(0.195139\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.68614 + 4.65253i 0.560099 + 0.970120i 0.997487 + 0.0708472i \(0.0225703\pi\)
−0.437388 + 0.899273i \(0.644096\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.18614 2.05446i 0.220261 0.381503i −0.734626 0.678472i \(-0.762642\pi\)
0.954887 + 0.296969i \(0.0959758\pi\)
\(30\) 0 0
\(31\) −5.55842 9.62747i −0.998322 1.72914i −0.549309 0.835619i \(-0.685109\pi\)
−0.449013 0.893525i \(-0.648224\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.37228 −0.570020
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.127719 + 0.221215i 0.0199463 + 0.0345480i 0.875826 0.482627i \(-0.160317\pi\)
−0.855880 + 0.517175i \(0.826984\pi\)
\(42\) 0 0
\(43\) 2.37228 4.10891i 0.361770 0.626603i −0.626483 0.779435i \(-0.715506\pi\)
0.988252 + 0.152832i \(0.0488394\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.68614 + 8.11663i −0.683544 + 1.18393i 0.290348 + 0.956921i \(0.406229\pi\)
−0.973892 + 0.227012i \(0.927104\pi\)
\(48\) 0 0
\(49\) −2.18614 3.78651i −0.312306 0.540930i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.1168 −1.38966 −0.694828 0.719176i \(-0.744519\pi\)
−0.694828 + 0.719176i \(0.744519\pi\)
\(54\) 0 0
\(55\) 2.37228 0.319878
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.50000 + 4.33013i 0.325472 + 0.563735i 0.981608 0.190909i \(-0.0611434\pi\)
−0.656136 + 0.754643i \(0.727810\pi\)
\(60\) 0 0
\(61\) −6.37228 + 11.0371i −0.815887 + 1.41316i 0.0928022 + 0.995685i \(0.470418\pi\)
−0.908689 + 0.417473i \(0.862916\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.68614 + 2.92048i −0.209140 + 0.362241i
\(66\) 0 0
\(67\) 0.372281 + 0.644810i 0.0454814 + 0.0787761i 0.887870 0.460095i \(-0.152184\pi\)
−0.842389 + 0.538871i \(0.818851\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.37228 0.518894 0.259447 0.965757i \(-0.416460\pi\)
0.259447 + 0.965757i \(0.416460\pi\)
\(72\) 0 0
\(73\) 14.7446 1.72572 0.862860 0.505443i \(-0.168671\pi\)
0.862860 + 0.505443i \(0.168671\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000 + 6.92820i 0.455842 + 0.789542i
\(78\) 0 0
\(79\) 1.37228 2.37686i 0.154394 0.267418i −0.778444 0.627714i \(-0.783991\pi\)
0.932838 + 0.360296i \(0.117324\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.00000 + 8.66025i −0.548821 + 0.950586i 0.449534 + 0.893263i \(0.351590\pi\)
−0.998356 + 0.0573233i \(0.981743\pi\)
\(84\) 0 0
\(85\) 3.37228 + 5.84096i 0.365775 + 0.633541i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.37228 0.463461 0.231730 0.972780i \(-0.425561\pi\)
0.231730 + 0.972780i \(0.425561\pi\)
\(90\) 0 0
\(91\) −11.3723 −1.19214
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.500000 + 0.866025i 0.0512989 + 0.0888523i
\(96\) 0 0
\(97\) 2.37228 4.10891i 0.240869 0.417197i −0.720093 0.693877i \(-0.755901\pi\)
0.960962 + 0.276680i \(0.0892344\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.93070 + 13.7364i −0.789134 + 1.36682i 0.137363 + 0.990521i \(0.456137\pi\)
−0.926498 + 0.376300i \(0.877196\pi\)
\(102\) 0 0
\(103\) 0.0584220 + 0.101190i 0.00575649 + 0.00997053i 0.868889 0.495006i \(-0.164834\pi\)
−0.863133 + 0.504977i \(0.831501\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) 0.883156 0.0845910 0.0422955 0.999105i \(-0.486533\pi\)
