Properties

Label 324.4.i.a.73.7
Level 324
Weight 4
Character 324.73
Analytic conductor 19.117
Analytic rank 0
Dimension 54
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.i (of order \(9\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 73.7
Character \(\chi\) \(=\) 324.73
Dual form 324.4.i.a.253.7

$q$-expansion

\(f(q)\) \(=\) \(q+(5.19451 - 4.35871i) q^{5} +(-17.8009 + 6.47901i) q^{7} +O(q^{10})\) \(q+(5.19451 - 4.35871i) q^{5} +(-17.8009 + 6.47901i) q^{7} +(0.134044 + 0.112476i) q^{11} +(-1.24242 - 7.04614i) q^{13} +(26.6029 + 46.0776i) q^{17} +(-65.4831 + 113.420i) q^{19} +(-129.122 - 46.9965i) q^{23} +(-13.7215 + 77.8183i) q^{25} +(9.32414 - 52.8798i) q^{29} +(139.135 + 50.6411i) q^{31} +(-64.2270 + 111.244i) q^{35} +(58.6266 + 101.544i) q^{37} +(27.9173 + 158.327i) q^{41} +(51.8941 + 43.5443i) q^{43} +(-597.576 + 217.500i) q^{47} +(12.1427 - 10.1889i) q^{49} -36.5908 q^{53} +1.18654 q^{55} +(-574.476 + 482.043i) q^{59} +(-64.9040 + 23.6231i) q^{61} +(-37.1659 - 31.1859i) q^{65} +(109.760 + 622.479i) q^{67} +(66.9800 + 116.013i) q^{71} +(-435.761 + 754.761i) q^{73} +(-3.11484 - 1.13371i) q^{77} +(55.7069 - 315.930i) q^{79} +(197.919 - 1122.46i) q^{83} +(339.028 + 123.396i) q^{85} +(259.505 - 449.475i) q^{89} +(67.7684 + 117.378i) q^{91} +(154.213 + 874.583i) q^{95} +(-1153.80 - 968.155i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54q - 12q^{5} + O(q^{10}) \) \( 54q - 12q^{5} + 87q^{11} - 204q^{17} - 96q^{23} - 216q^{25} - 318q^{29} - 54q^{31} - 6q^{35} - 867q^{41} - 513q^{43} + 1548q^{47} + 594q^{49} + 1068q^{53} + 1218q^{59} - 54q^{61} - 96q^{65} - 2997q^{67} + 120q^{71} - 216q^{73} - 3480q^{77} + 2808q^{79} - 4464q^{83} + 2160q^{85} - 4029q^{89} + 270q^{91} + 1650q^{95} - 3483q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.19451 4.35871i 0.464611 0.389855i −0.380213 0.924899i \(-0.624149\pi\)
0.844824 + 0.535044i \(0.179705\pi\)
\(6\) 0 0
\(7\) −17.8009 + 6.47901i −0.961160 + 0.349834i −0.774488 0.632588i \(-0.781992\pi\)
−0.186672 + 0.982422i \(0.559770\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.134044 + 0.112476i 0.00367416 + 0.00308299i 0.644623 0.764501i \(-0.277014\pi\)
−0.640949 + 0.767584i \(0.721459\pi\)
\(12\) 0 0
\(13\) −1.24242 7.04614i −0.0265067 0.150327i 0.968682 0.248305i \(-0.0798735\pi\)
−0.995189 + 0.0979783i \(0.968762\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 26.6029 + 46.0776i 0.379538 + 0.657380i 0.990995 0.133898i \(-0.0427495\pi\)
−0.611457 + 0.791278i \(0.709416\pi\)
\(18\) 0 0
\(19\) −65.4831 + 113.420i −0.790677 + 1.36949i 0.134872 + 0.990863i \(0.456938\pi\)
−0.925548 + 0.378629i \(0.876396\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −129.122 46.9965i −1.17060 0.426063i −0.317726 0.948182i \(-0.602919\pi\)
−0.852872 + 0.522119i \(0.825142\pi\)
\(24\) 0 0
\(25\) −13.7215 + 77.8183i −0.109772 + 0.622546i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 9.32414 52.8798i 0.0597052 0.338605i −0.940293 0.340365i \(-0.889449\pi\)
0.999998 + 0.00176047i \(0.000560374\pi\)
\(30\) 0 0
\(31\) 139.135 + 50.6411i 0.806111 + 0.293401i 0.712017 0.702163i \(-0.247782\pi\)
0.0940949 + 0.995563i \(0.470004\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −64.2270 + 111.244i −0.310181 + 0.537249i
\(36\) 0 0
\(37\) 58.6266 + 101.544i 0.260491 + 0.451183i 0.966372 0.257147i \(-0.0827824\pi\)
−0.705882 + 0.708330i \(0.749449\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 27.9173 + 158.327i 0.106340 + 0.603085i 0.990677 + 0.136235i \(0.0435002\pi\)
−0.884336 + 0.466850i \(0.845389\pi\)
\(42\) 0 0
\(43\) 51.8941 + 43.5443i 0.184041 + 0.154429i 0.730154 0.683283i \(-0.239448\pi\)
−0.546113 + 0.837712i \(0.683893\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −597.576 + 217.500i −1.85458 + 0.675013i −0.871909 + 0.489668i \(0.837118\pi\)
−0.982674 + 0.185345i \(0.940660\pi\)
\(48\) 0 0
