Properties

Label 324.4.e.i.217.1
Level $324$
Weight $4$
Character 324.217
Analytic conductor $19.117$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,4,Mod(109,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.109"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 217.1
Root \(-1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 324.217
Dual form 324.4.e.i.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-10.5353 - 18.2477i) q^{5} +(15.7477 - 27.2759i) q^{7} +(-18.3296 + 31.7477i) q^{11} +(-28.2477 - 48.9265i) q^{13} -35.8010 q^{17} +83.4955 q^{19} +(34.7762 + 60.2341i) q^{23} +(-159.486 + 276.238i) q^{25} +(-40.8541 + 70.7614i) q^{29} +(36.4864 + 63.1962i) q^{31} -663.630 q^{35} -25.4682 q^{37} +(-199.742 - 345.964i) q^{41} +(41.7295 - 72.2777i) q^{43} +(-155.885 + 270.000i) q^{47} +(-324.482 - 562.019i) q^{49} -4.09919 q^{53} +772.432 q^{55} +(-176.097 - 305.009i) q^{59} +(-1.77046 + 3.06652i) q^{61} +(-595.198 + 1030.91i) q^{65} +(-246.216 - 426.458i) q^{67} -154.502 q^{71} +305.000 q^{73} +(577.298 + 999.909i) q^{77} +(-335.693 + 581.438i) q^{79} +(646.850 - 1120.38i) q^{83} +(377.175 + 653.286i) q^{85} -1183.91 q^{89} -1779.35 q^{91} +(-879.652 - 1523.60i) q^{95} +(-307.991 + 533.456i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{7} - 116 q^{13} + 448 q^{19} - 616 q^{25} - 368 q^{31} + 1336 q^{37} - 656 q^{43} - 1716 q^{49} + 2880 q^{55} - 1004 q^{61} - 320 q^{67} + 2440 q^{73} + 64 q^{79} - 612 q^{85} - 6976 q^{91}+ \cdots - 2024 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −10.5353 18.2477i −0.942309 1.63213i −0.761052 0.648690i \(-0.775317\pi\)
−0.181256 0.983436i \(-0.558016\pi\)
\(6\) 0 0
\(7\) 15.7477 27.2759i 0.850297 1.47276i −0.0306428 0.999530i \(-0.509755\pi\)
0.880940 0.473228i \(-0.156911\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −18.3296 + 31.7477i −0.502415 + 0.870209i 0.497581 + 0.867418i \(0.334222\pi\)
−0.999996 + 0.00279137i \(0.999111\pi\)
\(12\) 0 0
\(13\) −28.2477 48.9265i −0.602655 1.04383i −0.992417 0.122913i \(-0.960776\pi\)
0.389763 0.920915i \(-0.372557\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −35.8010 −0.510765 −0.255383 0.966840i \(-0.582201\pi\)
−0.255383 + 0.966840i \(0.582201\pi\)
\(18\) 0 0
\(19\) 83.4955 1.00817 0.504083 0.863655i \(-0.331830\pi\)
0.504083 + 0.863655i \(0.331830\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 34.7762 + 60.2341i 0.315275 + 0.546073i 0.979496 0.201464i \(-0.0645698\pi\)
−0.664221 + 0.747537i \(0.731236\pi\)
\(24\) 0 0
\(25\) −159.486 + 276.238i −1.27589 + 2.20991i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −40.8541 + 70.7614i −0.261601 + 0.453105i −0.966667 0.256035i \(-0.917584\pi\)
0.705067 + 0.709141i \(0.250917\pi\)
\(30\) 0 0
\(31\) 36.4864 + 63.1962i 0.211392 + 0.366141i 0.952150 0.305630i \(-0.0988671\pi\)
−0.740759 + 0.671771i \(0.765534\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −663.630 −3.20497
\(36\) 0 0
\(37\) −25.4682 −0.113161 −0.0565803 0.998398i \(-0.518020\pi\)
−0.0565803 + 0.998398i \(0.518020\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −199.742 345.964i −0.760841 1.31782i −0.942417 0.334439i \(-0.891453\pi\)
0.181576 0.983377i \(-0.441880\pi\)
\(42\) 0 0
\(43\) 41.7295 72.2777i 0.147993 0.256331i −0.782493 0.622660i \(-0.786052\pi\)