0.0422955 + 0.999105i \(0.486533\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.37228 + 12.7692i 0.693526 + 1.20122i 0.970675 + 0.240395i \(0.0772770\pi\)
−0.277149 + 0.960827i \(0.589390\pi\)
\(114\) 0 0
\(115\) −2.68614 + 4.65253i −0.250484 + 0.433851i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −11.3723 + 19.6974i −1.04250 + 1.80565i
\(120\) 0 0
\(121\) 2.68614 + 4.65253i 0.244195 + 0.422957i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −12.8614 −1.14127 −0.570633 0.821205i \(-0.693302\pi\)
−0.570633 + 0.821205i \(0.693302\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.12772 + 5.41737i 0.273270 + 0.473318i 0.969697 0.244310i \(-0.0785614\pi\)
−0.696427 + 0.717627i \(0.745228\pi\)
\(132\) 0 0
\(133\) −1.68614 + 2.92048i −0.146207 + 0.253238i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.62772 + 4.55134i −0.224501 + 0.388847i −0.956170 0.292813i \(-0.905409\pi\)
0.731669 + 0.681661i \(0.238742\pi\)
\(138\) 0 0
\(139\) −7.50000 12.9904i −0.636142 1.10183i −0.986272 0.165129i \(-0.947196\pi\)
0.350130 0.936701i \(-0.386137\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.00000 0.668994
\(144\) 0 0
\(145\) 2.37228 0.197007
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.74456 + 16.8781i 0.798306 + 1.38271i 0.920719 + 0.390227i \(0.127603\pi\)
−0.122413 + 0.992479i \(0.539063\pi\)
\(150\) 0 0
\(151\) −12.1861 + 21.1070i −0.991694 + 1.71766i −0.384460 + 0.923142i \(0.625612\pi\)
−0.607234 + 0.794523i \(0.707721\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.55842 9.62747i 0.446463 0.773297i
\(156\) 0 0
\(157\) −11.4307 19.7986i −0.912269 1.58010i −0.810851 0.585253i \(-0.800995\pi\)
−0.101419 0.994844i \(-0.532338\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −18.1168 −1.42781
\(162\) 0 0
\(163\) 9.48913 0.743246 0.371623 0.928384i \(-0.378801\pi\)
0.371623 + 0.928384i \(0.378801\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.00000 10.3923i −0.464294 0.804181i 0.534875 0.844931i \(-0.320359\pi\)
−0.999169 + 0.0407502i \(0.987025\pi\)
\(168\) 0 0
\(169\) 0.813859 1.40965i 0.0626046 0.108434i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.43070 12.8704i 0.564946 0.978515i −0.432109 0.901821i \(-0.642230\pi\)
0.997055 0.0766935i \(-0.0244363\pi\)
\(174\) 0 0
\(175\) −1.68614 2.92048i −0.127460 0.220768i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.25544 0.318066 0.159033 0.987273i \(-0.449162\pi\)
0.159033 + 0.987273i \(0.449162\pi\)
\(180\) 0 0
\(181\) −13.8614 −1.03031 −0.515155 0.857097i \(-0.672266\pi\)
−0.515155 + 0.857097i \(0.672266\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 + 5.19615i 0.220564 + 0.382029i
\(186\) 0 0
\(187\) 8.00000 13.8564i 0.585018 1.01328i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.81386 + 4.87375i −0.203604 + 0.352652i −0.949687 0.313201i \(-0.898599\pi\)
0.746083 + 0.665853i \(0.231932\pi\)
\(192\) 0 0
\(193\) −0.372281 0.644810i −0.0267974 0.0464145i 0.852316 0.523028i \(-0.175198\pi\)
−0.879113 + 0.476613i \(0.841864\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.627719 0.0447231 0.0223616 0.999750i \(-0.492882\pi\)
0.0223616 + 0.999750i \(0.492882\pi\)
\(198\) 0 0
\(199\) 13.4891 0.956219 0.478109 0.878300i \(-0.341322\pi\)
0.478109 + 0.878300i \(0.341322\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.00000 + 6.92820i 0.280745 + 0.486265i
