Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3240,2,Mod(1,3240)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3240, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3240.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3240.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(25.8715302549\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 360) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 3240.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.00000 | 0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 5.00000 | 1.50756 | 0.753778 | − | 0.657129i | \(-0.228229\pi\) | ||||
0.753778 | + | 0.657129i | \(0.228229\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −3.00000 | −0.727607 | −0.363803 | − | 0.931476i | \(-0.618522\pi\) | ||||
−0.363803 | + | 0.931476i | \(0.618522\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 5.00000 | 1.14708 | 0.573539 | − | 0.819178i | \(-0.305570\pi\) | ||||
0.573539 | + | 0.819178i | \(0.305570\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −6.00000 | −1.25109 | −0.625543 | − | 0.780189i | \(-0.715123\pi\) | ||||
−0.625543 | + | 0.780189i | \(0.715123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 10.0000 | 1.85695 | 0.928477 | − | 0.371391i | \(-0.121119\pi\) | ||||
0.928477 | + | 0.371391i | \(0.121119\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −2.00000 | −0.359211 | −0.179605 | − | 0.983739i | \(-0.557482\pi\) | ||||
−0.179605 | + | 0.983739i | \(0.557482\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 4.00000 | 0.657596 | 0.328798 | − | 0.944400i | \(-0.393356\pi\) | ||||
0.328798 | + | 0.944400i | \(0.393356\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 3.00000 | 0.468521 | 0.234261 | − | 0.972174i | \(-0.424733\pi\) | ||||
0.234261 | + | 0.972174i | \(0.424733\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 3.00000 | 0.457496 | 0.228748 | − | 0.973486i | \(-0.426537\pi\) | ||||
0.228748 | + | 0.973486i | \(0.426537\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −4.00000 | −0.583460 | −0.291730 | − | 0.956501i | \(-0.594231\pi\) | ||||
−0.291730 | + | 0.956501i | \(0.594231\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000 | 0.824163 | 0.412082 | − | 0.911147i | \(-0.364802\pi\) | ||||
0.412082 | + | 0.911147i | \(0.364802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 5.00000 | 0.674200 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 3.00000 | 0.390567 | 0.195283 | − | 0.980747i | \(-0.437437\pi\) | ||||
0.195283 | + | 0.980747i | \(0.437437\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 2.00000 | 0.256074 | 0.128037 | − | 0.991769i | \(-0.459132\pi\) | ||||
0.128037 | + | 0.991769i | \(0.459132\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −11.0000 | −1.34386 | −0.671932 | − | 0.740613i | \(-0.734535\pi\) | ||||
−0.671932 | + | 0.740613i | \(0.734535\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 14.0000 | 1.66149 | 0.830747 | − | 0.556650i | \(-0.187914\pi\) | ||||
0.830747 | + | 0.556650i | \(0.187914\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −15.0000 | −1.75562 | −0.877809 | − | 0.479012i | \(-0.840995\pi\) | ||||
−0.877809 | + | 0.479012i | \(0.840995\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 10.0000 | 1.12509 | 0.562544 | − | 0.826767i | \(-0.309823\pi\) | ||||
0.562544 | + | 0.826767i | \(0.309823\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000 | 1.31717 | 0.658586 | − | 0.752506i | \(-0.271155\pi\) | ||||
0.658586 | + | 0.752506i | \(0.271155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −3.00000 | −0.325396 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −14.0000 | −1.48400 | −0.741999 | − | 0.670402i | \(-0.766122\pi\) | ||||
−0.741999 | + | 0.670402i | \(0.766122\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 5.00000 | 0.512989 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −13.0000 | −1.31995 | −0.659975 | − | 0.751288i | \(-0.729433\pi\) | ||||
−0.659975 | + | 0.751288i | \(0.729433\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 12.0000 | 1.19404 | 0.597022 | − | 0.802225i | \(-0.296350\pi\) | ||||
0.597022 | + | 0.802225i | \(0.296350\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 17.0000 | 1.64345 | 0.821726 | − | 0.569883i | \(-0.193011\pi\) | ||||
