Defining parameters
| Level: | \( N \) | \(=\) | \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \) | 
| Weight: | \( k \) | \(=\) | \( 1 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 3240.v (of order \(4\) and degree \(2\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) | 
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(648\) | ||
| Trace bound: | \(5\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3240, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 108 | 4 | 104 | 
| Cusp forms | 12 | 4 | 8 | 
| Eisenstein series | 96 | 0 | 96 | 
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 0 | 0 | 4 | 0 | 
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3240, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 3240.1.v.a | $2$ | $1.617$ | \(\Q(\sqrt{-1}) \) | $S_{4}$ | None | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q-q^{5}+q^{11}+i q^{19}+(-i-1)q^{23}+\cdots\) | 
| 3240.1.v.b | $2$ | $1.617$ | \(\Q(\sqrt{-1}) \) | $S_{4}$ | None | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+q^{5}-q^{11}+i q^{19}+(i+1)q^{23}+\cdots\) | 
Decomposition of \(S_{1}^{\mathrm{old}}(3240, [\chi])\) into lower level spaces
  \( S_{1}^{\mathrm{old}}(3240, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1620, [\chi])\)\(^{\oplus 2}\)