\(204\) 0 0
\(205\) −0.127719 + 0.221215i −0.00892026 + 0.0154503i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.18614 2.05446i 0.0820471 0.142110i
\(210\) 0 0
\(211\) −8.50000 14.7224i −0.585164 1.01353i −0.994855 0.101310i \(-0.967697\pi\)
0.409691 0.912224i \(-0.365637\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.74456 0.323576
\(216\) 0 0
\(217\) 37.4891 2.54493
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 11.3723 + 19.6974i 0.764982 + 1.32499i
\(222\) 0 0
\(223\) −12.7446 + 22.0742i −0.853439 + 1.47820i 0.0246466 + 0.999696i \(0.492154\pi\)
−0.878086 + 0.478504i \(0.841179\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.74456 + 15.1460i −0.580397 + 1.00528i 0.415035 + 0.909805i \(0.363769\pi\)
−0.995432 + 0.0954717i \(0.969564\pi\)
\(228\) 0 0
\(229\) 8.37228 + 14.5012i 0.553256 + 0.958267i 0.998037 + 0.0626280i \(0.0199482\pi\)
−0.444781 + 0.895639i \(0.646718\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.2337 0.932480 0.466240 0.884658i \(-0.345608\pi\)
0.466240 + 0.884658i \(0.345608\pi\)
\(234\) 0 0
\(235\) −9.37228 −0.611380
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.1168 17.5229i −0.654404 1.13346i −0.982043 0.188658i \(-0.939586\pi\)
0.327639 0.944803i \(-0.393747\pi\)
\(240\) 0 0
\(241\) 5.30298 9.18504i 0.341595 0.591660i −0.643134 0.765754i \(-0.722366\pi\)
0.984729 + 0.174093i \(0.0556995\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.18614 3.78651i 0.139667 0.241911i
\(246\) 0 0
\(247\) 1.68614 + 2.92048i 0.107287 + 0.185826i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.8614 0.811805 0.405902 0.913916i \(-0.366957\pi\)
0.405902 + 0.913916i \(0.366957\pi\)
\(252\) 0 0
\(253\) 12.7446 0.801244
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.255437 + 0.442430i 0.0159337 + 0.0275981i 0.873882 0.486137i \(-0.161595\pi\)
−0.857949 + 0.513736i \(0.828261\pi\)
\(258\) 0 0
\(259\) −10.1168 + 17.5229i −0.628630 + 1.08882i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.05842 3.56529i 0.126928 0.219845i −0.795557 0.605879i \(-0.792822\pi\)
0.922485 + 0.386033i \(0.126155\pi\)
\(264\) 0 0
\(265\) −5.05842 8.76144i −0.310736 0.538211i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.11684 0.311979 0.155990 0.987759i \(-0.450143\pi\)
0.155990 + 0.987759i \(0.450143\pi\)
\(270\) 0 0
\(271\) −9.25544 −0.562228 −0.281114 0.959674i \(-0.590704\pi\)
−0.281114 + 0.959674i \(0.590704\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.18614 + 2.05446i 0.0715270 + 0.123888i
\(276\) 0 0
\(277\) −0.0584220 + 0.101190i −0.00351024 + 0.00607991i −0.867775 0.496957i \(-0.834451\pi\)
0.864265 + 0.503037i \(0.167784\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.68614 15.0448i 0.518172 0.897500i −0.481605 0.876388i \(-0.659946\pi\)
0.999777 0.0211116i \(-0.00672052\pi\)
\(282\) 0 0
\(283\) −8.37228 14.5012i −0.497680 0.862008i 0.502316 0.864684i \(-0.332481\pi\)
−0.999996 + 0.00267630i \(0.999148\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.861407 −0.0508472
\(288\) 0 0
\(289\) 28.4891 1.67583
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.43070 12.8704i −0.434106 0.751894i 0.563116 0.826378i \(-0.309602\pi\)
−0.997222 + 0.0744837i \(0.976269\pi\)
\(294\) 0 0
