Properties

Label 3240.1.z.g.379.1
Level $3240$
Weight $1$
Character 3240.379
Analytic conductor $1.617$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,1,Mod(379,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.379");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3240.z (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.61697064093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.27993600.1

Embedding invariants

Embedding label 379.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3240.379
Dual form 3240.1.z.g.2539.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} -1.00000 q^{8} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} -1.00000 q^{8} +(0.500000 - 0.866025i) q^{10} +(-0.500000 - 0.866025i) q^{16} -1.73205i q^{17} +1.00000 q^{19} +1.00000 q^{20} +(0.500000 + 0.866025i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(1.50000 - 0.866025i) q^{31} +(0.500000 - 0.866025i) q^{32} +(1.50000 - 0.866025i) q^{34} +(0.500000 + 0.866025i) q^{38} +(0.500000 + 0.866025i) q^{40} +(-0.500000 + 0.866025i) q^{46} +(1.00000 - 1.73205i) q^{47} +(0.500000 + 0.866025i) q^{49} -1.00000 q^{50} +1.00000 q^{53} +(-1.50000 - 0.866025i) q^{61} +(1.50000 + 0.866025i) q^{62} +1.00000 q^{64} +(1.50000 + 0.866025i) q^{68} +(-0.500000 + 0.866025i) q^{76} +(1.50000 + 0.866025i) q^{79} +(-0.500000 + 0.866025i) q^{80} +(-1.50000 - 0.866025i) q^{83} +(-1.50000 + 0.866025i) q^{85} -1.00000 q^{92} +2.00000 q^{94} +(-0.500000 - 0.866025i) q^{95} +(-0.500000 + 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - q^{5} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - q^{4} - q^{5} - 2 q^{8} + q^{10} - q^{16} + 2 q^{19} + 2 q^{20} + q^{23} - q^{25} + 3 q^{31} + q^{32} + 3 q^{34} + q^{38} + q^{40} - q^{46} + 2 q^{47} + q^{49} - 2 q^{50} + 2 q^{53} - 3 q^{61} + 3 q^{62} + 2 q^{64} + 3 q^{68} - q^{76} + 3 q^{79} - q^{80} - 3 q^{83} - 3 q^{85} - 2 q^{92} + 4 q^{94} - q^{95} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(5\) −0.500000 0.866025i −0.500000 0.866025i
\(6\) 0 0
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) −1.00000 −1.00000
\(9\) 0 0
\(10\) 0.500000 0.866025i 0.500000 0.866025i
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(18\) 0 0
\(19\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 1.00000 1.00000
\(21\) 0 0
\(22\) 0 0
\(23\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(32\) 0.500000 0.866025i 0.500000 0.866025i
\(33\) 0 0
\(34\) 1.50000 0.866025i 1.50000 0.866025i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(39\) 0 0
\(40\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(47\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(50\) −1.00000 −1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(62\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(81\) 0 0
\(82\) 0 0
\(83\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.00000 −1.00000
\(93\) 0 0
\(94\) 2.00000 2.00000
\(95\) −0.500000 0.866025i −0.500000 0.866025i
\(96\) 0 0
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.500000 0.866025i
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(114\) 0 0
\(115\) 0.500000 0.866025i 0.500000 0.866025i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(122\) 1.73205i 1.73205i
\(123\) 0 0
\(124\) 1.73205i 1.73205i
\(125\) 1.00000 1.00000
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 1.73205i 1.73205i
\(137\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) −1.00000 −1.00000
\(153\) 0 0
\(154\) 0 0
\(155\) −1.50000 0.866025i −1.50000 0.866025i
\(156\) 0 0
\(157\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(158\) 1.73205i 1.73205i
\(159\) 0 0
\(160\) −1.00000 −1.00000
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.73205i 1.73205i
\(167\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0 0
\(169\) 0.500000 0.866025i 0.500000 0.866025i
\(170\) −1.50000 0.866025i −1.50000 0.866025i
\(171\) 0 0
\(172\) 0 0
\(173\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.500000 0.866025i −0.500000 0.866025i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(189\) 0 0
\(190\) 0.500000 0.866025i 0.500000 0.866025i
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.00000 −1.00000
\(197\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0.500000 0.866025i 0.500000 0.866025i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0 0
\(229\) −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(230\) 1.00000 1.00000
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) −2.00000 −2.00000
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(242\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(243\) 0 0
\(244\) 1.50000 0.866025i 1.50000 0.866025i
\(245\) 0.500000 0.866025i 0.500000 0.866025i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(249\) 0 0
\(250\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) −0.500000 0.866025i −0.500000 0.866025i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(272\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(273\) 0 0
\(274\) 1.73205i 1.73205i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(278\) 1.00000 1.73205i 1.00000 1.73205i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(282\) 0 0
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −2.00000 −2.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.500000 0.866025i −0.500000 0.866025i
\(305\) 1.73205i 1.73205i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.73205i 1.73205i