0.930486 + 0.366329i \(0.119385\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −155.885 + 270.000i −0.483789 + 0.837948i −0.999827 0.0186183i \(-0.994073\pi\)
0.516037 + 0.856566i \(0.327407\pi\)
\(48\) 0 0
\(49\) −324.482 562.019i −0.946011 1.63854i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.09919 −0.0106239 −0.00531196 0.999986i \(-0.501691\pi\)
−0.00531196 + 0.999986i \(0.501691\pi\)
\(54\) 0 0
\(55\) 772.432 1.89372
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −176.097 305.009i −0.388574 0.673031i 0.603684 0.797224i \(-0.293699\pi\)
−0.992258 + 0.124193i \(0.960366\pi\)
\(60\) 0 0
\(61\) −1.77046 + 3.06652i −0.00371613 + 0.00643652i −0.867877 0.496778i \(-0.834516\pi\)
0.864161 + 0.503215i \(0.167850\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −595.198 + 1030.91i −1.13577 + 1.96722i
\(66\) 0 0
\(67\) −246.216 426.458i −0.448956 0.777615i 0.549362 0.835584i \(-0.314871\pi\)
−0.998318 + 0.0579695i \(0.981537\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −154.502 −0.258253 −0.129126 0.991628i \(-0.541217\pi\)
−0.129126 + 0.991628i \(0.541217\pi\)
\(72\) 0 0
\(73\) 305.000 0.489008 0.244504 0.969648i \(-0.421375\pi\)
0.244504 + 0.969648i \(0.421375\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 577.298 + 999.909i 0.854405 + 1.47987i
\(78\) 0 0
\(79\) −335.693 + 581.438i −0.478081 + 0.828061i −0.999684 0.0251271i \(-0.992001\pi\)
0.521603 + 0.853188i \(0.325334\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 646.850 1120.38i 0.855434 1.48166i −0.0208078 0.999783i \(-0.506624\pi\)
0.876242 0.481872i \(-0.160043\pi\)
\(84\) 0 0
\(85\) 377.175 + 653.286i 0.481298 + 0.833633i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1183.91 −1.41005 −0.705026 0.709181i \(-0.749065\pi\)
−0.705026 + 0.709181i \(0.749065\pi\)
\(90\) 0 0
\(91\) −1779.35 −2.04974
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −879.652 1523.60i −0.950004 1.64546i
\(96\) 0 0
\(97\) −307.991 + 533.456i −0.322389 + 0.558394i −0.980980 0.194107i \(-0.937819\pi\)
0.658591 + 0.752501i \(0.271153\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 593.744 1028.40i 0.584948 1.01316i −0.409934 0.912115i \(-0.634448\pi\)
0.994882 0.101045i \(-0.0322185\pi\)
\(102\) 0 0
\(103\) 693.459 + 1201.11i 0.663384 + 1.14901i 0.979721 + 0.200368i \(0.0642137\pi\)
−0.316337 + 0.948647i \(0.602453\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 678.360 0.612893 0.306447 0.951888i \(-0.400860\pi\)
0.306447 + 0.951888i \(0.400860\pi\)
\(108\) 0 0
\(109\) 945.432 0.830788 0.415394 0.909641i \(-0.363644\pi\)
0.415394 + 0.909641i \(0.363644\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 993.300 + 1720.45i 0.826918 + 1.43226i 0.900444 + 0.434971i \(0.143241\pi\)
−0.0735260 + 0.997293i \(0.523425\pi\)
\(114\) 0 0
\(115\) 732.757 1269.17i 0.594173 1.02914i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −563.784 + 976.502i −0.434302 + 0.752234i
\(120\) 0 0
\(121\) −6.44545 11.1638i −0.00484256 0.00838756i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4087.13 2.92451
\(126\) 0 0
\(127\) −1496.54 −1.04564 −0.522821 0.852442i \(-0.675120\pi\)
−0.522821 + 0.852442i \(0.675120\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −42.6413 73.8568i −0.0284396 0.0492588i 0.851455 0.524427i \(-0.175720\pi\)
−0.879895 + 0.475168i \(0.842387\pi\)