\(49\) 12.1427 10.1889i 0.0354013 0.0297052i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −36.5908 −0.0948328 −0.0474164 0.998875i \(-0.515099\pi\)
−0.0474164 + 0.998875i \(0.515099\pi\)
\(54\) 0 0
\(55\) 1.18654 0.00290897
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −574.476 + 482.043i −1.26763 + 1.06367i −0.272809 + 0.962068i \(0.587953\pi\)
−0.994825 + 0.101603i \(0.967603\pi\)
\(60\) 0 0
\(61\) −64.9040 + 23.6231i −0.136231 + 0.0495841i −0.409236 0.912429i \(-0.634205\pi\)
0.273005 + 0.962013i \(0.411982\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −37.1659 31.1859i −0.0709209 0.0595097i
\(66\) 0 0
\(67\) 109.760 + 622.479i 0.200139 + 1.13504i 0.904908 + 0.425607i \(0.139939\pi\)
−0.704769 + 0.709437i \(0.748949\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 66.9800 + 116.013i 0.111959 + 0.193918i 0.916560 0.399897i \(-0.130954\pi\)
−0.804601 + 0.593816i \(0.797621\pi\)
\(72\) 0 0
\(73\) −435.761 + 754.761i −0.698658 + 1.21011i 0.270274 + 0.962783i \(0.412886\pi\)
−0.968932 + 0.247327i \(0.920448\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.11484 1.13371i −0.00460999 0.00167790i
\(78\) 0 0
\(79\) 55.7069 315.930i 0.0793357 0.449935i −0.919100 0.394024i \(-0.871083\pi\)
0.998436 0.0559108i \(-0.0178062\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 197.919 1122.46i 0.261741 1.48440i −0.516418 0.856337i \(-0.672735\pi\)
0.778159 0.628068i \(-0.216154\pi\)
\(84\) 0 0
\(85\) 339.028 + 123.396i 0.432620 + 0.157461i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 259.505 449.475i 0.309073 0.535329i −0.669087 0.743184i \(-0.733315\pi\)
0.978160 + 0.207855i \(0.0666481\pi\)
\(90\) 0 0
\(91\) 67.7684 + 117.378i 0.0780665 + 0.135215i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 154.213 + 874.583i 0.166546 + 0.944530i
\(96\) 0 0
\(97\) −1153.80 968.155i −1.20774 1.01341i −0.999375 0.0353635i \(-0.988741\pi\)
−0.208366 0.978051i \(-0.566814\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 956.621 348.182i 0.942449 0.343023i 0.175317 0.984512i \(-0.443905\pi\)
0.767132 + 0.641489i \(0.221683\pi\)
\(102\) 0 0
\(103\) 749.339 628.770i 0.716840 0.601500i −0.209669 0.977772i \(-0.567239\pi\)
0.926509 + 0.376272i \(0.122794\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1665.48 1.50475 0.752374 0.658736i \(-0.228909\pi\)
0.752374 + 0.658736i \(0.228909\pi\)
\(108\) 0 0
\(109\) 531.528 0.467075 0.233538 0.972348i \(-0.424970\pi\)
0.233538 + 0.972348i \(0.424970\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 277.167 232.571i 0.230740 0.193614i −0.520086 0.854114i \(-0.674100\pi\)
0.750826 + 0.660500i \(0.229656\pi\)
\(114\) 0 0
\(115\) −875.568 + 318.681i −0.709975 + 0.258410i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −772.094 647.864i −0.594771 0.499072i
\(120\) 0 0
\(121\) −231.120 1310.75i −0.173644 0.984785i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 691.720 + 1198.09i 0.494955 + 0.857287i
\(126\) 0 0
\(127\) −947.516 + 1641.15i −0.662035 + 1.14668i 0.318045 + 0.948076i \(0.396974\pi\)
−0.980080 + 0.198603i \(0.936360\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2543.01 925.581i −1.69606 0.617316i −0.700695 0.713461i \(-0.747127\pi\)
−0.995367 + 0.0961447i \(0.969349\pi\)
\(132\) 0 0
\(133\) 430.811 2443.25i 0.280873 1.59291i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 255.797 1450.70i 0.159520 0.904681i −0.795017 0.606587i \(-0.792538\pi\)
0.954537 0.298094i \(-0.0963508\pi\)
\(138\) 0 0
\(139\) 2088.85 + 760.279i 1.27463 + 0.463928i 0.888654 0.458579i \(-0.151641\pi\)
0.385979 + 0.922507i \(0.373864\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.625984 1.08424i 0.000366066 0.000634045i
\(144\) 0 0
\(145\) −182.053 315.326i −0.104267 0.180596i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 387.086 + 2195.27i 0.212828 + 1.20701i 0.884637 + 0.466281i \(0.154406\pi\)