\(295\) −2.50000 + 4.33013i −0.145556 + 0.252110i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.05842 + 15.6896i −0.523862 + 0.907356i
\(300\) 0 0
\(301\) 8.00000 + 13.8564i 0.461112 + 0.798670i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.7446 −0.729752
\(306\) 0 0
\(307\) 0.744563 0.0424944 0.0212472 0.999774i \(-0.493236\pi\)
0.0212472 + 0.999774i \(0.493236\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.93070 + 15.4684i 0.506414 + 0.877134i 0.999972 + 0.00742183i \(0.00236246\pi\)
−0.493559 + 0.869712i \(0.664304\pi\)
\(312\) 0 0
\(313\) 2.00000 3.46410i 0.113047 0.195803i −0.803951 0.594696i \(-0.797272\pi\)
0.916997 + 0.398894i \(0.130606\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.31386 + 9.20387i −0.298456 + 0.516941i −0.975783 0.218741i \(-0.929805\pi\)
0.677327 + 0.735682i \(0.263138\pi\)
\(318\) 0 0
\(319\) −2.81386 4.87375i −0.157546 0.272877i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.74456 0.375278
\(324\) 0 0
\(325\) −3.37228 −0.187061
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −15.8030 27.3716i −0.871247 1.50904i
\(330\) 0 0
\(331\) −6.81386 + 11.8020i −0.374524 + 0.648694i −0.990256 0.139262i \(-0.955527\pi\)
0.615732 + 0.787956i \(0.288860\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.372281 + 0.644810i −0.0203399 + 0.0352297i
\(336\) 0 0
\(337\) 5.37228 + 9.30506i 0.292647 + 0.506879i 0.974435 0.224671i \(-0.0721306\pi\)
−0.681788 + 0.731550i \(0.738797\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −26.3723 −1.42814
\(342\) 0 0
\(343\) −8.86141 −0.478471
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.11684 + 3.66648i 0.113638 + 0.196827i 0.917235 0.398348i \(-0.130416\pi\)
−0.803596 + 0.595175i \(0.797083\pi\)
\(348\) 0 0
\(349\) 9.81386 16.9981i 0.525324 0.909888i −0.474241 0.880395i \(-0.657278\pi\)
0.999565 0.0294926i \(-0.00938915\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.4891 + 18.1677i −0.558280 + 0.966969i 0.439360 + 0.898311i \(0.355205\pi\)
−0.997640 + 0.0686581i \(0.978128\pi\)
\(354\) 0 0
\(355\) 2.18614 + 3.78651i 0.116028 + 0.200967i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.3723 0.864096 0.432048 0.901851i \(-0.357791\pi\)
0.432048 + 0.901851i \(0.357791\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.37228 + 12.7692i 0.385883 + 0.668369i
\(366\) 0 0
\(367\) 15.1168 26.1831i 0.789093 1.36675i −0.137430 0.990511i \(-0.543884\pi\)
0.926523 0.376237i \(-0.122782\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 17.0584 29.5461i 0.885629 1.53395i
\(372\) 0 0
\(373\) 5.37228 + 9.30506i 0.278166 + 0.481798i 0.970929 0.239368i \(-0.0769401\pi\)
−0.692763 + 0.721165i \(0.743607\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −26.3505 −1.35354 −0.676768 0.736196i \(-0.736620\pi\)
−0.676768 + 0.736196i \(0.736620\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.68614 16.7769i −0.494939 0.857259i 0.505044 0.863093i \(-0.331476\pi\)
−0.999983 + 0.00583450i \(0.998143\pi\)
\(384\) 0 0
\(385\) −4.00000 + 6.92820i −0.203859 + 0.353094i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.3723 17.9653i 0.525896 0.910878i −0.473649 0.880713i \(-0.657064\pi\)
0.999545 0.0301643i \(-0.00960306\pi\)
\(390\) 0 0
\(391\) 18.1168 + 31.3793i 0.916208 + 1.58692i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.74456 0.138094
\(396\) 0 0
\(397\) 34.0000 1.70641 0.853206 0.521575i \(-0.174655\pi\)
