Properties

Label 324.6.e.a
Level $324$
Weight $6$
Character orbit 324.e
Analytic conductor $51.964$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 324.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(51.9643576194\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -54 \zeta_{6} q^{5} + ( 88 - 88 \zeta_{6} ) q^{7} +O(q^{10})\) \( q -54 \zeta_{6} q^{5} + ( 88 - 88 \zeta_{6} ) q^{7} + ( -540 + 540 \zeta_{6} ) q^{11} + 418 \zeta_{6} q^{13} + 594 q^{17} + 836 q^{19} + 4104 \zeta_{6} q^{23} + ( 209 - 209 \zeta_{6} ) q^{25} + ( 594 - 594 \zeta_{6} ) q^{29} -4256 \zeta_{6} q^{31} -4752 q^{35} -298 q^{37} -17226 \zeta_{6} q^{41} + ( 12100 - 12100 \zeta_{6} ) q^{43} + ( 1296 - 1296 \zeta_{6} ) q^{47} + 9063 \zeta_{6} q^{49} + 19494 q^{53} + 29160 q^{55} + 7668 \zeta_{6} q^{59} + ( 34738 - 34738 \zeta_{6} ) q^{61} + ( 22572 - 22572 \zeta_{6} ) q^{65} -21812 \zeta_{6} q^{67} -46872 q^{71} + 67562 q^{73} + 47520 \zeta_{6} q^{77} + ( 76912 - 76912 \zeta_{6} ) q^{79} + ( -67716 + 67716 \zeta_{6} ) q^{83} -32076 \zeta_{6} q^{85} + 29754 q^{89} + 36784 q^{91} -45144 \zeta_{6} q^{95} + ( 122398 - 122398 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{5} + 88 q^{7} + O(q^{10}) \) \( 2 q - 54 q^{5} + 88 q^{7} - 540 q^{11} + 418 q^{13} + 1188 q^{17} + 1672 q^{19} + 4104 q^{23} + 209 q^{25} + 594 q^{29} - 4256 q^{31} - 9504 q^{35} - 596 q^{37} - 17226 q^{41} + 12100 q^{43} + 1296 q^{47} + 9063 q^{49} + 38988 q^{53} + 58320 q^{55} + 7668 q^{59} + 34738 q^{61} + 22572 q^{65} - 21812 q^{67} - 93744 q^{71} + 135124 q^{73} + 47520 q^{77} + 76912 q^{79} - 67716 q^{83} - 32076 q^{85} + 59508 q^{89} + 73568 q^{91} - 45144 q^{95} + 122398 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −27.0000 + 46.7654i 0 44.0000 + 76.2102i 0 0 0
217.1 0 0 0 −27.0000 46.7654i 0 44.0000 76.2102i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 324.6.e.a 2
3.b odd 2 1 324.6.e.d 2
9.c even 3 1 4.6.a.a 1
9.c even 3 1 inner 324.6.e.a 2
9.d odd 6 1 36.6.a.a 1
9.d odd 6 1 324.6.e.d 2
36.f odd 6 1 16.6.a.b 1
36.h even 6 1 144.6.a.c 1
45.h odd 6 1 900.6.a.h 1
45.j even 6 1 100.6.a.b 1
45.k odd 12 2 100.6.c.b 2
45.l even 12 2 900.6.d.a 2
63.g even 3 1 196.6.e.g 2
63.h even 3 1 196.6.e.g 2
63.k odd 6 1 196.6.e.d 2
63.l odd 6 1 196.6.a.e 1
63.t odd 6 1 196.6.e.d 2
72.j odd 6 1 576.6.a.bc 1
72.l even 6 1 576.6.a.bd 1
72.n even 6 1 64.6.a.f 1
72.p odd 6 1 64.6.a.b 1
99.h odd 6 1 484.6.a.a 1
117.t even 6 1 676.6.a.a 1
117.y odd 12 2 676.6.d.a 2
144.v odd 12 2 256.6.b.c 2
144.x even 12 2 256.6.b.g 2
180.p odd 6 1 400.6.a.d 1
180.x even 12 2 400.6.c.f 2
252.bi even 6 1 784.6.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.6.a.a 1 9.c even 3 1
16.6.a.b 1 36.f odd 6 1
36.6.a.a 1 9.d odd 6 1
64.6.a.b 1 72.p odd 6 1
64.6.a.f 1 72.n even 6 1
100.6.a.b 1 45.j even 6 1
100.6.c.b 2 45.k odd 12 2
144.6.a.c 1 36.h even 6 1
196.6.a.e 1 63.l odd 6 1
196.6.e.d 2 63.k odd 6 1
196.6.e.d 2 63.t odd 6 1
196.6.e.g 2 63.g even 3 1
196.6.e.g 2 63.h even 3 1
256.6.b.c 2 144.v odd 12 2
256.6.b.g 2 144.x even 12 2
324.6.e.a 2 1.a even 1 1 trivial
324.6.e.a 2 9.c even 3 1 inner
324.6.e.d 2 3.b odd 2 1
324.6.e.d 2 9.d odd 6 1
400.6.a.d 1 180.p odd 6 1
400.6.c.f 2 180.x even 12 2
484.6.a.a 1 99.h odd 6 1
576.6.a.bc 1 72.j odd 6 1
576.6.a.bd 1 72.l even 6 1
676.6.a.a 1 117.t even 6 1
676.6.d.a 2 117.y odd 12 2
784.6.a.d 1 252.bi even 6 1
900.6.a.h 1 45.h odd 6 1
900.6.d.a 2 45.l even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(324, [\chi])\):

\( T_{5}^{2} + 54 T_{5} + 2916 \)
\( T_{7}^{2} - 88 T_{7} + 7744 \)
\( T_{11}^{2} + 540 T_{11} + 291600 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( 2916 + 54 T + T^{2} \)
$7$ \( 7744 - 88 T + T^{2} \)
$11$ \( 291600 + 540 T + T^{2} \)
$13$ \( 174724 - 418 T + T^{2} \)
$17$ \( ( -594 + T )^{2} \)
$19$ \( ( -836 + T )^{2} \)
$23$ \( 16842816 - 4104 T + T^{2} \)
$29$ \( 352836 - 594 T + T^{2} \)
$31$ \( 18113536 + 4256 T + T^{2} \)
$37$ \( ( 298 + T )^{2} \)
$41$ \( 296735076 + 17226 T + T^{2} \)
$43$ \( 146410000 - 12100 T + T^{2} \)
$47$ \( 1679616 - 1296 T + T^{2} \)
$53$ \( ( -19494 + T )^{2} \)
$59$ \( 58798224 - 7668 T + T^{2} \)
$61$ \( 1206728644 - 34738 T + T^{2} \)
$67$ \( 475763344 + 21812 T + T^{2} \)
$71$ \( ( 46872 + T )^{2} \)
$73$ \( ( -67562 + T )^{2} \)
$79$ \( 5915455744 - 76912 T + T^{2} \)
$83$ \( 4585456656 + 67716 T + T^{2} \)
$89$ \( ( -29754 + T )^{2} \)
$97$ \( 14981270404 - 122398 T + T^{2} \)
show more
show less