Properties

Label 3240.2.d
Level $3240$
Weight $2$
Character orbit 3240.d
Rep. character $\chi_{3240}(2269,\cdot)$
Character field $\Q$
Dimension $280$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3240, [\chi])\).

Total New Old
Modular forms 672 296 376
Cusp forms 624 280 344
Eisenstein series 48 16 32

Trace form

\( 280 q + 4 q^{4} + 4 q^{16} + 4 q^{25} + 8 q^{31} + 8 q^{34} + 12 q^{40} - 4 q^{46} - 224 q^{49} - 28 q^{55} + 4 q^{64} - 24 q^{70} + 72 q^{76} + 8 q^{79} - 28 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1080, [\chi])\)\(^{\oplus 2}\)