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(317\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.500000 0.866025i −0.500000 0.866025i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.73205i 1.73205i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(332\) 1.50000 0.866025i 1.50000 0.866025i
\(333\) 0 0
\(334\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(338\) 1.00000 1.00000
\(339\) 0 0
\(340\) 1.73205i 1.73205i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.00000 −1.00000
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 1.50000 0.866025i 1.50000 0.866025i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0.500000 0.866025i 0.500000 0.866025i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(377\) 0 0
\(378\) 0 0
\(379\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(380\) 1.00000 1.00000
\(381\) 0 0
\(382\) 0 0
\(383\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 1.50000 0.866025i 1.50000 0.866025i
\(392\) −0.500000 0.866025i −0.500000 0.866025i
\(393\) 0 0
\(394\) −0.500000 0.866025i −0.500000 0.866025i
\(395\) 1.73205i 1.73205i
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.73205i 1.73205i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(423\) 0 0
\(424\) −1.00000 −1.00000
\(425\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.50000 0.866025i −1.50000 0.866025i
\(437\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(438\) 0 0
\(439\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 1.73205i 1.73205i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) −1.50000 0.866025i −1.50000 0.866025i
\(459\) 0 0
\(460\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(461\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.00000 1.73205i −1.00000 1.73205i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −1.00000 −1.00000
\(483\) 0 0
\(484\) −1.00000 −1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(489\) 0 0
\(490\) 1.00000 1.00000
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.50000 0.866025i −1.50000 0.866025i
\(497\) 0 0
\(498\) 0 0
\(499\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(500\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(501\) 0 0
\(502\) 0 0
\(503\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) −1.50000 0.866025i −1.50000 0.866025i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.00000 −2.00000
\(527\) −1.50000 2.59808i −1.50000 2.59808i
\(528\) 0 0
\(529\) 0 0
\(530\) 0.500000 0.866025i 0.500000 0.866025i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 1.50000 0.866025i 1.50000 0.866025i
\(543\) 0 0
\(544\) −1.50000 0.866025i −1.50000 0.866025i
\(545\) 1.50000 0.866025i 1.50000 0.866025i
\(546\) 0 0
\(547\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 1.50000 0.866025i 1.50000 0.866025i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 2.00000 2.00000
\(557\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −1.00000
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1.00000 1.73205i −1.00000 1.73205i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(587\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 1.50000 0.866025i 1.50000 0.866025i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.500000 0.866025i 0.500000 0.866025i
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0.500000 0.866025i 0.500000 0.866025i
\(609\) 0 0
\(610\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(618\) 0 0
\(619\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 1.50000 0.866025i 1.50000 0.866025i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(632\) −1.50000 0.866025i −1.50000 0.866025i
\(633\) 0 0
\(634\) 1.00000 1.00000
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.500000 0.866025i 0.500000 0.866025i
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.50000 0.866025i 1.50000 0.866025i
\(647\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 2.00000 2.00000
\(663\) 0 0
\(664\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1.00000 −1.00000
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(677\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.50000 0.866025i 1.50000 0.866025i
\(681\) 0 0
\(682\) 0 0
\(683\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 1.73205i 1.73205i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(692\) −0.500000 0.866025i −0.500000 0.866025i
\(693\) 0 0
\(694\) 0 0
\(695\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(696\) 0 0
\(697\) 0 0
\(698\) 1.73205i 1.73205i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 1.00000 1.00000
\(737\) 0 0
\(738\) 0 0
\(739\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(752\) −2.00000 −2.00000
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) −0.500000 0.866025i −0.500000 0.866025i
\(759\) 0 0
\(760\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0.500000 0.866025i 0.500000 0.866025i
\(767\) 0 0
\(768\) 0 0
\(769\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(774\) 0 0
\(775\) 1.73205i 1.73205i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(783\) 0 0
\(784\) 0.500000 0.866025i 0.500000 0.866025i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 0.500000 0.866025i 0.500000 0.866025i
\(789\) 0 0
\(790\) 1.50000 0.866025i 1.50000 0.866025i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) −3.00000 1.73205i −3.00000 1.73205i
\(800\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(801\) 0 0
\(802\)