Properties

Label 324.6.a.b
Level $324$
Weight $6$
Character orbit 324.a
Self dual yes
Analytic conductor $51.964$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,6,Mod(1,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 324.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.9643576194\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.513129.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 142x + 640 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 11) q^{5} + ( - \beta_{2} - 10) q^{7} + ( - 3 \beta_{2} + 4 \beta_1 - 10) q^{11} + ( - 2 \beta_{2} - 9 \beta_1 - 91) q^{13} + (6 \beta_{2} + 14 \beta_1 + 181) q^{17} + ( - 5 \beta_{2} + 36 \beta_1 + 470) q^{19}+ \cdots + (418 \beta_{2} - 792 \beta_1 + 70430) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 33 q^{5} - 30 q^{7} - 30 q^{11} - 273 q^{13} + 543 q^{17} + 1410 q^{19} + 2766 q^{23} + 1236 q^{25} - 3063 q^{29} + 3156 q^{31} - 4650 q^{35} + 7143 q^{37} + 21318 q^{41} + 18078 q^{43} - 41256 q^{47}+ \cdots + 211290 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 142x + 640 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 6\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 6\nu^{2} + 36\nu - 582 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} - 6\beta _1 + 570 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−13.2978
5.42315
8.87462
0 0 0 −70.7866 0 −10.2641 0 0 0
1.2 0 0 0 41.5389 0 200.303 0 0 0
1.3 0 0 0 62.2477 0 −220.039 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 324.6.a.b yes 3
3.b odd 2 1 324.6.a.a 3
9.c even 3 2 324.6.e.h 6
9.d odd 6 2 324.6.e.i 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
324.6.a.a 3 3.b odd 2 1
324.6.a.b yes 3 1.a even 1 1 trivial
324.6.e.h 6 9.c even 3 2
324.6.e.i 6 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 33T_{5}^{2} - 4761T_{5} + 183033 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(324))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 33 T^{2} + \cdots + 183033 \) Copy content Toggle raw display
$7$ \( T^{3} + 30 T^{2} + \cdots - 452384 \) Copy content Toggle raw display
$11$ \( T^{3} + 30 T^{2} + \cdots - 109264896 \) Copy content Toggle raw display
$13$ \( T^{3} + 273 T^{2} + \cdots + 34315975 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 1357241805 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 8206069600 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 1656999936 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 50007026079 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 17764148800 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 679812536575 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 282274544088 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 304734160000 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 422003520000 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 2134967305752 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 1747775840256 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 1949423899625 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 99591587689312 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 16003712160 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 27185744955815 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 14049056729600 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 65977416000000 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 13397848224165 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 663211465733800 \) Copy content Toggle raw display
show more
show less