Properties

Label 3240.2.f.c.649.1
Level $3240$
Weight $2$
Character 3240.649
Analytic conductor $25.872$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(649,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3240.649
Dual form 3240.2.f.c.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 2.00000i) q^{5} -2.00000i q^{7} +5.00000 q^{11} +4.00000i q^{13} +6.00000i q^{17} +7.00000 q^{19} +4.00000i q^{23} +(-3.00000 + 4.00000i) q^{25} -5.00000 q^{29} -3.00000 q^{31} +(-4.00000 + 2.00000i) q^{35} +2.00000i q^{37} -7.00000 q^{41} +6.00000i q^{43} +6.00000i q^{47} +3.00000 q^{49} -10.0000i q^{53} +(-5.00000 - 10.0000i) q^{55} -15.0000 q^{59} +14.0000 q^{61} +(8.00000 - 4.00000i) q^{65} +4.00000i q^{67} +5.00000 q^{71} +14.0000i q^{73} -10.0000i q^{77} +8.00000 q^{79} +14.0000i q^{83} +(12.0000 - 6.00000i) q^{85} +3.00000 q^{89} +8.00000 q^{91} +(-7.00000 - 14.0000i) q^{95} +2.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 10 q^{11} + 14 q^{19} - 6 q^{25} - 10 q^{29} - 6 q^{31} - 8 q^{35} - 14 q^{41} + 6 q^{49} - 10 q^{55} - 30 q^{59} + 28 q^{61} + 16 q^{65} + 10 q^{71} + 16 q^{79} + 24 q^{85} + 6 q^{89} + 16 q^{91}+ \cdots - 14 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 + 2.00000i −0.676123 + 0.338062i
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.00000 −1.09322 −0.546608 0.837389i \(-0.684081\pi\)
−0.546608 + 0.837389i \(0.684081\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.0000i 1.37361i −0.726844 0.686803i \(-0.759014\pi\)
0.726844 0.686803i \(-0.240986\pi\)
\(54\) 0 0
\(55\) −5.00000 10.0000i −0.674200 1.34840i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −15.0000 −1.95283 −0.976417 0.215894i \(-0.930733\pi\)
−0.976417 + 0.215894i \(0.930733\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.00000 4.00000i 0.992278 0.496139i
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.0000i 1.13961i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.0000i 1.53670i 0.640030 + 0.768350i \(0.278922\pi\)
−0.640030 + 0.768350i \(0.721078\pi\)
\(84\) 0 0
\(85\) 12.0000 6.00000i 1.30158 0.650791i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.00000 14.0000i −0.718185 1.43637i
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.0000 1.49256 0.746278 0.665635i \(-0.231839\pi\)
0.746278 + 0.665635i \(0.231839\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.00000i 0.773389i −0.922208 0.386695i \(-0.873617\pi\)
0.922208 0.386695i \(-0.126383\pi\)
\(108\) 0 0
\(109\) 9.00000 0.862044 0.431022 0.902342i \(-0.358153\pi\)
0.431022 + 0.902342i \(0.358153\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000i 0.188144i −0.995565 0.0940721i \(-0.970012\pi\)
0.995565 0.0940721i \(-0.0299884\pi\)
\(114\) 0 0
\(115\) 8.00000 4.00000i 0.746004 0.373002i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) 0 0
\(127\) 6.00000i 0.532414i −0.963916 0.266207i \(-0.914230\pi\)
0.963916 0.266207i \(-0.0857705\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.00000 0.262111 0.131056 0.991375i \(-0.458163\pi\)
0.131056 + 0.991375i \(0.458163\pi\)
\(132\) 0 0
\(133\) 14.0000i 1.21395i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000i 0.683486i −0.939793 0.341743i \(-0.888983\pi\)
0.939793 0.341743i \(-0.111017\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 20.0000i 1.67248i
\(144\) 0 0
\(145\) 5.00000 + 10.0000i 0.415227 + 0.830455i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −11.0000 −0.895167 −0.447584 0.894242i \(-0.647715\pi\)
−0.447584 + 0.894242i \(0.647715\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.00000 + 6.00000i 0.240966 + 0.481932i
\(156\) 0 0
\(157\) 14.0000i 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 14.0000i 1.09656i 0.836293 + 0.548282i \(0.184718\pi\)
−0.836293 + 0.548282i \(0.815282\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000i 0.464294i −0.972681 0.232147i \(-0.925425\pi\)
0.972681 0.232147i \(-0.0745750\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.0000i 0.912343i 0.889892 + 0.456172i \(0.150780\pi\)
