Properties

Label 3240.1.z.l
Level $3240$
Weight $1$
Character orbit 3240.z
Analytic conductor $1.617$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -40
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,1,Mod(379,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.379");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3240.z (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.61697064093\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.251942400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12}^{4} q^{2} - \zeta_{12}^{2} q^{4} - \zeta_{12}^{2} q^{5} + ( - \zeta_{12}^{5} - \zeta_{12}^{3}) q^{7} - q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{12}^{4} q^{2} - \zeta_{12}^{2} q^{4} - \zeta_{12}^{2} q^{5} + ( - \zeta_{12}^{5} - \zeta_{12}^{3}) q^{7} - q^{8} - q^{10} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{13} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{14} + \zeta_{12}^{4} q^{16} + q^{19} + \zeta_{12}^{4} q^{20} + \zeta_{12}^{2} q^{23} + \zeta_{12}^{4} q^{25} + (\zeta_{12}^{5} - \zeta_{12}) q^{26} + (\zeta_{12}^{5} - \zeta_{12}) q^{28} + \zeta_{12}^{2} q^{32} + (\zeta_{12}^{5} - \zeta_{12}) q^{35} - \zeta_{12}^{4} q^{38} + \zeta_{12}^{2} q^{40} + (\zeta_{12}^{3} + \zeta_{12}) q^{41} + q^{46} + \zeta_{12}^{4} q^{47} + ( - \zeta_{12}^{4} - \zeta_{12}^{2} - 1) q^{49} + \zeta_{12}^{2} q^{50} + (\zeta_{12}^{5} + \zeta_{12}^{3}) q^{52} + q^{53} + (\zeta_{12}^{5} + \zeta_{12}^{3}) q^{56} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{59} + q^{64} + (\zeta_{12}^{5} + \zeta_{12}^{3}) q^{65} + (\zeta_{12}^{5} + \zeta_{12}^{3}) q^{70} - \zeta_{12}^{2} q^{76} + q^{80} + ( - \zeta_{12}^{5} + \zeta_{12}) q^{82} + (\zeta_{12}^{4} - \zeta_{12}^{2} - 2) q^{91} - \zeta_{12}^{4} q^{92} + \zeta_{12}^{2} q^{94} - \zeta_{12}^{2} q^{95} + (\zeta_{12}^{4} - \zeta_{12}^{2} - 1) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{8} - 4 q^{10} - 2 q^{16} + 4 q^{19} - 2 q^{20} + 2 q^{23} - 2 q^{25} + 2 q^{32} + 2 q^{38} + 2 q^{40} + 4 q^{46} - 2 q^{47} - 4 q^{49} + 2 q^{50} + 4 q^{53} + 4 q^{64} - 2 q^{76} + 4 q^{80} - 12 q^{91} + 2 q^{92} + 2 q^{94} - 2 q^{95} - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0.500000 0.866025i 0 −0.500000 0.866025i −0.500000 0.866025i 0 −0.866025 + 1.50000i −1.00000 0 −1.00000
379.2 0.500000 0.866025i 0 −0.500000 0.866025i −0.500000 0.866025i 0 0.866025 1.50000i −1.00000 0 −1.00000
2539.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −0.500000 + 0.866025i 0 −0.866025 1.50000i −1.00000 0 −1.00000
2539.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −0.500000 + 0.866025i 0 0.866025 + 1.50000i −1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by \(\Q(\sqrt{-10}) \)
9.c even 3 1 inner
15.d odd 2 1 inner
24.f even 2 1 inner
45.h odd 6 1 inner
72.l even 6 1 inner
360.z odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.1.z.l 4
3.b odd 2 1 3240.1.z.k 4
5.b even 2 1 3240.1.z.k 4
8.d odd 2 1 3240.1.z.k 4
9.c even 3 1 3240.1.p.e 2
9.c even 3 1 inner 3240.1.z.l 4
9.d odd 6 1 3240.1.p.f yes 2
9.d odd 6 1 3240.1.z.k 4
15.d odd 2 1 inner 3240.1.z.l 4
24.f even 2 1 inner 3240.1.z.l 4
40.e odd 2 1 CM 3240.1.z.l 4
45.h odd 6 1 3240.1.p.e 2
45.h odd 6 1 inner 3240.1.z.l 4
45.j even 6 1 3240.1.p.f yes 2
45.j even 6 1 3240.1.z.k 4
72.l even 6 1 3240.1.p.e 2
72.l even 6 1 inner 3240.1.z.l 4
72.p odd 6 1 3240.1.p.f yes 2
72.p odd 6 1 3240.1.z.k 4
120.m even 2 1 3240.1.z.k 4
360.z odd 6 1 3240.1.p.e 2
360.z odd 6 1 inner 3240.1.z.l 4
360.bd even 6 1 3240.1.p.f yes 2
360.bd even 6 1 3240.1.z.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3240.1.p.e 2 9.c even 3 1
3240.1.p.e 2 45.h odd 6 1
3240.1.p.e 2 72.l even 6 1
3240.1.p.e 2 360.z odd 6 1
3240.1.p.f yes 2 9.d odd 6 1
3240.1.p.f yes 2 45.j even 6 1
3240.1.p.f yes 2 72.p odd 6 1
3240.1.p.f yes 2 360.bd even 6 1
3240.1.z.k 4 3.b odd 2 1
3240.1.z.k 4 5.b even 2 1
3240.1.z.k 4 8.d odd 2 1
3240.1.z.k 4 9.d odd 6 1
3240.1.z.k 4 45.j even 6 1
3240.1.z.k 4 72.p odd 6 1
3240.1.z.k 4 120.m even 2 1
3240.1.z.k 4 360.bd even 6 1
3240.1.z.l 4 1.a even 1 1 trivial
3240.1.z.l 4 9.c even 3 1 inner
3240.1.z.l 4 15.d odd 2 1 inner
3240.1.z.l 4 24.f even 2 1 inner
3240.1.z.l 4 40.e odd 2 1 CM
3240.1.z.l 4 45.h odd 6 1 inner
3240.1.z.l 4 72.l even 6 1 inner
3240.1.z.l 4 360.z odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3240, [\chi])\):

\( T_{7}^{4} + 3T_{7}^{2} + 9 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{23}^{2} - T_{23} + 1 \) Copy content Toggle raw display
\( T_{31} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T - 1)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$53$ \( (T - 1)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less