0.853206 + 0.521575i \(0.174655\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.1753 + 31.4805i 0.907629 + 1.57206i 0.817348 + 0.576144i \(0.195443\pi\)
0.0902813 + 0.995916i \(0.471223\pi\)
\(402\) 0 0
\(403\) 18.7446 32.4665i 0.933733 1.61727i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.11684 12.3267i 0.352769 0.611014i
\(408\) 0 0
\(409\) 10.6861 + 18.5089i 0.528396 + 0.915208i 0.999452 + 0.0331049i \(0.0105396\pi\)
−0.471056 + 0.882103i \(0.656127\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16.8614 −0.829696
\(414\) 0 0
\(415\) −10.0000 −0.490881
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.4891 + 30.2921i 0.854400 + 1.47986i 0.877201 + 0.480124i \(0.159408\pi\)
−0.0228011 + 0.999740i \(0.507258\pi\)
\(420\) 0 0
\(421\) −14.1861 + 24.5711i −0.691390 + 1.19752i 0.279992 + 0.960002i \(0.409668\pi\)
−0.971382 + 0.237521i \(0.923665\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.37228 + 5.84096i −0.163580 + 0.283328i
\(426\) 0 0
\(427\) −21.4891 37.2203i −1.03993 1.80121i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.62772 −0.463751 −0.231875 0.972745i \(-0.574486\pi\)
−0.231875 + 0.972745i \(0.574486\pi\)
\(432\) 0 0
\(433\) −41.2119 −1.98052 −0.990260 0.139233i \(-0.955536\pi\)
−0.990260 + 0.139233i \(0.955536\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.68614 + 4.65253i 0.128496 + 0.222561i
\(438\) 0 0
\(439\) 16.0475 27.7952i 0.765908 1.32659i −0.173858 0.984771i \(-0.555623\pi\)
0.939765 0.341820i \(-0.111043\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.4891 + 25.0959i −0.688399 + 1.19234i 0.283956 + 0.958837i \(0.408353\pi\)
−0.972356 + 0.233505i \(0.924980\pi\)
\(444\) 0 0
\(445\) 2.18614 + 3.78651i 0.103633 + 0.179498i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −34.7228 −1.63867 −0.819335 0.573314i \(-0.805657\pi\)
−0.819335 + 0.573314i \(0.805657\pi\)
\(450\) 0 0
\(451\) 0.605969 0.0285340
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.68614 9.84868i −0.266570 0.461713i
\(456\) 0 0
\(457\) 2.88316 4.99377i 0.134868 0.233599i −0.790679 0.612231i \(-0.790272\pi\)
0.925547 + 0.378632i \(0.123606\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.5584 26.9480i 0.724628 1.25509i −0.234499 0.972116i \(-0.575345\pi\)
0.959127 0.282976i \(-0.0913217\pi\)
\(462\) 0 0
\(463\) −3.43070 5.94215i −0.159438 0.276155i 0.775228 0.631682i \(-0.217635\pi\)
−0.934666 + 0.355526i \(0.884302\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.2337 −0.751205 −0.375603 0.926781i \(-0.622564\pi\)
−0.375603 + 0.926781i \(0.622564\pi\)
\(468\) 0 0
\(469\) −2.51087 −0.115941
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.62772 9.74749i −0.258763 0.448190i
\(474\) 0 0
\(475\) −0.500000 + 0.866025i −0.0229416 + 0.0397360i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.44158 + 5.96099i −0.157250 + 0.272364i −0.933876 0.357597i \(-0.883596\pi\)
0.776626 + 0.629962i \(0.216929\pi\)
\(480\) 0 0
\(481\) 10.1168 + 17.5229i 0.461288 + 0.798975i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.74456 0.215439
\(486\) 0 0
\(487\) 19.6060 0.888431 0.444216 0.895920i \(-0.353482\pi\)
0.444216 + 0.895920i \(0.353482\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.9891 22.4978i −0.586191 1.01531i −0.994726 0.102570i \(-0.967293\pi\)