−0.671809 + 0.740724i \(0.734482\pi\)
\(150\) 0 0
\(151\) −1652.75 1386.82i −0.890720 0.747403i 0.0776345 0.996982i \(-0.475263\pi\)
−0.968354 + 0.249579i \(0.919708\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 943.470 343.395i 0.488912 0.177949i
\(156\) 0 0
\(157\) 2419.53 2030.22i 1.22993 1.03204i 0.231688 0.972790i \(-0.425575\pi\)
0.998243 0.0592452i \(-0.0188694\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2602.98 1.27418
\(162\) 0 0
\(163\) −1919.61 −0.922428 −0.461214 0.887289i \(-0.652586\pi\)
−0.461214 + 0.887289i \(0.652586\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 531.834 446.262i 0.246435 0.206783i −0.511201 0.859461i \(-0.670799\pi\)
0.757635 + 0.652678i \(0.226355\pi\)
\(168\) 0 0
\(169\) 2016.40 733.910i 0.917797 0.334051i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2035.08 1707.63i −0.894358 0.750456i 0.0747211 0.997204i \(-0.476193\pi\)
−0.969080 + 0.246749i \(0.920638\pi\)
\(174\) 0 0
\(175\) −259.931 1474.14i −0.112280 0.636769i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 554.255 + 959.998i 0.231436 + 0.400858i 0.958231 0.285996i \(-0.0923244\pi\)
−0.726795 + 0.686854i \(0.758991\pi\)
\(180\) 0 0
\(181\) 1019.98 1766.65i 0.418864 0.725493i −0.576962 0.816771i \(-0.695762\pi\)
0.995825 + 0.0912779i \(0.0290952\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 747.138 + 271.936i 0.296922 + 0.108071i
\(186\) 0 0
\(187\) −1.61667 + 9.16862i −0.000632208 + 0.00358543i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −187.456 + 1063.12i −0.0710149 + 0.402745i 0.928492 + 0.371352i \(0.121106\pi\)
−0.999507 + 0.0313936i \(0.990005\pi\)
\(192\) 0 0
\(193\) −231.941 84.4197i −0.0865051 0.0314853i 0.298405 0.954439i \(-0.403545\pi\)
−0.384910 + 0.922954i \(0.625768\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2154.60 3731.87i 0.779232 1.34967i −0.153154 0.988202i \(-0.548943\pi\)
0.932385 0.361466i \(-0.117724\pi\)
\(198\) 0 0
\(199\) 1279.40 + 2215.99i 0.455751 + 0.789383i 0.998731 0.0503621i \(-0.0160376\pi\)
−0.542980 + 0.839745i \(0.682704\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 176.631 + 1001.72i 0.0610692 + 0.346340i
\(204\) 0 0
\(205\) 835.117 + 700.746i 0.284522 + 0.238743i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −21.5347 + 7.83798i −0.00712720 + 0.00259409i
\(210\) 0 0
\(211\) −1331.28 + 1117.08i −0.434357 + 0.364468i −0.833593 0.552380i \(-0.813720\pi\)
0.399236 + 0.916848i \(0.369275\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 459.361 0.145712
\(216\) 0 0
\(217\) −2804.85 −0.877444
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 291.617 244.696i 0.0887615 0.0744797i
\(222\) 0 0
\(223\) −3665.27 + 1334.05i −1.10065 + 0.400603i −0.827555 0.561385i \(-0.810269\pi\)
−0.273093 + 0.961988i \(0.588047\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2227.65 1869.22i −0.651342 0.546541i 0.256136 0.966641i \(-0.417551\pi\)
−0.907478 + 0.420100i \(0.861995\pi\)
\(228\) 0 0
\(229\) 862.951 + 4894.04i 0.249019 + 1.41226i 0.810970 + 0.585088i \(0.198940\pi\)
−0.561950 + 0.827171i \(0.689949\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 254.515 + 440.832i 0.0715614 + 0.123948i 0.899586 0.436744i \(-0.143868\pi\)
−0.828024 + 0.560692i \(0.810535\pi\)
\(234\) 0 0
\(235\) −2156.09 + 3734.46i −0.598502 + 1.03664i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4164.81 1515.87i −1.12719 0.410265i −0.289921 0.957051i \(-0.593629\pi\)
−0.837272 + 0.546786i \(0.815851\pi\)
\(240\) 0 0
\(241\) 90.6192 513.927i 0.0242211 0.137365i −0.970299 0.241908i \(-0.922227\pi\)
0.994520 + 0.104543i \(0.0333380\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 18.6647 105.853i 0.00486711 0.0276027i
\(246\) 0 0
\(247\) 880.532 + 320.487i 0.226830 + 0.0825592i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3252.48 + 5633.46i −0.817907 + 1.41666i 0.0893143 + 0.996003i \(0.471532\pi\)