0.821726 | + | 0.569883i | \(0.193011\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −12.0000 | −1.14939 | −0.574696 | − | 0.818367i | \(-0.694880\pi\) | ||||
−0.574696 | + | 0.818367i | \(0.694880\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000 | 0.564433 | 0.282216 | − | 0.959351i | \(-0.408930\pi\) | ||||
0.282216 | + | 0.959351i | \(0.408930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −6.00000 | −0.559503 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 14.0000 | 1.27273 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 1.00000 | 0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 10.0000 | 0.887357 | 0.443678 | − | 0.896186i | \(-0.353673\pi\) | ||||
0.443678 | + | 0.896186i | \(0.353673\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 4.00000 | 0.349482 | 0.174741 | − | 0.984614i | \(-0.444091\pi\) | ||||
0.174741 | + | 0.984614i | \(0.444091\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −7.00000 | −0.598050 | −0.299025 | − | 0.954245i | \(-0.596661\pi\) | ||||
−0.299025 | + | 0.954245i | \(0.596661\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 7.00000 | 0.593732 | 0.296866 | − | 0.954919i | \(-0.404058\pi\) | ||||
0.296866 | + | 0.954919i | \(0.404058\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 10.0000 | 0.830455 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −4.00000 | −0.327693 | −0.163846 | − | 0.986486i | \(-0.552390\pi\) | ||||
−0.163846 | + | 0.986486i | \(0.552390\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 22.0000 | 1.79033 | 0.895167 | − | 0.445730i | \(-0.147056\pi\) | ||||
0.895167 | + | 0.445730i | \(0.147056\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −2.00000 | −0.160644 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 16.0000 | 1.25322 | 0.626608 | − | 0.779334i | \(-0.284443\pi\) | ||||
0.626608 | + | 0.779334i | \(0.284443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 22.0000 | 1.70241 | 0.851206 | − | 0.524832i | \(-0.175872\pi\) | ||||
0.851206 | + | 0.524832i | \(0.175872\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −13.0000 | −1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 2.00000 | 0.152057 | 0.0760286 | − | 0.997106i | \(-0.475776\pi\) | ||||
0.0760286 | + | 0.997106i | \(0.475776\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −4.00000 | −0.297318 | −0.148659 | − | 0.988889i | \(-0.547496\pi\) | ||||
−0.148659 | + | 0.988889i | \(0.547496\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 4.00000 | 0.294086 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −15.0000 | −1.09691 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −12.0000 | −0.868290 | −0.434145 | − | 0.900843i | \(-0.642949\pi\) | ||||
−0.434145 | + | 0.900843i | \(0.642949\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 19.0000 | 1.36765 | 0.683825 | − | 0.729646i | \(-0.260315\pi\) | ||||
0.683825 | + | 0.729646i | \(0.260315\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 8.00000 | 0.569976 | 0.284988 | − | 0.958531i | \(-0.408010\pi\) | ||||
0.284988 | + | 0.958531i | \(0.408010\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −24.0000 | −1.70131 | −0.850657 | − | 0.525720i | \(-0.823796\pi\) | ||||
−0.850657 | + | 0.525720i | \(0.823796\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 3.00000 | 0.209529 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 25.0000 | 1.72929 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 12.0000 | 0.826114 | 0.413057 | − | 0.910705i | \(-0.364461\pi\) | ||||
0.413057 | + | 0.910705i | \(0.364461\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 3.00000 | 0.204598 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 2.00000 | 0.133930 | 0.0669650 | − | 0.997755i | \(-0.478668\pi\) | ||||
0.0669650 | + | 0.997755i | \(0.478668\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −13.0000 | −0.862840 | −0.431420 | − | 0.902151i | \(-0.641987\pi\) | ||||
−0.431420 | + | 0.902151i | \(0.641987\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −16.0000 | −1.05731 | −0.528655 | − | 0.848837i | \(-0.677303\pi\) | ||||
−0.528655 | + | 0.848837i | \(0.677303\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 11.0000 | 0.720634 | 0.360317 | − | 0.932830i | \(-0.382669\pi\) | ||||
0.360317 | + | 0.932830i | \(0.382669\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −4.00000 | −0.260931 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −6.00000 | −0.388108 | −0.194054 | − | 0.980991i | \(-0.562164\pi\) | ||||