0.408535 0.912743i \(-0.366040\pi\)
\(492\) 0 0
\(493\) 8.00000 13.8564i 0.360302 0.624061i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.37228 + 12.7692i −0.330692 + 0.572775i
\(498\) 0 0
\(499\) −9.87228 17.0993i −0.441944 0.765469i 0.555890 0.831256i \(-0.312378\pi\)
−0.997834 + 0.0657866i \(0.979044\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10.9783 −0.489496 −0.244748 0.969587i \(-0.578705\pi\)
−0.244748 + 0.969587i \(0.578705\pi\)
\(504\) 0 0
\(505\) −15.8614 −0.705823
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −19.0000 32.9090i −0.842160 1.45866i −0.888065 0.459718i \(-0.847950\pi\)
0.0459045 0.998946i \(-0.485383\pi\)
\(510\) 0 0
\(511\) −24.8614 + 43.0612i −1.09980 + 1.90492i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.0584220 + 0.101190i −0.00257438 + 0.00445896i
\(516\) 0 0
\(517\) 11.1168 + 19.2549i 0.488918 + 0.846831i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.116844 0.00511903 0.00255951 0.999997i \(-0.499185\pi\)
0.00255951 + 0.999997i \(0.499185\pi\)
\(522\) 0 0
\(523\) −40.2337 −1.75930 −0.879648 0.475625i \(-0.842222\pi\)
−0.879648 + 0.475625i \(0.842222\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −37.4891 64.9331i −1.63305 2.82853i
\(528\) 0 0
\(529\) −2.93070 + 5.07613i −0.127422 + 0.220701i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.430703 + 0.746000i −0.0186558 + 0.0323128i
\(534\) 0 0
\(535\) 3.00000 + 5.19615i 0.129701 + 0.224649i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.3723 −0.446766
\(540\) 0 0
\(541\) 13.3505 0.573984 0.286992 0.957933i \(-0.407345\pi\)
0.286992 + 0.957933i \(0.407345\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.441578 + 0.764836i 0.0189151 + 0.0327620i
\(546\) 0 0
\(547\) 20.0000 34.6410i 0.855138 1.48114i −0.0213785 0.999771i \(-0.506805\pi\)
0.876517 0.481371i \(-0.159861\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.18614 2.05446i 0.0505313 0.0875228i
\(552\) 0 0
\(553\) 4.62772 + 8.01544i 0.196791 + 0.340851i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 31.6060 1.33919 0.669594 0.742727i \(-0.266468\pi\)
0.669594 + 0.742727i \(0.266468\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.11684 8.86263i −0.215649 0.373515i 0.737824 0.674993i \(-0.235853\pi\)
−0.953473 + 0.301478i \(0.902520\pi\)
\(564\) 0 0
\(565\) −7.37228 + 12.7692i −0.310154 + 0.537203i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.38316 7.59185i 0.183751 0.318267i −0.759404 0.650620i \(-0.774509\pi\)
0.943155 + 0.332353i \(0.107843\pi\)
\(570\) 0 0
\(571\) 1.55842 + 2.69927i 0.0652179 + 0.112961i 0.896791 0.442455i \(-0.145892\pi\)
−0.831573 + 0.555416i \(0.812559\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.37228 −0.224040
\(576\) 0 0
\(577\) −9.48913 −0.395037 −0.197519 0.980299i \(-0.563288\pi\)
−0.197519 + 0.980299i \(0.563288\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.8614 29.2048i −0.699529 1.21162i
\(582\) 0 0
\(583\) −12.0000 + 20.7846i −0.496989 + 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.0000 25.9808i 0.619116 1.07234i −0.370531 0.928820i \(-0.620824\pi\)
0.989647 0.143521i \(-0.0458424\pi\)
\(588\) 0 0
\(589\) −5.55842 9.62747i −0.229031 0.396693i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.9783 1.18999 0.594997 0.803728i \(-0.297153\pi\)