−0.907221 + 0.420653i \(0.861801\pi\)
\(252\) 0 0
\(253\) −12.0220 20.8227i −0.00298742 0.00517437i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 993.934 + 5636.88i 0.241245 + 1.36817i 0.829054 + 0.559168i \(0.188879\pi\)
−0.587810 + 0.808999i \(0.700010\pi\)
\(258\) 0 0
\(259\) −1701.51 1427.74i −0.408212 0.342531i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2466.09 897.584i 0.578197 0.210446i −0.0363333 0.999340i \(-0.511568\pi\)
0.614530 + 0.788893i \(0.289346\pi\)
\(264\) 0 0
\(265\) −190.071 + 159.489i −0.0440603 + 0.0369710i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2872.70 −0.651122 −0.325561 0.945521i \(-0.605553\pi\)
−0.325561 + 0.945521i \(0.605553\pi\)
\(270\) 0 0
\(271\) 3701.45 0.829695 0.414847 0.909891i \(-0.363835\pi\)
0.414847 + 0.909891i \(0.363835\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.5920 + 8.88773i −0.00232262 + 0.00194891i
\(276\) 0 0
\(277\) 1213.14 441.548i 0.263143 0.0957763i −0.207079 0.978324i \(-0.566396\pi\)
0.470223 + 0.882548i \(0.344174\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3031.24 + 2543.52i 0.643519 + 0.539977i 0.905097 0.425206i \(-0.139798\pi\)
−0.261578 + 0.965182i \(0.584243\pi\)
\(282\) 0 0
\(283\) −174.948 992.178i −0.0367476 0.208406i 0.960906 0.276876i \(-0.0892992\pi\)
−0.997653 + 0.0684704i \(0.978188\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1522.75 2637.49i −0.313189 0.542460i
\(288\) 0 0
\(289\) 1041.07 1803.19i 0.211901 0.367024i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7284.28 2651.26i −1.45240 0.528629i −0.509137 0.860686i \(-0.670035\pi\)
−0.943259 + 0.332057i \(0.892257\pi\)
\(294\) 0 0
\(295\) −883.036 + 5007.95i −0.174279 + 0.988387i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −170.720 + 968.201i −0.0330200 + 0.187266i
\(300\) 0 0
\(301\) −1205.89 438.907i −0.230918 0.0840471i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −234.178 + 405.608i −0.0439639 + 0.0761477i
\(306\) 0 0
\(307\) 4498.36 + 7791.39i 0.836271 + 1.44846i 0.892991 + 0.450074i \(0.148602\pi\)
−0.0567205 + 0.998390i \(0.518064\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 933.478 + 5294.02i 0.170202 + 0.965261i 0.943538 + 0.331265i \(0.107475\pi\)
−0.773336 + 0.633996i \(0.781413\pi\)
\(312\) 0 0
\(313\) 2795.71 + 2345.88i 0.504865 + 0.423632i 0.859318 0.511442i \(-0.170888\pi\)
−0.354453 + 0.935074i \(0.615333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9666.93 + 3518.47i −1.71277 + 0.623398i −0.997175 0.0751153i \(-0.976068\pi\)
−0.715597 + 0.698513i \(0.753845\pi\)
\(318\) 0 0
\(319\) 7.19757 6.03948i 0.00126328 0.00106002i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6968.17 −1.20037
\(324\) 0 0
\(325\) 565.367 0.0964951
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9228.23 7743.40i 1.54641 1.29759i
\(330\) 0 0
\(331\) 807.479 293.898i 0.134088 0.0488039i −0.274105 0.961700i \(-0.588381\pi\)
0.408192 + 0.912896i \(0.366159\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3283.35 + 2755.06i 0.535489 + 0.449329i
\(336\) 0 0
\(337\) 475.226 + 2695.14i 0.0768166 + 0.435648i 0.998824 + 0.0484770i \(0.0154368\pi\)
−0.922008 + 0.387171i \(0.873452\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.9543 + 22.4376i 0.00205723 + 0.00356323i
\(342\) 0 0
\(343\) 3098.65 5367.02i 0.487788 0.844874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9139.24 3326.41i −1.41389 0.514614i −0.481622 0.876379i \(-0.659952\pi\)
−0.932269 + 0.361765i \(0.882174\pi\)
\(348\) 0 0
\(349\) −244.747 + 1388.03i −0.0375387 + 0.212892i −0.997807 0.0661847i \(-0.978917\pi\)
0.960269 + 0.279077i \(0.0900285\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −145.344 + 824.287i −0.0219147 + 0.124284i −0.993803 0.111160i \(-0.964543\pi\)
0.971888 + 0.235444i \(0.0756545\pi\)
\(354\) 0 0
