Properties

Label 324.6.m
Level $324$
Weight $6$
Character orbit 324.m
Rep. character $\chi_{324}(13,\cdot)$
Character field $\Q(\zeta_{27})$
Dimension $810$
Sturm bound $324$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 324.m (of order \(27\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 81 \)
Character field: \(\Q(\zeta_{27})\)
Sturm bound: \(324\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(324, [\chi])\).

Total New Old
Modular forms 4914 810 4104
Cusp forms 4806 810 3996
Eisenstein series 108 0 108

Trace form

\( 810 q - 13743 q^{21} - 297 q^{23} + 17523 q^{27} + 3753 q^{29} - 36747 q^{33} - 19413 q^{35} - 84690 q^{41} + 136026 q^{45} + 84834 q^{47} - 126315 q^{51} - 151686 q^{53} - 41526 q^{57} + 100485 q^{59}+ \cdots - 908586 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(324, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(324, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(324, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 2}\)