Properties

Label 3240.1.bh.h
Level $3240$
Weight $1$
Character orbit 3240.bh
Analytic conductor $1.617$
Analytic rank $0$
Dimension $4$
Projective image $D_{2}$
CM/RM discs -15, -24, 40
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,1,Mod(269,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3240.bh (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.61697064093\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-6}, \sqrt{10})\)
Artin image: $D_4:C_6$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{24} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12} q^{2} + \zeta_{12}^{2} q^{4} + \zeta_{12}^{5} q^{5} - \zeta_{12}^{3} q^{8} + q^{10} + \zeta_{12}^{4} q^{16} - \zeta_{12} q^{20} - \zeta_{12}^{4} q^{25} + 2 \zeta_{12}^{2} q^{31} - \zeta_{12}^{5} q^{32} + \cdots + \zeta_{12}^{3} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 4 q^{10} - 2 q^{16} + 2 q^{25} + 4 q^{31} + 2 q^{40} - 2 q^{49} - 4 q^{64} - 4 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
269.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i 0 0.500000 + 0.866025i −0.866025 + 0.500000i 0 0 1.00000i 0 1.00000
269.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0.866025 0.500000i 0 0 1.00000i 0 1.00000
1349.1 −0.866025 + 0.500000i 0 0.500000 0.866025i −0.866025 0.500000i 0 0 1.00000i 0 1.00000
1349.2 0.866025 0.500000i 0 0.500000 0.866025i 0.866025 + 0.500000i 0 0 1.00000i 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
40.f even 2 1 RM by \(\Q(\sqrt{10}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
8.b even 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
45.h odd 6 1 inner
45.j even 6 1 inner
72.j odd 6 1 inner
72.n even 6 1 inner
120.i odd 2 1 inner
360.bh odd 6 1 inner
360.bk even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.1.bh.h 4
3.b odd 2 1 inner 3240.1.bh.h 4
5.b even 2 1 inner 3240.1.bh.h 4
8.b even 2 1 inner 3240.1.bh.h 4
9.c even 3 1 120.1.i.a 2
9.c even 3 1 inner 3240.1.bh.h 4
9.d odd 6 1 120.1.i.a 2
9.d odd 6 1 inner 3240.1.bh.h 4
15.d odd 2 1 CM 3240.1.bh.h 4
24.h odd 2 1 CM 3240.1.bh.h 4
36.f odd 6 1 480.1.i.a 2
36.h even 6 1 480.1.i.a 2
40.f even 2 1 RM 3240.1.bh.h 4
45.h odd 6 1 120.1.i.a 2
45.h odd 6 1 inner 3240.1.bh.h 4
45.j even 6 1 120.1.i.a 2
45.j even 6 1 inner 3240.1.bh.h 4
45.k odd 12 1 600.1.n.a 1
45.k odd 12 1 600.1.n.b 1
45.l even 12 1 600.1.n.a 1
45.l even 12 1 600.1.n.b 1
72.j odd 6 1 120.1.i.a 2
72.j odd 6 1 inner 3240.1.bh.h 4
72.l even 6 1 480.1.i.a 2
72.n even 6 1 120.1.i.a 2
72.n even 6 1 inner 3240.1.bh.h 4
72.p odd 6 1 480.1.i.a 2
120.i odd 2 1 inner 3240.1.bh.h 4
144.u even 12 1 3840.1.c.b 1
144.u even 12 1 3840.1.c.c 1
144.v odd 12 1 3840.1.c.b 1
144.v odd 12 1 3840.1.c.c 1
144.w odd 12 1 3840.1.c.a 1
144.w odd 12 1 3840.1.c.d 1
144.x even 12 1 3840.1.c.a 1
144.x even 12 1 3840.1.c.d 1
180.n even 6 1 480.1.i.a 2