\(132\) 0 0
\(133\) 1314.86 2277.41i 0.857242 1.48479i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 449.753 778.995i 0.280475 0.485796i −0.691027 0.722829i \(-0.742842\pi\)
0.971502 + 0.237033i \(0.0761748\pi\)
\(138\) 0 0
\(139\) −1000.30 1732.58i −0.610394 1.05723i −0.991174 0.132567i \(-0.957678\pi\)
0.380780 0.924666i \(-0.375655\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2071.07 1.21113
\(144\) 0 0
\(145\) 1721.65 0.986034
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 737.186 + 1276.84i 0.405320 + 0.702034i 0.994359 0.106071i \(-0.0338269\pi\)
−0.589039 + 0.808105i \(0.700494\pi\)
\(150\) 0 0
\(151\) 546.486 946.542i 0.294519 0.510123i −0.680354 0.732884i \(-0.738174\pi\)
0.974873 + 0.222761i \(0.0715071\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 768.792 1331.59i 0.398393 0.690036i
\(156\) 0 0
\(157\) −270.257 468.099i −0.137381 0.237951i 0.789123 0.614235i \(-0.210535\pi\)
−0.926505 + 0.376284i \(0.877202\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2190.58 1.07231
\(162\) 0 0
\(163\) −3251.60 −1.56248 −0.781242 0.624228i \(-0.785414\pi\)
−0.781242 + 0.624228i \(0.785414\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −854.291 1479.67i −0.395850 0.685633i 0.597359 0.801974i \(-0.296217\pi\)
−0.993209 + 0.116341i \(0.962883\pi\)
\(168\) 0 0
\(169\) −497.368 + 861.467i −0.226385 + 0.392111i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1314.87 2277.42i 0.577847 1.00086i −0.417879 0.908503i \(-0.637227\pi\)
0.995726 0.0923571i \(-0.0294401\pi\)
\(174\) 0 0
\(175\) 5023.10 + 8700.26i 2.16977 + 3.75816i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4532.77 −1.89271 −0.946354 0.323131i \(-0.895265\pi\)
−0.946354 + 0.323131i \(0.895265\pi\)
\(180\) 0 0
\(181\) −2327.65 −0.955874 −0.477937 0.878394i \(-0.658615\pi\)
−0.477937 + 0.878394i \(0.658615\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 268.316 + 464.736i 0.106632 + 0.184692i
\(186\) 0 0
\(187\) 656.216 1136.60i 0.256616 0.444473i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 615.840 1066.67i 0.233302 0.404090i −0.725476 0.688247i \(-0.758380\pi\)
0.958778 + 0.284157i \(0.0917137\pi\)
\(192\) 0 0
\(193\) −1071.99 1856.73i −0.399810 0.692491i 0.593892 0.804544i \(-0.297590\pi\)
−0.993702 + 0.112054i \(0.964257\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1984.55 0.717733 0.358866 0.933389i \(-0.383163\pi\)
0.358866 + 0.933389i \(0.383163\pi\)
\(198\) 0 0
\(199\) −224.400 −0.0799362 −0.0399681 0.999201i \(-0.512726\pi\)
−0.0399681 + 0.999201i \(0.512726\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1286.72 + 2228.66i 0.444876 + 0.770549i
\(204\) 0 0
\(205\) −4208.70 + 7289.68i −1.43389 + 2.48358i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1530.43 + 2650.79i −0.506519 + 0.877316i
\(210\) 0 0
\(211\) −1892.61 3278.10i −0.617501 1.06954i −0.989940 0.141487i \(-0.954812\pi\)
0.372439 0.928057i \(-0.378522\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1758.54 −0.557820
\(216\) 0 0
\(217\) 2298.31 0.718983
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1011.30 + 1751.62i 0.307815 + 0.533151i
\(222\) 0 0
\(223\) 2704.16 4683.74i 0.812036 1.40649i −0.0994007 0.995047i \(-0.531693\pi\)