0.594997 + 0.803728i \(0.297153\pi\)
\(594\) 0 0
\(595\) −22.7446 −0.932436
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.67527 + 13.2940i 0.313603 + 0.543176i 0.979140 0.203189i \(-0.0651306\pi\)
−0.665537 + 0.746365i \(0.731797\pi\)
\(600\) 0 0
\(601\) −6.50000 + 11.2583i −0.265141 + 0.459237i −0.967600 0.252486i \(-0.918752\pi\)
0.702460 + 0.711723i \(0.252085\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.68614 + 4.65253i −0.109207 + 0.189152i
\(606\) 0 0
\(607\) 22.3723 + 38.7499i 0.908063 + 1.57281i 0.816752 + 0.576989i \(0.195772\pi\)
0.0913107 + 0.995822i \(0.470894\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −31.6060 −1.27864
\(612\) 0 0
\(613\) 18.3505 0.741171 0.370586 0.928798i \(-0.379157\pi\)
0.370586 + 0.928798i \(0.379157\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.86141 + 11.8843i 0.276230 + 0.478444i 0.970445 0.241324i \(-0.0775816\pi\)
−0.694215 + 0.719768i \(0.744248\pi\)
\(618\) 0 0
\(619\) 16.3139 28.2564i 0.655709 1.13572i −0.326006 0.945368i \(-0.605703\pi\)
0.981715 0.190354i \(-0.0609637\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.37228 + 12.7692i −0.295364 + 0.511586i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40.4674 1.61354
\(630\) 0 0
\(631\) −42.3723 −1.68681 −0.843407 0.537275i \(-0.819454\pi\)
−0.843407 + 0.537275i \(0.819454\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.43070 11.1383i −0.255195 0.442010i
\(636\) 0 0
\(637\) 7.37228 12.7692i 0.292100 0.505933i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21.3030 36.8979i 0.841417 1.45738i −0.0472793 0.998882i \(-0.515055\pi\)
0.888697 0.458496i \(-0.151612\pi\)
\(642\) 0 0
\(643\) −16.3723 28.3576i −0.645660 1.11832i −0.984149 0.177345i \(-0.943249\pi\)
0.338489 0.940970i \(-0.390084\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.7228 1.24715 0.623576 0.781763i \(-0.285679\pi\)
0.623576 + 0.781763i \(0.285679\pi\)
\(648\) 0 0
\(649\) 11.8614 0.465601
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.62772 11.4795i −0.259363 0.449229i 0.706709 0.707505i \(-0.250179\pi\)
−0.966071 + 0.258275i \(0.916846\pi\)
\(654\) 0 0
\(655\) −3.12772 + 5.41737i −0.122210 + 0.211674i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.2921 33.4149i 0.751514 1.30166i −0.195575 0.980689i \(-0.562657\pi\)
0.947089 0.320972i \(-0.104009\pi\)
\(660\) 0 0
\(661\) −9.04755 15.6708i −0.351909 0.609524i 0.634675 0.772779i \(-0.281134\pi\)
−0.986584 + 0.163255i \(0.947801\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.37228 −0.130771
\(666\) 0 0
\(667\) 12.7446 0.493471
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 15.1168 + 26.1831i 0.583579 + 1.01079i
\(672\) 0 0
\(673\) 11.7446 20.3422i 0.452720 0.784133i −0.545834 0.837893i \(-0.683787\pi\)
0.998554 + 0.0537598i \(0.0171205\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.94158 + 3.36291i −0.0746209 + 0.129247i −0.900921 0.433982i \(-0.857108\pi\)
0.826300 + 0.563230i \(0.190441\pi\)
\(678\) 0 0
\(679\) 8.00000 + 13.8564i 0.307012 + 0.531760i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3.76631 −0.144114 −0.0720570 0.997401i \(-0.522956\pi\)
−0.0720570 + 0.997401i \(0.522956\pi\)
\(684\) 0 0
\(685\) −5.25544 −0.200800
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17.0584 29.5461i −0.649874 1.12561i
\(690\) 0 0