180.p odd 6 1 480.1.i.a 2
180.v odd 12 1 2400.1.n.a 1
180.v odd 12 1 2400.1.n.b 1
180.x even 12 1 2400.1.n.a 1
180.x even 12 1 2400.1.n.b 1
360.z odd 6 1 480.1.i.a 2
360.bd even 6 1 480.1.i.a 2
360.bh odd 6 1 120.1.i.a 2
360.bh odd 6 1 inner 3240.1.bh.h 4
360.bk even 6 1 120.1.i.a 2
360.bk even 6 1 inner 3240.1.bh.h 4
360.bo even 12 1 2400.1.n.a 1
360.bo even 12 1 2400.1.n.b 1
360.br even 12 1 600.1.n.a 1
360.br even 12 1 600.1.n.b 1
360.bt odd 12 1 2400.1.n.a 1
360.bt odd 12 1 2400.1.n.b 1
360.bu odd 12 1 600.1.n.a 1
360.bu odd 12 1 600.1.n.b 1
720.ce even 12 1 3840.1.c.a 1
720.ce even 12 1 3840.1.c.d 1
720.ch odd 12 1 3840.1.c.a 1
720.ch odd 12 1 3840.1.c.d 1
720.cz odd 12 1 3840.1.c.b 1
720.cz odd 12 1 3840.1.c.c 1
720.da even 12 1 3840.1.c.b 1
720.da even 12 1 3840.1.c.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.1.i.a 2 9.c even 3 1
120.1.i.a 2 9.d odd 6 1
120.1.i.a 2 45.h odd 6 1
120.1.i.a 2 45.j even 6 1
120.1.i.a 2 72.j odd 6 1
120.1.i.a 2 72.n even 6 1
120.1.i.a 2 360.bh odd 6 1
120.1.i.a 2 360.bk even 6 1
480.1.i.a 2 36.f odd 6 1
480.1.i.a 2 36.h even 6 1
480.1.i.a 2 72.l even 6 1
480.1.i.a 2 72.p odd 6 1
480.1.i.a 2 180.n even 6 1
480.1.i.a 2 180.p odd 6 1
480.1.i.a 2 360.z odd 6 1
480.1.i.a 2 360.bd even 6 1
600.1.n.a 1 45.k odd 12 1
600.1.n.a 1 45.l even 12 1
600.1.n.a 1 360.br even 12 1
600.1.n.a 1 360.bu odd 12 1
600.1.n.b 1 45.k odd 12 1
600.1.n.b 1 45.l even 12 1
600.1.n.b 1 360.br even 12 1
600.1.n.b 1 360.bu odd 12 1
2400.1.n.a 1 180.v odd 12 1
2400.1.n.a 1 180.x even 12 1
2400.1.n.a 1 360.bo even 12 1
2400.1.n.a 1 360.bt odd 12 1
2400.1.n.b 1 180.v odd 12 1
2400.1.n.b 1 180.x even 12 1
2400.1.n.b 1 360.bo even 12 1
2400.1.n.b 1 360.bt odd 12 1
3240.1.bh.h 4 1.a even 1 1 trivial
3240.1.bh.h 4 3.b odd 2 1 inner
3240.1.bh.h 4 5.b even 2 1 inner
3240.1.bh.h 4 8.b even 2 1 inner
3240.1.bh.h 4 9.c even 3 1 inner
3240.1.bh.h 4 9.d odd 6 1 inner
3240.1.bh.h 4 15.d odd 2 1 CM
3240.1.bh.h 4 24.h odd 2 1 CM
3240.1.bh.h 4 40.f even 2 1 RM
3240.1.bh.h 4 45.h odd 6 1 inner
3240.1.bh.h 4 45.j even 6 1 inner
3240.1.bh.h 4 72.j odd 6 1 inner
3240.1.bh.h 4 72.n even 6 1 inner
3240.1.bh.h 4 120.i odd 2 1 inner
3240.1.bh.h 4 360.bh odd 6 1 inner
3240.1.bh.h 4 360.bk even 6 1 inner
3840.1.c.a 1 144.w odd 12 1
3840.1.c.a 1 144.x even 12 1
3840.1.c.a 1 720.ce even 12 1
3840.1.c.a 1 720.ch odd 12 1
3840.1.c.b 1 144.u even 12 1
3840.1.c.b 1 144.v odd 12 1
3840.1.c.b 1 720.cz odd 12 1
3840.1.c.b 1 720.da even 12 1
3840.1.c.c 1 144.u even 12 1
3840.1.c.c 1 144.v odd 12 1
3840.1.c.c 1 720.cz odd 12 1
3840.1.c.c 1 720.da even 12 1
3840.1.c.d 1 144.w odd 12 1
3840.1.c.d 1 144.x even 12 1
3840.1.c.d 1 720.ce even 12 1
3840.1.c.d 1 720.ch odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3240, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{61} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less