0.911437 0.411440i \(-0.134974\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2244.95 3888.37i 0.656400 1.13692i −0.325141 0.945666i \(-0.605412\pi\)
0.981541 0.191253i \(-0.0612550\pi\)
\(228\) 0 0
\(229\) −1558.50 2699.40i −0.449731 0.778957i 0.548637 0.836061i \(-0.315147\pi\)
−0.998368 + 0.0571034i \(0.981814\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1675.60 0.471124 0.235562 0.971859i \(-0.424307\pi\)
0.235562 + 0.971859i \(0.424307\pi\)
\(234\) 0 0
\(235\) 6569.18 1.82352
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2875.86 4981.13i −0.778342 1.34813i −0.932897 0.360144i \(-0.882728\pi\)
0.154555 0.987984i \(-0.450606\pi\)
\(240\) 0 0
\(241\) 902.705 1563.53i 0.241279 0.417908i −0.719800 0.694182i \(-0.755766\pi\)
0.961079 + 0.276274i \(0.0890997\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6837.05 + 11842.1i −1.78287 + 3.08802i
\(246\) 0 0
\(247\) −2358.56 4085.14i −0.607576 1.05235i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 32.6596 0.00821297 0.00410649 0.999992i \(-0.498693\pi\)
0.00410649 + 0.999992i \(0.498693\pi\)
\(252\) 0 0
\(253\) −2549.73 −0.633597
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 574.128 + 994.418i 0.139351 + 0.241362i 0.927251 0.374440i \(-0.122165\pi\)
−0.787900 + 0.615803i \(0.788832\pi\)
\(258\) 0 0
\(259\) −401.066 + 694.667i −0.0962202 + 0.166658i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2317.01 + 4013.17i −0.543242 + 0.940923i 0.455473 + 0.890250i \(0.349470\pi\)
−0.998715 + 0.0506737i \(0.983863\pi\)
\(264\) 0 0
\(265\) 43.1863 + 74.8009i 0.0100110 + 0.0173396i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8134.42 −1.84373 −0.921866 0.387508i \(-0.873336\pi\)
−0.921866 + 0.387508i \(0.873336\pi\)
\(270\) 0 0
\(271\) 6891.35 1.54472 0.772361 0.635184i \(-0.219076\pi\)
0.772361 + 0.635184i \(0.219076\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5846.63 10126.7i −1.28205 2.22058i
\(276\) 0 0
\(277\) 910.891 1577.71i 0.197582 0.342222i −0.750162 0.661254i \(-0.770025\pi\)
0.947744 + 0.319032i \(0.103358\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2270.60 3932.80i 0.482039 0.834915i −0.517749 0.855533i \(-0.673230\pi\)
0.999787 + 0.0206174i \(0.00656319\pi\)
\(282\) 0 0
\(283\) 1378.97 + 2388.45i 0.289652 + 0.501691i 0.973727 0.227720i \(-0.0731272\pi\)
−0.684075 + 0.729412i \(0.739794\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12581.9 −2.58777
\(288\) 0 0
\(289\) −3631.29 −0.739119
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −834.532 1445.45i −0.166396 0.288206i 0.770754 0.637132i \(-0.219880\pi\)
−0.937150 + 0.348927i \(0.886546\pi\)
\(294\) 0 0
\(295\) −3710.48 + 6426.74i −0.732314 + 1.26840i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1964.70 3402.95i 0.380004 0.658187i
\(300\) 0 0
\(301\) −1314.29 2276.42i −0.251676 0.435916i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 74.6094 0.0140069
\(306\) 0 0
\(307\) −7500.21 −1.39433 −0.697165 0.716910i \(-0.745556\pi\)
−0.697165 + 0.716910i \(0.745556\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4243.26 + 7349.54i 0.773676 + 1.34005i 0.935536 + 0.353232i \(0.114917\pi\)
−0.161860 + 0.986814i \(0.551749\pi\)
\(312\) 0 0
\(313\) −4682.83 + 8110.90i −0.845653 + 1.46471i 0.0394004 + 0.999224i \(0.487455\pi\)
−0.885053 + 0.465490i \(0.845878\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 252.944 438.111i 0.0448162 0.0776239i −0.842747 0.538310i \(-0.819063\pi\)