\(355\) 853.594 + 310.683i 0.127617 + 0.0464488i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2517.07 + 4359.69i −0.370044 + 0.640935i −0.989572 0.144040i \(-0.953991\pi\)
0.619528 + 0.784975i \(0.287324\pi\)
\(360\) 0 0
\(361\) −5146.58 8914.13i −0.750339 1.29963i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1026.22 + 5819.97i 0.147163 + 0.834606i
\(366\) 0 0
\(367\) 4798.61 + 4026.51i 0.682521 + 0.572703i 0.916742 0.399480i \(-0.130809\pi\)
−0.234221 + 0.972183i \(0.575254\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 651.351 237.073i 0.0911495 0.0331757i
\(372\) 0 0
\(373\) −9425.34 + 7908.80i −1.30838 + 1.09786i −0.319749 + 0.947502i \(0.603598\pi\)
−0.988632 + 0.150359i \(0.951957\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −384.183 −0.0524840
\(378\) 0 0
\(379\) −4996.58 −0.677195 −0.338598 0.940931i \(-0.609953\pi\)
−0.338598 + 0.940931i \(0.609953\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10520.9 8828.08i 1.40364 1.17779i 0.444177 0.895939i \(-0.353496\pi\)
0.959458 0.281851i \(-0.0909484\pi\)
\(384\) 0 0
\(385\) −21.1216 + 7.68763i −0.00279599 + 0.00101766i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6156.52 + 5165.93i 0.802437 + 0.673324i 0.948790 0.315908i \(-0.102309\pi\)
−0.146353 + 0.989232i \(0.546754\pi\)
\(390\) 0 0
\(391\) −1269.53 7199.87i −0.164202 0.931235i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1087.68 1883.91i −0.138549 0.239974i
\(396\) 0 0
\(397\) 3689.69 6390.72i 0.466448 0.807912i −0.532817 0.846230i \(-0.678867\pi\)
0.999266 + 0.0383180i \(0.0122000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7940.72 + 2890.19i 0.988880 + 0.359923i 0.785286 0.619133i \(-0.212516\pi\)
0.203593 + 0.979056i \(0.434738\pi\)
\(402\) 0 0
\(403\) 183.959 1043.29i 0.0227386 0.128957i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.56277 + 20.2055i −0.000433907 + 0.00246081i
\(408\) 0 0
\(409\) −12312.8 4481.48i −1.48857 0.541796i −0.535500 0.844535i \(-0.679877\pi\)
−0.953073 + 0.302739i \(0.902099\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7103.06 12302.9i 0.846292 1.46582i
\(414\) 0 0
\(415\) −3864.37 6693.28i −0.457095 0.791711i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −978.770 5550.88i −0.114119 0.647204i −0.987182 0.159596i \(-0.948981\pi\)
0.873063 0.487607i \(-0.162130\pi\)
\(420\) 0 0
\(421\) 8502.48 + 7134.42i 0.984288 + 0.825916i 0.984731 0.174084i \(-0.0556964\pi\)
−0.000442623 1.00000i \(0.500141\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3950.71 + 1437.94i −0.450912 + 0.164119i
\(426\) 0 0
\(427\) 1002.30 841.027i 0.113594 0.0953165i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3944.54 0.440839 0.220420 0.975405i \(-0.429257\pi\)
0.220420 + 0.975405i \(0.429257\pi\)
\(432\) 0 0
\(433\) 1909.68 0.211948 0.105974 0.994369i \(-0.466204\pi\)
0.105974 + 0.994369i \(0.466204\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13785.7 11567.5i 1.50906 1.26625i
\(438\) 0 0
\(439\) 7600.00 2766.17i 0.826260 0.300734i 0.105937 0.994373i \(-0.466216\pi\)
0.720323 + 0.693639i \(0.243994\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4879.88 + 4094.71i 0.523364 + 0.439155i 0.865803 0.500386i \(-0.166808\pi\)
−0.342439 + 0.939540i \(0.611253\pi\)
\(444\) 0 0
\(445\) −611.133 3465.91i −0.0651022 0.369213i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6820.97 11814.3i −0.716929 1.24176i −0.962211 0.272306i \(-0.912214\pi\)
0.245281 0.969452i \(-0.421120\pi\)
\(450\) 0 0
\(451\) −14.0659 + 24.3628i −0.00146859 + 0.00254368i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 863.641 + 314.340i 0.0889849 + 0.0323878i
\(456\) 0 0
\(457\) −2344.18 + 13294.5i −0.239947 + 1.36081i 0.591993 + 0.805943i \(0.298341\pi\)
−0.831940 + 0.554865i \(0.812770\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2081.24 + 11803.3i −0.210267 + 1.19248i 0.678666 + 0.734447i \(0.262558\pi\)
−0.888933 + 0.458037i \(0.848553\pi\)
\(462\) 0 0