−0.194054 | + | 0.980991i | \(0.562164\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −23.0000 | −1.48156 | −0.740780 | − | 0.671748i | \(-0.765544\pi\) | ||||
−0.740780 | + | 0.671748i | \(0.765544\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −7.00000 | −0.447214 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −11.0000 | −0.694314 | −0.347157 | − | 0.937807i | \(-0.612853\pi\) | ||||
−0.347157 | + | 0.937807i | \(0.612853\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −30.0000 | −1.88608 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 31.0000 | 1.93373 | 0.966863 | − | 0.255294i | \(-0.0821723\pi\) | ||||
0.966863 | + | 0.255294i | \(0.0821723\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 12.0000 | 0.739952 | 0.369976 | − | 0.929041i | \(-0.379366\pi\) | ||||
0.369976 | + | 0.929041i | \(0.379366\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 6.00000 | 0.368577 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 30.0000 | 1.82913 | 0.914566 | − | 0.404436i | \(-0.132532\pi\) | ||||
0.914566 | + | 0.404436i | \(0.132532\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 24.0000 | 1.45790 | 0.728948 | − | 0.684569i | \(-0.240010\pi\) | ||||
0.728948 | + | 0.684569i | \(0.240010\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 5.00000 | 0.301511 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −14.0000 | −0.841178 | −0.420589 | − | 0.907251i | \(-0.638177\pi\) | ||||
−0.420589 | + | 0.907251i | \(0.638177\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −10.0000 | −0.596550 | −0.298275 | − | 0.954480i | \(-0.596411\pi\) | ||||
−0.298275 | + | 0.954480i | \(0.596411\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −4.00000 | −0.237775 | −0.118888 | − | 0.992908i | \(-0.537933\pi\) | ||||
−0.118888 | + | 0.992908i | \(0.537933\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −8.00000 | −0.470588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 10.0000 | 0.584206 | 0.292103 | − | 0.956387i | \(-0.405645\pi\) | ||||
0.292103 | + | 0.956387i | \(0.405645\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 3.00000 | 0.174667 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 2.00000 | 0.114520 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −7.00000 | −0.399511 | −0.199756 | − | 0.979846i | \(-0.564015\pi\) | ||||
−0.199756 | + | 0.979846i | \(0.564015\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −10.0000 | −0.567048 | −0.283524 | − | 0.958965i | \(-0.591504\pi\) | ||||
−0.283524 | + | 0.958965i | \(0.591504\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 7.00000 | 0.395663 | 0.197832 | − | 0.980236i | \(-0.436610\pi\) | ||||
0.197832 | + | 0.980236i | \(0.436610\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −28.0000 | −1.57264 | −0.786318 | − | 0.617822i | \(-0.788015\pi\) | ||||
−0.786318 | + | 0.617822i | \(0.788015\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 50.0000 | 2.79946 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −15.0000 | −0.834622 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 20.0000 | 1.09930 | 0.549650 | − | 0.835395i | \(-0.314761\pi\) | ||||
0.549650 | + | 0.835395i | \(0.314761\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −11.0000 | −0.600994 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −31.0000 | −1.68868 | −0.844339 | − | 0.535810i | \(-0.820006\pi\) | ||||
−0.844339 | + | 0.535810i | \(0.820006\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −10.0000 | −0.541530 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 3.00000 | 0.161048 | 0.0805242 | − | 0.996753i | \(-0.474341\pi\) | ||||
0.0805242 | + | 0.996753i | \(0.474341\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 32.0000 | 1.71292 | 0.856460 | − | 0.516213i | \(-0.172659\pi\) | ||||
0.856460 | + | 0.516213i | \(0.172659\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −25.0000 | −1.33062 | −0.665308 | − | 0.746569i | \(-0.731700\pi\) | ||||
−0.665308 | + | 0.746569i | \(0.731700\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 14.0000 | 0.743043 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 12.0000 | 0.633336 | 0.316668 | − | 0.948536i | \(-0.397436\pi\) | ||||