\(691\) 5.17527 8.96382i 0.196876 0.341000i −0.750638 0.660714i \(-0.770254\pi\)
0.947514 + 0.319714i \(0.103587\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.50000 12.9904i 0.284491 0.492753i
\(696\) 0 0
\(697\) 0.861407 + 1.49200i 0.0326281 + 0.0565135i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9.11684 −0.344338 −0.172169 0.985067i \(-0.555078\pi\)
−0.172169 + 0.985067i \(0.555078\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −26.7446 46.3229i −1.00583 1.74215i
\(708\) 0 0
\(709\) 25.2337 43.7060i 0.947671 1.64141i 0.197358 0.980331i \(-0.436764\pi\)
0.750313 0.661083i \(-0.229903\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 29.8614 51.7215i 1.11832 1.93698i
\(714\) 0 0
\(715\) 4.00000 + 6.92820i 0.149592 + 0.259100i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.6060 1.88728 0.943642 0.330968i \(-0.107375\pi\)
0.943642 + 0.330968i \(0.107375\pi\)
\(720\) 0 0
\(721\) −0.394031 −0.0146745
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.18614 + 2.05446i 0.0440522 + 0.0763006i
\(726\) 0 0
\(727\) 14.9416 25.8796i 0.554152 0.959820i −0.443816 0.896118i \(-0.646376\pi\)
0.997969 0.0637025i \(-0.0202909\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 16.0000 27.7128i 0.591781 1.02500i
\(732\) 0 0
\(733\) −8.48913 14.7036i −0.313553 0.543090i 0.665576 0.746330i \(-0.268186\pi\)
−0.979129 + 0.203240i \(0.934853\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.76631 0.0650629
\(738\) 0 0
\(739\) 15.8614 0.583471 0.291736 0.956499i \(-0.405767\pi\)
0.291736 + 0.956499i \(0.405767\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.25544 5.63858i −0.119430 0.206860i 0.800112 0.599851i \(-0.204774\pi\)
−0.919542 + 0.392992i \(0.871440\pi\)
\(744\) 0 0
\(745\) −9.74456 + 16.8781i −0.357013 + 0.618365i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10.1168 + 17.5229i −0.369661 + 0.640272i
\(750\) 0 0
\(751\) 1.88316 + 3.26172i 0.0687173 + 0.119022i 0.898337 0.439307i \(-0.144776\pi\)
−0.829620 + 0.558329i \(0.811443\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −24.3723 −0.886998
\(756\) 0 0
\(757\) 9.88316 0.359209 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.61684 + 14.9248i 0.312360 + 0.541024i 0.978873 0.204470i \(-0.0655470\pi\)
−0.666513 + 0.745494i \(0.732214\pi\)
\(762\) 0 0
\(763\) −1.48913 + 2.57924i −0.0539100 + 0.0933748i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.43070 + 14.6024i −0.304415 + 0.527262i
\(768\) 0 0
\(769\) −9.67527 16.7581i −0.348899 0.604311i 0.637155 0.770736i \(-0.280111\pi\)
−0.986054 + 0.166425i \(0.946778\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 11.1168 0.399329
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.127719 + 0.221215i 0.00457600 + 0.00792586i
\(780\) 0 0
\(781\) 5.18614 8.98266i 0.185575 0.321425i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.4307 19.7986i 0.407979 0.706641i
\(786\) 0 0
\(787\) 20.8614 + 36.1330i 0.743629 + 1.28800i 0.950833 + 0.309705i \(0.100230\pi\)
−0.207204 + 0.978298i \(0.566436\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −49.7228 −1.76794
\(792\) 0 0
\(793\) −42.9783 −1.52620
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −10.1168 17.5229i −0.358357 0.620693i 0.629330 0.777139i \(-0.283330\pi\)
−0.987687 + 0.156446i \(0.949996\pi\)
\(798\) 0