\(463\) −6171.60 2246.28i −0.619479 0.225472i 0.0131668 0.999913i \(-0.495809\pi\)
−0.632646 + 0.774442i \(0.718031\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2152.08 + 3727.52i −0.213247 + 0.369355i −0.952729 0.303822i \(-0.901737\pi\)
0.739482 + 0.673177i \(0.235071\pi\)
\(468\) 0 0
\(469\) −5986.88 10369.6i −0.589442 1.02094i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.05839 + 11.6737i 0.000200095 + 0.00113479i
\(474\) 0 0
\(475\) −7927.63 6652.07i −0.765778 0.642564i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14016.5 5101.57i 1.33701 0.486632i 0.428141 0.903712i \(-0.359169\pi\)
0.908870 + 0.417080i \(0.136947\pi\)
\(480\) 0 0
\(481\) 642.656 539.252i 0.0609201 0.0511181i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10213.3 −0.956214
\(486\) 0 0
\(487\) 21294.9 1.98144 0.990722 0.135901i \(-0.0433931\pi\)
0.990722 + 0.135901i \(0.0433931\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8618.26 7231.58i 0.792132 0.664677i −0.154140 0.988049i \(-0.549261\pi\)
0.946272 + 0.323372i \(0.104816\pi\)
\(492\) 0 0
\(493\) 2684.63 977.124i 0.245252 0.0892646i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1943.96 1631.17i −0.175449 0.147220i
\(498\) 0 0
\(499\) 137.225 + 778.243i 0.0123107 + 0.0698175i 0.990344 0.138630i \(-0.0442700\pi\)
−0.978033 + 0.208448i \(0.933159\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5970.64 + 10341.5i 0.529260 + 0.916705i 0.999418 + 0.0341229i \(0.0108638\pi\)
−0.470158 + 0.882583i \(0.655803\pi\)
\(504\) 0 0
\(505\) 3451.55 5978.26i 0.304143 0.526791i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10169.7 3701.49i −0.885592 0.322329i −0.141128 0.989991i \(-0.545073\pi\)
−0.744464 + 0.667662i \(0.767295\pi\)
\(510\) 0 0
\(511\) 2866.86 16258.8i 0.248185 1.40752i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1151.82 6532.30i 0.0985539 0.558927i
\(516\) 0 0
\(517\) −104.565 38.0585i −0.00889509 0.00323755i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6195.35 + 10730.7i −0.520966 + 0.902339i 0.478737 + 0.877958i \(0.341095\pi\)
−0.999703 + 0.0243806i \(0.992239\pi\)
\(522\) 0 0
\(523\) −4693.00 8128.52i −0.392372 0.679609i 0.600390 0.799708i \(-0.295012\pi\)
−0.992762 + 0.120099i \(0.961679\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1367.98 + 7758.23i 0.113075 + 0.641278i
\(528\) 0 0
\(529\) 5143.32 + 4315.76i 0.422727 + 0.354710i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1080.91 393.418i 0.0878411 0.0319715i
\(534\) 0 0
\(535\) 8651.35 7259.34i 0.699122 0.586633i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.77366 0.000221651
\(540\) 0 0
\(541\) 1596.07 0.126840 0.0634202 0.997987i \(-0.479799\pi\)
0.0634202 + 0.997987i \(0.479799\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2761.03 2316.78i 0.217008 0.182091i
\(546\) 0 0
\(547\) −9720.40 + 3537.94i −0.759807 + 0.276547i −0.692726 0.721201i \(-0.743591\pi\)
−0.0670804 + 0.997748i \(0.521368\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5387.06 + 4520.28i 0.416509 + 0.349493i
\(552\) 0 0
\(553\) 1055.28 + 5984.77i 0.0811481 + 0.460214i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4716.05 8168.44i −0.358753 0.621379i 0.629000 0.777406i \(-0.283465\pi\)
−0.987753 + 0.156027i \(0.950131\pi\)
\(558\) 0 0
\(559\) 242.345 419.753i 0.0183365 0.0317597i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20619.8 7504.98i −1.54355 0.561807i −0.576658 0.816986i \(-0.695644\pi\)
−0.966894 + 0.255179i \(0.917866\pi\)
\(564\) 0 0
\(565\) 426.038 2416.18i 0.0317231 0.179911i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1838.39 + 10426.1i −0.135447 + 0.768160i 0.839100 + 0.543977i \(0.183082\pi\)
−0.974547 + 0.224182i \(0.928029\pi\)
\(570\) 0 0
\(571\) −2257.85 821.791i −0.165478 0.0602292i 0.257953 0.966158i \(-0.416952\pi\)
−0.423431 + 0.905928i \(0.639174\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5428.93 9403.18i 0.393743 0.681982i