−0.889892 + 0.456172i \(0.849220\pi\)
\(174\) 0 0
\(175\) 8.00000 + 6.00000i 0.604743 + 0.453557i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.0000 −0.822179 −0.411089 0.911595i \(-0.634852\pi\)
−0.411089 + 0.911595i \(0.634852\pi\)
\(180\) 0 0
\(181\) −17.0000 −1.26360 −0.631800 0.775131i \(-0.717684\pi\)
−0.631800 + 0.775131i \(0.717684\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.00000 2.00000i 0.294086 0.147043i
\(186\) 0 0
\(187\) 30.0000i 2.19382i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) 10.0000i 0.719816i −0.932988 0.359908i \(-0.882808\pi\)
0.932988 0.359908i \(-0.117192\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000i 0.854965i −0.904024 0.427482i \(-0.859401\pi\)
0.904024 0.427482i \(-0.140599\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.0000i 0.701862i
\(204\) 0 0
\(205\) 7.00000 + 14.0000i 0.488901 + 0.977802i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 35.0000 2.42100
\(210\) 0 0
\(211\) 13.0000 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 12.0000 6.00000i 0.818393 0.409197i
\(216\) 0 0
\(217\) 6.00000i 0.407307i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −24.0000 −1.61441
\(222\) 0 0
\(223\) 24.0000i 1.60716i −0.595198 0.803579i \(-0.702926\pi\)
0.595198 0.803579i \(-0.297074\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.00000i 0.132745i 0.997795 + 0.0663723i \(0.0211425\pi\)
−0.997795 + 0.0663723i \(0.978857\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 12.0000 6.00000i 0.782794 0.391397i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 17.0000 1.09507 0.547533 0.836784i \(-0.315567\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00000 6.00000i −0.191663 0.383326i
\(246\) 0 0
\(247\) 28.0000i 1.78160i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 0 0
\(253\) 20.0000i 1.25739i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.0000i 1.49708i −0.663090 0.748539i \(-0.730755\pi\)
0.663090 0.748539i \(-0.269245\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000i 0.739952i −0.929041 0.369976i \(-0.879366\pi\)
0.929041 0.369976i \(-0.120634\pi\)
\(264\) 0 0
\(265\) −20.0000 + 10.0000i −1.22859 + 0.614295i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.00000 −0.182913 −0.0914566 0.995809i \(-0.529152\pi\)
−0.0914566 + 0.995809i \(0.529152\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.0000 + 20.0000i −0.904534 + 1.20605i
\(276\) 0 0
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 24.0000i 1.42665i 0.700832 + 0.713326i \(0.252812\pi\)
−0.700832 + 0.713326i \(0.747188\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.0000i 0.826394i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.0000i 0.817889i −0.912559 0.408944i \(-0.865897\pi\)
0.912559 0.408944i \(-0.134103\pi\)
\(294\) 0 0
\(295\) 15.0000 + 30.0000i 0.873334 + 1.74667i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.0000 −0.925304
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −14.0000 28.0000i −0.801638 1.60328i
\(306\) 0 0
\(307\) 34.0000i 1.94048i −0.242140 0.970241i \(-0.577849\pi\)
0.242140 0.970241i \(-0.422151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.00000 −0.510343 −0.255172 0.966896i \(-0.582132\pi\)
−0.255172 + 0.966896i \(0.582132\pi\)
\(312\) 0 0
\(313\) 28.0000i 1.58265i −0.611393 0.791327i \(-0.709391\pi\)
0.611393 0.791327i \(-0.290609\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000i 0.336994i −0.985702 0.168497i \(-0.946109\pi\)
0.985702 0.168497i \(-0.0538913\pi\)
\(318\) 0 0
\(319\) −25.0000 −1.39973
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 42.0000i 2.33694i
\(324\) 0 0
\(325\) −16.0000 12.0000i −0.887520 0.665640i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −11.0000 −0.604615 −0.302307 0.953211i \(-0.597757\pi\)
−0.302307 + 0.953211i \(0.597757\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000 4.00000i 0.437087 0.218543i
\(336\) 0 0
\(337\) 8.00000i 0.435788i −0.975972 0.217894i \(-0.930081\pi\)
