Properties

Label 324.6.h
Level $324$
Weight $6$
Character orbit 324.h
Rep. character $\chi_{324}(107,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $236$
Sturm bound $324$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 324.h (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(324\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(324, [\chi])\).

Total New Old
Modular forms 564 244 320
Cusp forms 516 236 280
Eisenstein series 48 8 40

Trace form

\( 236 q + 2 q^{4} + 124 q^{10} + 4 q^{13} + 2 q^{16} + 66 q^{22} + 68754 q^{25} + 4092 q^{28} - 31712 q^{34} - 8 q^{37} + 17002 q^{40} + 134568 q^{46} + 254510 q^{49} - 43832 q^{52} + 6436 q^{58} + 4 q^{61}+ \cdots + 116296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(324, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(324, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(324, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)