0.887563 + 0.460686i \(0.152396\pi\)
\(318\) 0 0
\(319\) −1497.67 2594.05i −0.262864 0.455294i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2989.22 −0.514937
\(324\) 0 0
\(325\) 18020.5 3.07569
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4909.66 + 8503.77i 0.822730 + 1.42501i
\(330\) 0 0
\(331\) −3299.26 + 5714.48i −0.547866 + 0.948931i 0.450555 + 0.892749i \(0.351226\pi\)
−0.998421 + 0.0561825i \(0.982107\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5187.93 + 8985.76i −0.846110 + 1.46551i
\(336\) 0 0
\(337\) 1806.21 + 3128.45i 0.291960 + 0.505689i 0.974273 0.225371i \(-0.0723593\pi\)
−0.682313 + 0.731060i \(0.739026\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2675.12 −0.424826
\(342\) 0 0
\(343\) −9636.46 −1.51697
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1304.78 2259.95i −0.201857 0.349626i 0.747270 0.664521i \(-0.231364\pi\)
−0.949127 + 0.314894i \(0.898031\pi\)
\(348\) 0 0
\(349\) −338.764 + 586.756i −0.0519587 + 0.0899952i −0.890835 0.454327i \(-0.849880\pi\)
0.838876 + 0.544322i \(0.183213\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −774.941 + 1342.24i −0.116844 + 0.202380i −0.918515 0.395385i \(-0.870611\pi\)
0.801671 + 0.597765i \(0.203944\pi\)
\(354\) 0 0
\(355\) 1627.72 + 2819.30i 0.243354 + 0.421501i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8381.31 1.23217 0.616084 0.787680i \(-0.288718\pi\)
0.616084 + 0.787680i \(0.288718\pi\)
\(360\) 0 0
\(361\) 112.491 0.0164005
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3213.28 5565.56i −0.460796 0.798122i
\(366\) 0 0
\(367\) 2102.91 3642.35i 0.299104 0.518063i −0.676827 0.736142i \(-0.736646\pi\)
0.975931 + 0.218079i \(0.0699789\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −64.5530 + 111.809i −0.00903348 + 0.0156465i
\(372\) 0 0
\(373\) −4006.42 6939.32i −0.556151 0.963282i −0.997813 0.0661007i \(-0.978944\pi\)
0.441662 0.897182i \(-0.354389\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4616.14 0.630619
\(378\) 0 0
\(379\) 8049.26 1.09093 0.545466 0.838133i \(-0.316353\pi\)
0.545466 + 0.838133i \(0.316353\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1613.73 + 2795.07i 0.215295 + 0.372902i 0.953364 0.301824i \(-0.0975954\pi\)
−0.738069 + 0.674725i \(0.764262\pi\)
\(384\) 0 0
\(385\) 12164.0 21068.7i 1.61023 2.78899i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4455.97 7717.96i 0.580788 1.00595i −0.414598 0.910004i \(-0.636078\pi\)
0.995386 0.0959494i \(-0.0305887\pi\)
\(390\) 0 0
\(391\) −1245.02 2156.44i −0.161032 0.278915i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 14146.6 1.80200
\(396\) 0 0
\(397\) 2972.50 0.375783 0.187891 0.982190i \(-0.439835\pi\)
0.187891 + 0.982190i \(0.439835\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6136.59 10628.9i −0.764206 1.32364i −0.940665 0.339336i \(-0.889798\pi\)
0.176459 0.984308i \(-0.443536\pi\)
\(402\) 0 0
\(403\) 2061.31 3570.30i 0.254792 0.441313i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 466.820 808.557i 0.0568536 0.0984734i
\(408\) 0 0
\(409\) 1124.65 + 1947.95i 0.135967 + 0.235501i 0.925966 0.377606i \(-0.123253\pi\)
−0.790000 + 0.613107i \(0.789919\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −11092.5 −1.32161
\(414\) 0 0