0.316668 | + | 0.948536i | \(0.397436\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 6.00000 | 0.315789 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −15.0000 | −0.785136 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.00000 | −0.417597 | −0.208798 | − | 0.977959i | \(-0.566955\pi\) | ||||
−0.208798 | + | 0.977959i | \(0.566955\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −26.0000 | −1.34623 | −0.673114 | − | 0.739538i | \(-0.735044\pi\) | ||||
−0.673114 | + | 0.739538i | \(0.735044\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −35.0000 | −1.79783 | −0.898915 | − | 0.438124i | \(-0.855643\pi\) | ||||
−0.898915 | + | 0.438124i | \(0.855643\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −12.0000 | −0.613171 | −0.306586 | − | 0.951843i | \(-0.599187\pi\) | ||||
−0.306586 | + | 0.951843i | \(0.599187\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 24.0000 | 1.21685 | 0.608424 | − | 0.793612i | \(-0.291802\pi\) | ||||
0.608424 | + | 0.793612i | \(0.291802\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 18.0000 | 0.910299 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 10.0000 | 0.503155 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 8.00000 | 0.401508 | 0.200754 | − | 0.979642i | \(-0.435661\pi\) | ||||
0.200754 | + | 0.979642i | \(0.435661\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 7.00000 | 0.349563 | 0.174782 | − | 0.984607i | \(-0.444078\pi\) | ||||
0.174782 | + | 0.984607i | \(0.444078\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 20.0000 | 0.991363 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −7.00000 | −0.346128 | −0.173064 | − | 0.984911i | \(-0.555367\pi\) | ||||
−0.173064 | + | 0.984911i | \(0.555367\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 12.0000 | 0.589057 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 38.0000 | 1.85201 | 0.926003 | − | 0.377515i | \(-0.123221\pi\) | ||||
0.926003 | + | 0.377515i | \(0.123221\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −3.00000 | −0.145521 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −28.0000 | −1.34871 | −0.674356 | − | 0.738406i | \(-0.735579\pi\) | ||||
−0.674356 | + | 0.738406i | \(0.735579\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 27.0000 | 1.29754 | 0.648769 | − | 0.760986i | \(-0.275284\pi\) | ||||
0.648769 | + | 0.760986i | \(0.275284\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −30.0000 | −1.43509 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −14.0000 | −0.668184 | −0.334092 | − | 0.942541i | \(-0.608430\pi\) | ||||
−0.334092 | + | 0.942541i | \(0.608430\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 29.0000 | 1.37783 | 0.688916 | − | 0.724841i | \(-0.258087\pi\) | ||||
0.688916 | + | 0.724841i | \(0.258087\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −14.0000 | −0.663664 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −9.00000 | −0.424736 | −0.212368 | − | 0.977190i | \(-0.568118\pi\) | ||||
−0.212368 | + | 0.977190i | \(0.568118\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 15.0000 | 0.706322 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −25.0000 | −1.16945 | −0.584725 | − | 0.811231i | \(-0.698798\pi\) | ||||
−0.584725 | + | 0.811231i | \(0.698798\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −4.00000 | −0.186299 | −0.0931493 | − | 0.995652i | \(-0.529693\pi\) | ||||
−0.0931493 | + | 0.995652i | \(0.529693\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −4.00000 | −0.185896 | −0.0929479 | − | 0.995671i | \(-0.529629\pi\) | ||||
−0.0929479 | + | 0.995671i | \(0.529629\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 11.0000 | 0.509019 | 0.254510 | − | 0.967070i | \(-0.418086\pi\) | ||||
0.254510 | + | 0.967070i | \(0.418086\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 15.0000 | 0.689701 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 5.00000 | 0.229416 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −26.0000 | −1.18797 | −0.593985 | − | 0.804476i | \(-0.702446\pi\) | ||||
−0.593985 | + | 0.804476i | \(0.702446\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −13.0000 | −0.590300 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 34.0000 | 1.54069 | 0.770344 | − | 0.637629i | \(-0.220085\pi\) | ||||
0.770344 | + | 0.637629i | \(0.220085\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −15.0000 | −0.676941 | −0.338470 | − | 0.940977i | \(-0.609909\pi\) | ||||