0.975972 0.217894i \(-0.0699187\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −15.0000 −0.812296
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.0000i 1.39575i 0.716218 + 0.697877i \(0.245872\pi\)
−0.716218 + 0.697877i \(0.754128\pi\)
\(348\) 0 0
\(349\) 7.00000 0.374701 0.187351 0.982293i \(-0.440010\pi\)
0.187351 + 0.982293i \(0.440010\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 30.0000i 1.59674i 0.602168 + 0.798369i \(0.294304\pi\)
−0.602168 + 0.798369i \(0.705696\pi\)
\(354\) 0 0
\(355\) −5.00000 10.0000i −0.265372 0.530745i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.0000 0.580558 0.290279 0.956942i \(-0.406252\pi\)
0.290279 + 0.956942i \(0.406252\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 28.0000 14.0000i 1.46559 0.732793i
\(366\) 0 0
\(367\) 28.0000i 1.46159i −0.682598 0.730794i \(-0.739150\pi\)
0.682598 0.730794i \(-0.260850\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −20.0000 −1.03835
\(372\) 0 0
\(373\) 26.0000i 1.34623i −0.739538 0.673114i \(-0.764956\pi\)
0.739538 0.673114i \(-0.235044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.0000i 1.03005i
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) −20.0000 + 10.0000i −1.01929 + 0.509647i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) −24.0000 −1.21373
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.00000 16.0000i −0.402524 0.805047i
\(396\) 0 0
\(397\) 24.0000i 1.20453i 0.798298 + 0.602263i \(0.205734\pi\)
−0.798298 + 0.602263i \(0.794266\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) 12.0000i 0.597763i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.0000i 0.495682i
\(408\) 0 0
\(409\) 34.0000 1.68119 0.840596 0.541663i \(-0.182205\pi\)
0.840596 + 0.541663i \(0.182205\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 30.0000i 1.47620i
\(414\) 0 0
\(415\) 28.0000 14.0000i 1.37447 0.687233i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) −35.0000 −1.70580 −0.852898 0.522078i \(-0.825157\pi\)
−0.852898 + 0.522078i \(0.825157\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −24.0000 18.0000i −1.16417 0.873128i
\(426\) 0 0
\(427\) 28.0000i 1.35501i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.00000 −0.240842 −0.120421 0.992723i \(-0.538424\pi\)
−0.120421 + 0.992723i \(0.538424\pi\)
\(432\) 0 0
\(433\) 12.0000i 0.576683i 0.957528 + 0.288342i \(0.0931039\pi\)
−0.957528 + 0.288342i \(0.906896\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 28.0000i 1.33942i
\(438\) 0 0
\(439\) −9.00000 −0.429547 −0.214773 0.976664i \(-0.568901\pi\)
−0.214773 + 0.976664i \(0.568901\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.0000i 1.42534i 0.701498 + 0.712672i \(0.252515\pi\)
−0.701498 + 0.712672i \(0.747485\pi\)
\(444\) 0 0
\(445\) −3.00000 6.00000i −0.142214 0.284427i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.0000 0.991051 0.495526 0.868593i \(-0.334975\pi\)
0.495526 + 0.868593i \(0.334975\pi\)
\(450\) 0 0
\(451\) −35.0000 −1.64809
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.00000 16.0000i −0.375046 0.750092i
\(456\) 0 0
\(457\) 18.0000i 0.842004i −0.907060 0.421002i \(-0.861678\pi\)
0.907060 0.421002i \(-0.138322\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 39.0000 1.81641 0.908206 0.418524i \(-0.137453\pi\)
0.908206 + 0.418524i \(0.137453\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.00000i 0.277647i 0.990317 + 0.138823i \(0.0443321\pi\)
−0.990317 + 0.138823i \(0.955668\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 30.0000i 1.37940i
\(474\) 0 0
\(475\) −21.0000 + 28.0000i −0.963546 + 1.28473i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.00000 −0.228456 −0.114228 0.993455i \(-0.536439\pi\)
−0.114228 + 0.993455i \(0.536439\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.00000 2.00000i 0.181631 0.0908153i
\(486\) 0 0
\(487\) 4.00000i 0.181257i 0.995885 + 0.0906287i \(0.0288876\pi\)
−0.995885 + 0.0906287i \(0.971112\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 23.0000 1.03798 0.518988 0.854782i \(-0.326309\pi\)