\(415\) −27259.1 −3.22433
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4730.46 8193.40i −0.551547 0.955307i −0.998163 0.0605814i \(-0.980705\pi\)
0.446617 0.894725i \(-0.352629\pi\)
\(420\) 0 0
\(421\) −767.457 + 1329.27i −0.0888446 + 0.153883i −0.907023 0.421081i \(-0.861651\pi\)
0.818178 + 0.574964i \(0.194984\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5709.77 9889.60i 0.651681 1.12874i
\(426\) 0 0
\(427\) 55.7613 + 96.5814i 0.00631962 + 0.0109459i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3991.88 0.446130 0.223065 0.974804i \(-0.428394\pi\)
0.223065 + 0.974804i \(0.428394\pi\)
\(432\) 0 0
\(433\) −3058.08 −0.339404 −0.169702 0.985495i \(-0.554281\pi\)
−0.169702 + 0.985495i \(0.554281\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2903.65 + 5029.27i 0.317850 + 0.550533i
\(438\) 0 0
\(439\) 7381.89 12785.8i 0.802548 1.39005i −0.115387 0.993321i \(-0.536811\pi\)
0.917934 0.396733i \(-0.129856\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5782.33 + 10015.3i −0.620150 + 1.07413i 0.369307 + 0.929307i \(0.379595\pi\)
−0.989457 + 0.144824i \(0.953738\pi\)
\(444\) 0 0
\(445\) 12472.9 + 21603.7i 1.32870 + 2.30138i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17266.9 1.81486 0.907432 0.420198i \(-0.138039\pi\)
0.907432 + 0.420198i \(0.138039\pi\)
\(450\) 0 0
\(451\) 14644.7 1.52903
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 18746.0 + 32469.1i 1.93149 + 3.34544i
\(456\) 0 0
\(457\) −6350.76 + 10999.8i −0.650057 + 1.12593i 0.333052 + 0.942909i \(0.391922\pi\)
−0.983109 + 0.183023i \(0.941412\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8249.92 14289.3i 0.833486 1.44364i −0.0617714 0.998090i \(-0.519675\pi\)
0.895257 0.445550i \(-0.146992\pi\)
\(462\) 0 0
\(463\) 682.418 + 1181.98i 0.0684982 + 0.118642i 0.898240 0.439504i \(-0.144846\pi\)
−0.829742 + 0.558147i \(0.811513\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10333.5 1.02393 0.511966 0.859006i \(-0.328917\pi\)
0.511966 + 0.859006i \(0.328917\pi\)
\(468\) 0 0
\(469\) −15509.4 −1.52698
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1529.77 + 2649.64i 0.148708 + 0.257570i
\(474\) 0 0
\(475\) −13316.4 + 23064.7i −1.28631 + 2.22796i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6094.31 10555.7i 0.581328 1.00689i −0.413994 0.910280i \(-0.635867\pi\)
0.995322 0.0966103i \(-0.0308001\pi\)
\(480\) 0 0
\(481\) 719.418 + 1246.07i 0.0681968 + 0.118120i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12979.1 1.21516
\(486\) 0 0
\(487\) 9816.46 0.913401 0.456701 0.889620i \(-0.349031\pi\)
0.456701 + 0.889620i \(0.349031\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1732.01 2999.93i −0.159195 0.275733i 0.775384 0.631490i \(-0.217556\pi\)
−0.934578 + 0.355757i \(0.884223\pi\)
\(492\) 0 0
\(493\) 1462.62 2533.33i 0.133616 0.231430i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2433.05 + 4214.16i −0.219592 + 0.380344i
\(498\) 0 0
\(499\) 6183.45 + 10710.1i 0.554728 + 0.960817i 0.997925 + 0.0643928i \(0.0205111\pi\)
−0.443196 + 0.896424i \(0.646156\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6249.98 −0.554021 −0.277011 0.960867i \(-0.589344\pi\)
−0.277011 + 0.960867i \(0.589344\pi\)
\(504\) 0 0
\(505\) −25021.2 −2.20481
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3740.71 + 6479.10i 0.325745 + 0.564207i 0.981663 0.190625i \(-0.0610516\pi\)