−0.338470 | + | 0.940977i | \(0.609909\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −30.0000 | −1.35113 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −23.0000 | −1.02962 | −0.514811 | − | 0.857304i | \(-0.672138\pi\) | ||||
−0.514811 | + | 0.857304i | \(0.672138\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −34.0000 | −1.51599 | −0.757993 | − | 0.652263i | \(-0.773820\pi\) | ||||
−0.757993 | + | 0.652263i | \(0.773820\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 12.0000 | 0.533993 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −44.0000 | −1.95027 | −0.975133 | − | 0.221621i | \(-0.928865\pi\) | ||||
−0.975133 | + | 0.221621i | \(0.928865\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −20.0000 | −0.879599 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 27.0000 | 1.18289 | 0.591446 | − | 0.806345i | \(-0.298557\pi\) | ||||
0.591446 | + | 0.806345i | \(0.298557\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −4.00000 | −0.174908 | −0.0874539 | − | 0.996169i | \(-0.527873\pi\) | ||||
−0.0874539 | + | 0.996169i | \(0.527873\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 6.00000 | 0.261364 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 13.0000 | 0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 17.0000 | 0.734974 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −35.0000 | −1.50756 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 24.0000 | 1.03184 | 0.515920 | − | 0.856637i | \(-0.327450\pi\) | ||||
0.515920 | + | 0.856637i | \(0.327450\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −12.0000 | −0.514024 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −9.00000 | −0.384812 | −0.192406 | − | 0.981315i | \(-0.561629\pi\) | ||||
−0.192406 | + | 0.981315i | \(0.561629\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 50.0000 | 2.13007 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −5.00000 | −0.210725 | −0.105362 | − | 0.994434i | \(-0.533600\pi\) | ||||
−0.105362 | + | 0.994434i | \(0.533600\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 6.00000 | 0.252422 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 15.0000 | 0.628833 | 0.314416 | − | 0.949285i | \(-0.398191\pi\) | ||||
0.314416 | + | 0.949285i | \(0.398191\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −3.00000 | −0.125546 | −0.0627730 | − | 0.998028i | \(-0.519994\pi\) | ||||
−0.0627730 | + | 0.998028i | \(0.519994\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −6.00000 | −0.250217 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −31.0000 | −1.29055 | −0.645273 | − | 0.763952i | \(-0.723257\pi\) | ||||
−0.645273 | + | 0.763952i | \(0.723257\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 30.0000 | 1.24247 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 17.0000 | 0.701665 | 0.350833 | − | 0.936438i | \(-0.385899\pi\) | ||||
0.350833 | + | 0.936438i | \(0.385899\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −10.0000 | −0.412043 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −30.0000 | −1.23195 | −0.615976 | − | 0.787765i | \(-0.711238\pi\) | ||||
−0.615976 | + | 0.787765i | \(0.711238\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −16.0000 | −0.653742 | −0.326871 | − | 0.945069i | \(-0.605994\pi\) | ||||
−0.326871 | + | 0.945069i | \(0.605994\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −1.00000 | −0.0407909 | −0.0203954 | − | 0.999792i | \(-0.506493\pi\) | ||||
−0.0203954 | + | 0.999792i | \(0.506493\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 14.0000 | 0.569181 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −32.0000 | −1.29884 | −0.649420 | − | 0.760430i | \(-0.724988\pi\) | ||||
−0.649420 | + | 0.760430i | \(0.724988\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −2.00000 | −0.0807792 | −0.0403896 | − | 0.999184i | \(-0.512860\pi\) | ||||
−0.0403896 | + | 0.999184i | \(0.512860\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −25.0000 | −1.00646 | −0.503231 | − | 0.864152i | \(-0.667856\pi\) | ||||
−0.503231 | + | 0.864152i | \(0.667856\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −19.0000 | −0.763674 | −0.381837 | − | 0.924230i | \(-0.624709\pi\) | ||||
−0.381837 | + | 0.924230i | \(0.624709\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −12.0000 | −0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 2.00000 | 0.0796187 | 0.0398094 | − | 0.999207i | \(-0.487325\pi\) | ||||
