Properties

Label 324.6.l
Level $324$
Weight $6$
Character orbit 324.l
Rep. character $\chi_{324}(35,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $528$
Sturm bound $324$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 324.l (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 108 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(324\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(324, [\chi])\).

Total New Old
Modular forms 1656 552 1104
Cusp forms 1584 528 1056
Eisenstein series 72 24 48

Trace form

\( 528 q + 6 q^{2} - 6 q^{4} + 12 q^{5} + 9 q^{8} - 3 q^{10} - 12 q^{13} - 1509 q^{14} - 6 q^{16} + 18 q^{17} - 1233 q^{20} - 6 q^{22} - 12 q^{25} - 12 q^{28} - 11928 q^{29} - 7224 q^{32} - 102 q^{34} - 6 q^{37}+ \cdots - 1307970 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(324, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(324, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(324, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)