0.518988 + 0.854782i \(0.326309\pi\)
\(492\) 0 0
\(493\) 30.0000i 1.35113i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.0000i 0.448561i
\(498\) 0 0
\(499\) 31.0000 1.38775 0.693875 0.720095i \(-0.255902\pi\)
0.693875 + 0.720095i \(0.255902\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.0000i 1.24846i −0.781241 0.624229i \(-0.785413\pi\)
0.781241 0.624229i \(-0.214587\pi\)
\(504\) 0 0
\(505\) −15.0000 30.0000i −0.667491 1.33498i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.00000 0.0886484 0.0443242 0.999017i \(-0.485887\pi\)
0.0443242 + 0.999017i \(0.485887\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.0000 8.00000i 0.705044 0.352522i
\(516\) 0 0
\(517\) 30.0000i 1.31940i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 40.0000i 1.74908i 0.484955 + 0.874539i \(0.338836\pi\)
−0.484955 + 0.874539i \(0.661164\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.0000i 0.784092i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.0000i 1.21281i
\(534\) 0 0
\(535\) −16.0000 + 8.00000i −0.691740 + 0.345870i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 15.0000 0.646096
\(540\) 0 0
\(541\) −5.00000 −0.214967 −0.107483 0.994207i \(-0.534279\pi\)
−0.107483 + 0.994207i \(0.534279\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.00000 18.0000i −0.385518 0.771035i
\(546\) 0 0
\(547\) 40.0000i 1.71028i 0.518400 + 0.855138i \(0.326528\pi\)
−0.518400 + 0.855138i \(0.673472\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −35.0000 −1.49105
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.0000i 1.26435i 0.774826 + 0.632175i \(0.217837\pi\)
−0.774826 + 0.632175i \(0.782163\pi\)
\(564\) 0 0
\(565\) −4.00000 + 2.00000i −0.168281 + 0.0841406i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −39.0000 −1.63497 −0.817483 0.575953i \(-0.804631\pi\)
−0.817483 + 0.575953i \(0.804631\pi\)
\(570\) 0 0
\(571\) −41.0000 −1.71580 −0.857898 0.513820i \(-0.828230\pi\)
−0.857898 + 0.513820i \(0.828230\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.0000 12.0000i −0.667246 0.500435i
\(576\) 0 0
\(577\) 14.0000i 0.582828i −0.956597 0.291414i \(-0.905874\pi\)
0.956597 0.291414i \(-0.0941257\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 28.0000 1.16164
\(582\) 0 0
\(583\) 50.0000i 2.07079i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.00000i 0.0825488i −0.999148 0.0412744i \(-0.986858\pi\)
0.999148 0.0412744i \(-0.0131418\pi\)
\(588\) 0 0
\(589\) −21.0000 −0.865290
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.00000i 0.164260i −0.996622 0.0821302i \(-0.973828\pi\)
0.996622 0.0821302i \(-0.0261723\pi\)
\(594\) 0 0
\(595\) −12.0000 24.0000i −0.491952 0.983904i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 29.0000 1.18491 0.592454 0.805604i \(-0.298159\pi\)
0.592454 + 0.805604i \(0.298159\pi\)
\(600\) 0 0
\(601\) 9.00000 0.367118 0.183559 0.983009i \(-0.441238\pi\)
0.183559 + 0.983009i \(0.441238\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.0000 28.0000i −0.569181 1.13836i
\(606\) 0 0
\(607\) 2.00000i 0.0811775i 0.999176 + 0.0405887i \(0.0129233\pi\)
−0.999176 + 0.0405887i \(0.987077\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) 28.0000i 1.13091i 0.824779 + 0.565455i \(0.191299\pi\)
−0.824779 + 0.565455i \(0.808701\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.00000i 0.161034i −0.996753 0.0805170i \(-0.974343\pi\)
0.996753 0.0805170i \(-0.0256571\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.00000i 0.240385i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −43.0000 −1.71180 −0.855901 0.517139i \(-0.826997\pi\)
−0.855901 + 0.517139i \(0.826997\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.0000 + 6.00000i −0.476205 + 0.238103i
\(636\) 0 0
\(637\) 12.0000i 0.475457i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.00000 −0.118493 −0.0592464 0.998243i \(-0.518870\pi\)
−0.0592464 + 0.998243i \(0.518870\pi\)
\(642\) 0 0
\(643\) 18.0000i 0.709851i −0.934895 0.354925i \(-0.884506\pi\)