0.0398094 | + | 0.999207i | \(0.487325\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 10.0000 | 0.396838 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −33.0000 | −1.30342 | −0.651711 | − | 0.758468i | \(-0.725948\pi\) | ||||
−0.651711 | + | 0.758468i | \(0.725948\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −41.0000 | −1.61688 | −0.808441 | − | 0.588577i | \(-0.799688\pi\) | ||||
−0.808441 | + | 0.588577i | \(0.799688\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −30.0000 | −1.17942 | −0.589711 | − | 0.807614i | \(-0.700758\pi\) | ||||
−0.589711 | + | 0.807614i | \(0.700758\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 15.0000 | 0.588802 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −34.0000 | −1.33052 | −0.665261 | − | 0.746611i | \(-0.731680\pi\) | ||||
−0.665261 | + | 0.746611i | \(0.731680\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 4.00000 | 0.156293 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −44.0000 | −1.71400 | −0.856998 | − | 0.515319i | \(-0.827673\pi\) | ||||
−0.856998 | + | 0.515319i | \(0.827673\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −60.0000 | −2.32321 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 10.0000 | 0.386046 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −26.0000 | −1.00223 | −0.501113 | − | 0.865382i | \(-0.667076\pi\) | ||||
−0.501113 | + | 0.865382i | \(0.667076\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −28.0000 | −1.07613 | −0.538064 | − | 0.842904i | \(-0.680844\pi\) | ||||
−0.538064 | + | 0.842904i | \(0.680844\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 13.0000 | 0.497431 | 0.248716 | − | 0.968577i | \(-0.419992\pi\) | ||||
0.248716 | + | 0.968577i | \(0.419992\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −7.00000 | −0.267456 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −8.00000 | −0.304334 | −0.152167 | − | 0.988355i | \(-0.548625\pi\) | ||||
−0.152167 | + | 0.988355i | \(0.548625\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 7.00000 | 0.265525 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −9.00000 | −0.340899 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 6.00000 | 0.226617 | 0.113308 | − | 0.993560i | \(-0.463855\pi\) | ||||
0.113308 | + | 0.993560i | \(0.463855\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 20.0000 | 0.754314 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −46.0000 | −1.72757 | −0.863783 | − | 0.503864i | \(-0.831911\pi\) | ||||
−0.863783 | + | 0.503864i | \(0.831911\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 12.0000 | 0.449404 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 10.0000 | 0.371391 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 16.0000 | 0.593407 | 0.296704 | − | 0.954970i | \(-0.404113\pi\) | ||||
0.296704 | + | 0.954970i | \(0.404113\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −9.00000 | −0.332877 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 28.0000 | 1.03420 | 0.517102 | − | 0.855924i | \(-0.327011\pi\) | ||||
0.517102 | + | 0.855924i | \(0.327011\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −55.0000 | −2.02595 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 5.00000 | 0.183928 | 0.0919640 | − | 0.995762i | \(-0.470686\pi\) | ||||
0.0919640 | + | 0.995762i | \(0.470686\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −34.0000 | −1.24734 | −0.623670 | − | 0.781688i | \(-0.714359\pi\) | ||||
−0.623670 | + | 0.781688i | \(0.714359\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −4.00000 | −0.146549 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 20.0000 | 0.729810 | 0.364905 | − | 0.931045i | \(-0.381101\pi\) | ||||
0.364905 | + | 0.931045i | \(0.381101\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 22.0000 | 0.800662 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −26.0000 | −0.944986 | −0.472493 | − | 0.881334i | \(-0.656646\pi\) | ||||
−0.472493 | + | 0.881334i | \(0.656646\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −10.0000 | −0.362500 | −0.181250 | − | 0.983437i | \(-0.558014\pi\) | ||||
−0.181250 | + | 0.983437i | \(0.558014\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −54.0000 | −1.94729 | −0.973645 | − | 0.228069i | \(-0.926759\pi\) | ||||
