Properties

Label 3240.2.bs
Level $3240$
Weight $2$
Character orbit 3240.bs
Rep. character $\chi_{3240}(53,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $1136$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.bs (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 360 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3240, [\chi])\).

Total New Old
Modular forms 2688 1168 1520
Cusp forms 2496 1136 1360
Eisenstein series 192 32 160

Trace form

\( 1136 q + 8 q^{7} - 8 q^{10} + 8 q^{16} + 12 q^{22} + 8 q^{25} + 24 q^{28} + 16 q^{31} + 4 q^{40} - 136 q^{46} + 20 q^{52} - 96 q^{55} - 4 q^{58} - 16 q^{70} - 16 q^{73} - 20 q^{76} + 8 q^{82} - 84 q^{88}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1080, [\chi])\)\(^{\oplus 2}\)