Properties

Label 3240.2.da
Level $3240$
Weight $2$
Character orbit 3240.da
Rep. character $\chi_{3240}(11,\cdot)$
Character field $\Q(\zeta_{54})$
Dimension $7776$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.da (of order \(54\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 648 \)
Character field: \(\Q(\zeta_{54})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3240, [\chi])\).

Total New Old
Modular forms 11736 7776 3960
Cusp forms 11592 7776 3816
Eisenstein series 144 0 144

Trace form

\( 7776 q + 90 q^{42} - 72 q^{44} - 198 q^{48} + 126 q^{54} - 126 q^{56} + 198 q^{62} + 72 q^{66} - 90 q^{68} + 180 q^{92} + 234 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(648, [\chi])\)\(^{\oplus 2}\)