−0.973645 | + | 0.228069i | \(0.926759\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 30.0000 | 1.07903 | 0.539513 | − | 0.841978i | \(-0.318609\pi\) | ||||
0.539513 | + | 0.841978i | \(0.318609\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −2.00000 | −0.0718421 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 15.0000 | 0.537431 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 70.0000 | 2.50480 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 28.0000 | 0.998092 | 0.499046 | − | 0.866575i | \(-0.333684\pi\) | ||||
0.499046 | + | 0.866575i | \(0.333684\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −32.0000 | −1.13350 | −0.566749 | − | 0.823890i | \(-0.691799\pi\) | ||||
−0.566749 | + | 0.823890i | \(0.691799\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 12.0000 | 0.424529 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −75.0000 | −2.64669 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 15.0000 | 0.527372 | 0.263686 | − | 0.964609i | \(-0.415062\pi\) | ||||
0.263686 | + | 0.964609i | \(0.415062\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 35.0000 | 1.22902 | 0.614508 | − | 0.788911i | \(-0.289355\pi\) | ||||
0.614508 | + | 0.788911i | \(0.289355\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 16.0000 | 0.560456 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 15.0000 | 0.524784 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −4.00000 | −0.139601 | −0.0698005 | − | 0.997561i | \(-0.522236\pi\) | ||||
−0.0698005 | + | 0.997561i | \(0.522236\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 12.0000 | 0.418294 | 0.209147 | − | 0.977884i | \(-0.432931\pi\) | ||||
0.209147 | + | 0.977884i | \(0.432931\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 12.0000 | 0.417281 | 0.208640 | − | 0.977992i | \(-0.433096\pi\) | ||||
0.208640 | + | 0.977992i | \(0.433096\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 40.0000 | 1.38926 | 0.694629 | − | 0.719368i | \(-0.255569\pi\) | ||||
0.694629 | + | 0.719368i | \(0.255569\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 21.0000 | 0.727607 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 22.0000 | 0.761341 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −14.0000 | −0.483334 | −0.241667 | − | 0.970359i | \(-0.577694\pi\) | ||||
−0.241667 | + | 0.970359i | \(0.577694\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 71.0000 | 2.44828 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −13.0000 | −0.447214 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −24.0000 | −0.822709 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 32.0000 | 1.09566 | 0.547830 | − | 0.836590i | \(-0.315454\pi\) | ||||
0.547830 | + | 0.836590i | \(0.315454\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 2.00000 | 0.0683187 | 0.0341593 | − | 0.999416i | \(-0.489125\pi\) | ||||
0.0341593 | + | 0.999416i | \(0.489125\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −11.0000 | −0.375315 | −0.187658 | − | 0.982235i | \(-0.560090\pi\) | ||||
−0.187658 | + | 0.982235i | \(0.560090\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 26.0000 | 0.885050 | 0.442525 | − | 0.896756i | \(-0.354083\pi\) | ||||
0.442525 | + | 0.896756i | \(0.354083\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 2.00000 | 0.0680020 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 50.0000 | 1.69613 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 22.0000 | 0.742887 | 0.371444 | − | 0.928456i | \(-0.378863\pi\) | ||||
0.371444 | + | 0.928456i | \(0.378863\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 2.00000 | 0.0673817 | 0.0336909 | − | 0.999432i | \(-0.489274\pi\) | ||||
0.0336909 | + | 0.999432i | \(0.489274\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −47.0000 | −1.58168 | −0.790838 | − | 0.612026i | \(-0.790355\pi\) | ||||
−0.790838 | + | 0.612026i | \(0.790355\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 6.00000 | 0.201460 | 0.100730 | − | 0.994914i | \(-0.467882\pi\) | ||||
0.100730 | + | 0.994914i | \(0.467882\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −20.0000 | −0.669274 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −20.0000 | −0.667037 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −18.0000 | −0.599667 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −4.00000 | −0.132964 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 13.0000 | 0.431658 | 0.215829 | − | 0.976431i | \(-0.430755\pi\) | ||||