\(576\) 0 0
\(577\) 7640.34 + 13233.5i 0.551251 + 0.954794i 0.998185 + 0.0602273i \(0.0191825\pi\)
−0.446934 + 0.894567i \(0.647484\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3749.26 + 21263.1i 0.267720 + 1.51832i
\(582\) 0 0
\(583\) −4.90478 4.11560i −0.000348431 0.000292368i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12260.7 4462.53i 0.862101 0.313779i 0.127137 0.991885i \(-0.459421\pi\)
0.734964 + 0.678106i \(0.237199\pi\)
\(588\) 0 0
\(589\) −14854.7 + 12464.6i −1.03918 + 0.871978i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16271.5 −1.12680 −0.563400 0.826185i \(-0.690507\pi\)
−0.563400 + 0.826185i \(0.690507\pi\)
\(594\) 0 0
\(595\) −6834.50 −0.470903
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12021.9 10087.6i 0.820038 0.688094i −0.132943 0.991124i \(-0.542443\pi\)
0.952981 + 0.303030i \(0.0979982\pi\)
\(600\) 0 0
\(601\) 9308.20 3387.91i 0.631763 0.229943i −0.00623571 0.999981i \(-0.501985\pi\)
0.637998 + 0.770038i \(0.279763\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6913.73 5801.31i −0.464600 0.389846i
\(606\) 0 0
\(607\) −2791.61 15832.0i −0.186669 1.05865i −0.923792 0.382894i \(-0.874927\pi\)
0.737123 0.675758i \(-0.236184\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2274.98 + 3940.38i 0.150631 + 0.260901i
\(612\) 0 0
\(613\) −2802.75 + 4854.51i −0.184669 + 0.319856i −0.943465 0.331472i \(-0.892455\pi\)
0.758796 + 0.651328i \(0.225788\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3393.93 1235.29i −0.221450 0.0806012i 0.228913 0.973447i \(-0.426483\pi\)
−0.450362 + 0.892846i \(0.648705\pi\)
\(618\) 0 0
\(619\) −3759.85 + 21323.2i −0.244138 + 1.38457i 0.578349 + 0.815789i \(0.303697\pi\)
−0.822487 + 0.568784i \(0.807414\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1707.27 + 9682.42i −0.109792 + 0.622661i
\(624\) 0 0
\(625\) −466.380 169.748i −0.0298483 0.0108639i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3119.28 + 5402.74i −0.197732 + 0.342482i
\(630\) 0 0
\(631\) 4449.63 + 7706.98i 0.280724 + 0.486228i 0.971563 0.236780i \(-0.0760921\pi\)
−0.690839 + 0.723008i \(0.742759\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2231.40 + 12654.9i 0.139449 + 0.790857i
\(636\) 0 0
\(637\) −86.8787 72.8999i −0.00540386 0.00453438i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20334.9 + 7401.30i −1.25301 + 0.456059i −0.881418 0.472337i \(-0.843411\pi\)
−0.371593 + 0.928396i \(0.621188\pi\)
\(642\) 0 0
\(643\) −6779.27 + 5688.49i −0.415783 + 0.348883i −0.826556 0.562854i \(-0.809703\pi\)
0.410773 + 0.911738i \(0.365259\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6445.91 0.391677 0.195838 0.980636i \(-0.437257\pi\)
0.195838 + 0.980636i \(0.437257\pi\)
\(648\) 0 0
\(649\) −131.223 −0.00793678
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2338.71 + 1962.41i −0.140154 + 0.117603i −0.710170 0.704031i \(-0.751382\pi\)
0.570015 + 0.821634i \(0.306937\pi\)
\(654\) 0 0
\(655\) −17244.0 + 6276.32i −1.02867 + 0.374406i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11991.4 10062.0i −0.708828 0.594777i 0.215442 0.976517i \(-0.430881\pi\)
−0.924270 + 0.381739i \(0.875325\pi\)
\(660\) 0 0
\(661\) 5685.36 + 32243.3i 0.334546 + 1.89730i 0.431671 + 0.902031i \(0.357924\pi\)
−0.0971257 + 0.995272i \(0.530965\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8411.56 14569.3i −0.490506 0.849581i
\(666\) 0 0
\(667\) −3689.12 + 6389.74i −0.214158 + 0.370932i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −11.3570 4.13362i −0.000653402 0.000237819i
\(672\) 0 0
\(673\) −959.177 + 5439.76i −0.0549384 + 0.311571i −0.999877 0.0156762i \(-0.995010\pi\)
0.944939 + 0.327247i \(0.106121\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 621.476 3524.57i 0.0352810 0.200089i −0.962072 0.272794i \(-0.912052\pi\)
0.997353 + 0.0727055i \(0.0231633\pi\)