0.934895 0.354925i \(-0.115494\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.00000i 0.314512i −0.987558 0.157256i \(-0.949735\pi\)
0.987558 0.157256i \(-0.0502649\pi\)
\(648\) 0 0
\(649\) −75.0000 −2.94401
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 36.0000i 1.40879i 0.709809 + 0.704394i \(0.248781\pi\)
−0.709809 + 0.704394i \(0.751219\pi\)
\(654\) 0 0
\(655\) −3.00000 6.00000i −0.117220 0.234439i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 17.0000 0.661223 0.330612 0.943767i \(-0.392745\pi\)
0.330612 + 0.943767i \(0.392745\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −28.0000 + 14.0000i −1.08579 + 0.542897i
\(666\) 0 0
\(667\) 20.0000i 0.774403i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 70.0000 2.70232
\(672\) 0 0
\(673\) 8.00000i 0.308377i 0.988041 + 0.154189i \(0.0492764\pi\)
−0.988041 + 0.154189i \(0.950724\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 36.0000i 1.38359i −0.722093 0.691796i \(-0.756820\pi\)
0.722093 0.691796i \(-0.243180\pi\)
\(678\) 0 0
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) −16.0000 + 8.00000i −0.611329 + 0.305664i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 40.0000 1.52388
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.00000 10.0000i −0.189661 0.379322i
\(696\) 0 0
\(697\) 42.0000i 1.59086i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.0000 0.944237 0.472118 0.881535i \(-0.343489\pi\)
0.472118 + 0.881535i \(0.343489\pi\)
\(702\) 0 0
\(703\) 14.0000i 0.528020i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 30.0000i 1.12827i
\(708\) 0 0
\(709\) −22.0000 −0.826227 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.0000i 0.449404i
\(714\) 0 0
\(715\) 40.0000 20.0000i 1.49592 0.747958i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.0000 −0.708580 −0.354290 0.935136i \(-0.615277\pi\)
−0.354290 + 0.935136i \(0.615277\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.0000 20.0000i 0.557086 0.742781i
\(726\) 0 0
\(727\) 12.0000i 0.445055i −0.974926 0.222528i \(-0.928569\pi\)
0.974926 0.222528i \(-0.0714308\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −36.0000 −1.33151
\(732\) 0 0
\(733\) 48.0000i 1.77292i 0.462805 + 0.886460i \(0.346843\pi\)
−0.462805 + 0.886460i \(0.653157\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.0000i 0.736709i
\(738\) 0 0
\(739\) 21.0000 0.772497 0.386249 0.922395i \(-0.373771\pi\)
0.386249 + 0.922395i \(0.373771\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 54.0000i 1.98107i 0.137268 + 0.990534i \(0.456168\pi\)
−0.137268 + 0.990534i \(0.543832\pi\)
\(744\) 0 0
\(745\) 6.00000 + 12.0000i 0.219823 + 0.439646i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) −52.0000 −1.89751 −0.948753 0.316017i \(-0.897654\pi\)
−0.948753 + 0.316017i \(0.897654\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.0000 + 22.0000i 0.400331 + 0.800662i
\(756\) 0 0
\(757\) 40.0000i 1.45382i −0.686730 0.726912i \(-0.740955\pi\)
0.686730 0.726912i \(-0.259045\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.00000 −0.181250 −0.0906249 0.995885i \(-0.528886\pi\)
−0.0906249 + 0.995885i \(0.528886\pi\)
\(762\) 0 0
\(763\) 18.0000i 0.651644i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 60.0000i 2.16647i
\(768\) 0 0
\(769\) −13.0000 −0.468792 −0.234396 0.972141i \(-0.575311\pi\)
−0.234396 + 0.972141i \(0.575311\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.0000i 0.791285i 0.918405 + 0.395643i \(0.129478\pi\)
−0.918405 + 0.395643i \(0.870522\pi\)
\(774\) 0 0
\(775\) 9.00000 12.0000i 0.323290 0.431053i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −49.0000 −1.75561
\(780\) 0 0
\(781\) 25.0000 0.894570
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −28.0000 + 14.0000i −0.999363 + 0.499681i
\(786\) 0 0
\(787\) 46.0000i 1.63972i −0.572562 0.819861i \(-0.694050\pi\)
0.572562 0.819861i \(-0.305950\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.00000 −0.142224
\(792\) 0 0
\(793\) 56.0000i 1.98862i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) −36.0000 −1.27359
\(800\) 0 0