0.215829 | + | 0.976431i | \(0.430755\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −6.00000 | −0.198789 | −0.0993944 | − | 0.995048i | \(-0.531691\pi\) | ||||
−0.0993944 | + | 0.995048i | \(0.531691\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 60.0000 | 1.98571 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 14.0000 | 0.461817 | 0.230909 | − | 0.972975i | \(-0.425830\pi\) | ||||
0.230909 | + | 0.972975i | \(0.425830\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 4.00000 | 0.131519 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −30.0000 | −0.984268 | −0.492134 | − | 0.870519i | \(-0.663783\pi\) | ||||
−0.492134 | + | 0.870519i | \(0.663783\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −35.0000 | −1.14708 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −15.0000 | −0.490552 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −42.0000 | −1.37208 | −0.686040 | − | 0.727564i | \(-0.740653\pi\) | ||||
−0.686040 | + | 0.727564i | \(0.740653\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 16.0000 | 0.521585 | 0.260793 | − | 0.965395i | \(-0.416016\pi\) | ||||
0.260793 | + | 0.965395i | \(0.416016\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −18.0000 | −0.586161 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 21.0000 | 0.682408 | 0.341204 | − | 0.939989i | \(-0.389165\pi\) | ||||
0.341204 | + | 0.939989i | \(0.389165\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 13.0000 | 0.421111 | 0.210556 | − | 0.977582i | \(-0.432473\pi\) | ||||
0.210556 | + | 0.977582i | \(0.432473\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −12.0000 | −0.388311 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −27.0000 | −0.870968 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 19.0000 | 0.611632 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −6.00000 | −0.192947 | −0.0964735 | − | 0.995336i | \(-0.530756\pi\) | ||||
−0.0964735 | + | 0.995336i | \(0.530756\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −12.0000 | −0.385098 | −0.192549 | − | 0.981287i | \(-0.561675\pi\) | ||||
−0.192549 | + | 0.981287i | \(0.561675\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −23.0000 | −0.735835 | −0.367918 | − | 0.929858i | \(-0.619929\pi\) | ||||
−0.367918 | + | 0.929858i | \(0.619929\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −70.0000 | −2.23721 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −52.0000 | −1.65854 | −0.829271 | − | 0.558846i | \(-0.811244\pi\) | ||||
−0.829271 | + | 0.558846i | \(0.811244\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 8.00000 | 0.254901 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −18.0000 | −0.572367 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 28.0000 | 0.889449 | 0.444725 | − | 0.895667i | \(-0.353302\pi\) | ||||
0.444725 | + | 0.895667i | \(0.353302\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −24.0000 | −0.760851 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −42.0000 | −1.33015 | −0.665077 | − | 0.746775i | \(-0.731601\pi\) | ||||
−0.665077 | + | 0.746775i | \(0.731601\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3240.2.a.f.1.1 | 1 | ||
3.2 | odd | 2 | 3240.2.a.b.1.1 | 1 | |||
4.3 | odd | 2 | 6480.2.a.q.1.1 | 1 | |||
9.2 | odd | 6 | 360.2.q.a.121.1 | ✓ | 2 | ||
9.4 | even | 3 | 1080.2.q.a.721.1 | 2 | |||
9.5 | odd | 6 | 360.2.q.a.241.1 | yes | 2 | ||
9.7 | even | 3 | 1080.2.q.a.361.1 | 2 | |||
12.11 | even | 2 | 6480.2.a.e.1.1 | 1 | |||
36.7 | odd | 6 | 2160.2.q.c.1441.1 | 2 | |||
36.11 | even | 6 | 720.2.q.e.481.1 | 2 | |||
36.23 | even | 6 | 720.2.q.e.241.1 | 2 | |||
36.31 | odd | 6 | 2160.2.q.c.721.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
360.2.q.a.121.1 | ✓ | 2 | 9.2 | odd | 6 | ||
360.2.q.a.241.1 | yes | 2 | 9.5 | odd | 6 | ||
720.2.q.e.241.1 | 2 | 36.23 | even | 6 | |||
720.2.q.e.481.1 | 2 | 36.11 | even | 6 | |||
1080.2.q.a.361.1 | 2 | 9.7 | even | 3 | |||
1080.2.q.a.721.1 | 2 | 9.4 | even | 3 | |||
2160.2.q.c.721.1 | 2 | 36.31 | odd | 6 | |||
2160.2.q.c.1441.1 | 2 | 36.7 | odd | 6 | |||
3240.2.a.b.1.1 | 1 | 3.2 | odd | 2 | |||
3240.2.a.f.1.1 | 1 | 1.1 | even | 1 | trivial | ||
6480.2.a.e.1.1 | 1 | 12.11 | even | 2 | |||
6480.2.a.q.1.1 | 1 | 4.3 | odd | 2 |