Properties

Label 3240.1.v
Level $3240$
Weight $1$
Character orbit 3240.v
Rep. character $\chi_{3240}(1297,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $4$
Newform subspaces $2$
Sturm bound $648$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3240.v (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(648\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3240, [\chi])\).

Total New Old
Modular forms 108 4 104
Cusp forms 12 4 8
Eisenstein series 96 0 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 4 0

Trace form

\( 4 q + 4 q^{25} + 4 q^{31} + 4 q^{37} + 4 q^{43} - 4 q^{55} + 4 q^{67} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3240, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3240.1.v.a 3240.v 5.c $2$ $1.617$ \(\Q(\sqrt{-1}) \) $S_{4}$ None None 3240.1.v.a \(0\) \(0\) \(-2\) \(0\) \(q-q^{5}+q^{11}+i q^{19}+(-i-1)q^{23}+\cdots\)
3240.1.v.b 3240.v 5.c $2$ $1.617$ \(\Q(\sqrt{-1}) \) $S_{4}$ None None 3240.1.v.a \(0\) \(0\) \(2\) \(0\) \(q+q^{5}-q^{11}+i q^{19}+(i+1)q^{23}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3240, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3240, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1620, [\chi])\)\(^{\oplus 2}\)