Properties

Label 3240.2.f
Level $3240$
Weight $2$
Character orbit 3240.f
Rep. character $\chi_{3240}(649,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $11$
Sturm bound $1296$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 11 \)
Sturm bound: \(1296\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3240, [\chi])\).

Total New Old
Modular forms 696 72 624
Cusp forms 600 72 528
Eisenstein series 96 0 96

Trace form

\( 72 q + O(q^{10}) \) \( 72 q + 6 q^{25} - 84 q^{49} - 12 q^{55} - 24 q^{61} + 24 q^{79} + 6 q^{85} - 24 q^{91} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3240, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3240.2.f.a 3240.f 5.b $2$ $25.872$ \(\Q(\sqrt{-1}) \) None 3240.2.f.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-2)q^{5}+5 i q^{7}+4 q^{11}+5 i q^{13}+\cdots\)
3240.2.f.b 3240.f 5.b $2$ $25.872$ \(\Q(\sqrt{-1}) \) None 360.2.bi.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2 i-1)q^{5}+i q^{7}+2 q^{11}+\cdots\)
3240.2.f.c 3240.f 5.b $2$ $25.872$ \(\Q(\sqrt{-1}) \) None 3240.2.f.c \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta-1)q^{5}+\beta q^{7}+5 q^{11}-2\beta q^{13}+\cdots\)
3240.2.f.d 3240.f 5.b $2$ $25.872$ \(\Q(\sqrt{-1}) \) None 3240.2.f.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta+1)q^{5}+\beta q^{7}-5 q^{11}-2\beta q^{13}+\cdots\)
3240.2.f.e 3240.f 5.b $2$ $25.872$ \(\Q(\sqrt{-1}) \) None 360.2.bi.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i+1)q^{5}+i q^{7}-2 q^{11}-2 i q^{13}+\cdots\)
3240.2.f.f 3240.f 5.b $2$ $25.872$ \(\Q(\sqrt{-1}) \) None 3240.2.f.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+2)q^{5}+5 i q^{7}-4 q^{11}+\cdots\)
3240.2.f.g 3240.f 5.b $6$ $25.872$ 6.0.29160000.2 None 3240.2.f.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{5}-\beta _{5}q^{7}+(-1-\beta _{2}+\beta _{3}+\cdots)q^{11}+\cdots\)
3240.2.f.h 3240.f 5.b $6$ $25.872$ 6.0.29160000.2 None 3240.2.f.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{5}-\beta _{5}q^{7}+(1+\beta _{2}-\beta _{3})q^{11}+\cdots\)
3240.2.f.i 3240.f 5.b $16$ $25.872$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 360.2.bi.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{5}+\beta _{10}q^{7}+(1-\beta _{7})q^{11}-\beta _{5}q^{13}+\cdots\)
3240.2.f.j 3240.f 5.b $16$ $25.872$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 3240.2.f.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{5}-\beta _{1}q^{7}+\beta _{10}q^{11}-\beta _{2}q^{13}+\cdots\)
3240.2.f.k 3240.f 5.b $16$ $25.872$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 360.2.bi.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{5}+\beta _{10}q^{7}+(-1+\beta _{7})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(3240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(810, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1080, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1620, [\chi])\)\(^{\oplus 2}\)