\(678\) 0 0
\(679\) 26811.4 + 9758.57i 1.51536 + 0.551546i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −813.215 + 1408.53i −0.0455590 + 0.0789105i −0.887906 0.460026i \(-0.847840\pi\)
0.842347 + 0.538936i \(0.181174\pi\)
\(684\) 0 0
\(685\) −4994.42 8650.59i −0.278580 0.482514i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 45.4614 + 257.824i 0.00251370 + 0.0142559i
\(690\) 0 0
\(691\) −771.115 647.042i −0.0424524 0.0356218i 0.621315 0.783561i \(-0.286599\pi\)
−0.663767 + 0.747939i \(0.731043\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14164.4 5155.41i 0.773073 0.281376i
\(696\) 0 0
\(697\) −6552.63 + 5498.31i −0.356096 + 0.298800i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30593.6 1.64837 0.824183 0.566324i \(-0.191635\pi\)
0.824183 + 0.566324i \(0.191635\pi\)
\(702\) 0 0
\(703\) −15356.2 −0.823855
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14772.9 + 12395.9i −0.785843 + 0.659401i
\(708\) 0 0
\(709\) 15119.8 5503.15i 0.800896 0.291502i 0.0910385 0.995847i \(-0.470981\pi\)
0.709858 + 0.704345i \(0.248759\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −15585.5 13077.8i −0.818626 0.686909i
\(714\) 0 0
\(715\) −1.47419 8.36055i −7.71072e−5 0.000437296i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13641.9 + 23628.5i 0.707591 + 1.22558i 0.965748 + 0.259481i \(0.0835515\pi\)
−0.258157 + 0.966103i \(0.583115\pi\)
\(720\) 0 0
\(721\) −9265.12 + 16047.7i −0.478573 + 0.828913i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3987.08 + 1451.18i 0.204243 + 0.0743385i
\(726\) 0 0
\(727\) 3276.60 18582.5i 0.167156 0.947989i −0.779657 0.626206i \(-0.784607\pi\)
0.946814 0.321783i \(-0.104282\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −625.883 + 3549.56i −0.0316677 + 0.179597i
\(732\) 0 0
\(733\) −7560.06 2751.64i −0.380951 0.138655i 0.144445 0.989513i \(-0.453860\pi\)
−0.525396 + 0.850858i \(0.676083\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −55.3015 + 95.7850i −0.00276398 + 0.00478736i
\(738\) 0 0
\(739\) 13107.9 + 22703.6i 0.652480 + 1.13013i 0.982519 + 0.186161i \(0.0596045\pi\)
−0.330040 + 0.943967i \(0.607062\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4176.05 23683.6i −0.206197 1.16940i −0.895545 0.444971i \(-0.853214\pi\)
0.689348 0.724431i \(-0.257897\pi\)
\(744\) 0 0
\(745\) 11579.3 + 9716.17i 0.569439 + 0.477816i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −29647.1 + 10790.7i −1.44630 + 0.526412i
\(750\) 0 0
\(751\) 29364.6 24639.8i 1.42680 1.19723i 0.479228 0.877690i \(-0.340917\pi\)
0.947573 0.319538i \(-0.103528\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14630.0 −0.705217
\(756\) 0 0
\(757\) −13077.8 −0.627900 −0.313950 0.949440i \(-0.601652\pi\)
−0.313950 + 0.949440i \(0.601652\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23600.6 + 19803.3i −1.12421 + 0.943322i −0.998809 0.0487844i \(-0.984465\pi\)
−0.125398 + 0.992106i \(0.540021\pi\)
\(762\) 0 0
\(763\) −9461.70 + 3443.78i −0.448934 + 0.163399i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4110.29 + 3448.94i 0.193499 + 0.162365i
\(768\) 0 0
\(769\) −2655.63 15060.8i −0.124531 0.706251i −0.981585 0.191024i \(-0.938819\pi\)
0.857054 0.515226i \(-0.172292\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2757.85 + 4776.74i 0.128322 + 0.222260i 0.923027 0.384736i \(-0.125708\pi\)
−0.794705 + 0.606996i \(0.792374\pi\)
\(774\) 0 0
\(775\) −5849.95 + 10132.4i −0.271144 + 0.469635i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −19785.5 7201.35i −0.910001 0.331213i
\(780\) 0 0
\(781\) −4.07042 + 23.0845i −0.000186493 + 0.00105765i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3719.09 21092.0i 0.169096 0.958989i
\(786\) 0 0
\(787\) 7795.37 + 2837.28i 0.353081 + 0.128511i 0.512471 0.858705i \(-0.328730\pi\)
−0.159389 + 0.987216i \(0.550953\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3427.00 + 5935.74i