−0.655918 + 0.754832i \(0.727718\pi\)
\(510\) 0 0
\(511\) 4803.06 8319.14i 0.415802 0.720190i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14611.6 25308.1i 1.25022 2.16545i
\(516\) 0 0
\(517\) −5714.59 9897.96i −0.486127 0.841996i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17700.1 −1.48840 −0.744200 0.667957i \(-0.767169\pi\)
−0.744200 + 0.667957i \(0.767169\pi\)
\(522\) 0 0
\(523\) 21707.9 1.81495 0.907475 0.420107i \(-0.138007\pi\)
0.907475 + 0.420107i \(0.138007\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1306.25 2262.49i −0.107972 0.187012i
\(528\) 0 0
\(529\) 3664.74 6347.51i 0.301203 0.521699i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −11284.5 + 19545.4i −0.917049 + 1.58838i
\(534\) 0 0
\(535\) −7146.75 12378.5i −0.577534 1.00032i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23790.4 1.90116
\(540\) 0 0
\(541\) −19282.0 −1.53235 −0.766173 0.642634i \(-0.777841\pi\)
−0.766173 + 0.642634i \(0.777841\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9960.44 17252.0i −0.782859 1.35595i
\(546\) 0 0
\(547\) 3892.26 6741.60i 0.304243 0.526965i −0.672849 0.739780i \(-0.734930\pi\)
0.977093 + 0.212815i \(0.0682630\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3411.13 + 5908.25i −0.263737 + 0.456806i
\(552\) 0 0
\(553\) 10572.8 + 18312.6i 0.813023 + 1.40820i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8556.03 0.650863 0.325431 0.945566i \(-0.394490\pi\)
0.325431 + 0.945566i \(0.394490\pi\)
\(558\) 0 0
\(559\) −4715.06 −0.356754
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1481.61 + 2566.23i 0.110910 + 0.192102i 0.916138 0.400864i \(-0.131290\pi\)
−0.805227 + 0.592966i \(0.797957\pi\)
\(564\) 0 0
\(565\) 20929.5 36250.9i 1.55842 2.69927i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7242.04 + 12543.6i −0.533571 + 0.924172i 0.465660 + 0.884964i \(0.345817\pi\)
−0.999231 + 0.0392086i \(0.987516\pi\)
\(570\) 0 0
\(571\) −8324.90 14419.1i −0.610133 1.05678i −0.991217 0.132242i \(-0.957782\pi\)
0.381084 0.924540i \(-0.375551\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −22185.3 −1.60903
\(576\) 0 0
\(577\) 14355.4 1.03574 0.517872 0.855458i \(-0.326724\pi\)
0.517872 + 0.855458i \(0.326724\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −20372.8 35286.8i −1.45475 2.51969i
\(582\) 0 0
\(583\) 75.1364 130.140i 0.00533762 0.00924502i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4003.11 6933.59i 0.281475 0.487530i −0.690273 0.723549i \(-0.742510\pi\)
0.971748 + 0.236019i \(0.0758429\pi\)
\(588\) 0 0
\(589\) 3046.45 + 5276.60i 0.213118 + 0.369131i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −17866.7 −1.23726 −0.618632 0.785681i \(-0.712313\pi\)
−0.618632 + 0.785681i \(0.712313\pi\)
\(594\) 0 0
\(595\) 23758.6 1.63699
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7906.02 + 13693.6i 0.539284 + 0.934068i 0.998943 + 0.0459720i \(0.0146385\pi\)
−0.459658 + 0.888096i \(0.652028\pi\)
\(600\) 0 0
\(601\) −11455.2 + 19840.9i −0.777481 + 1.34664i 0.155909 + 0.987771i \(0.450169\pi\)
−0.933390 + 0.358865i \(0.883164\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −135.810 + 235.230i −0.00912638 + 0.0158073i
\(606\) 0 0
\(607\) −8.36137 14.4823i −0.000559107 0.000968401i 0.865746 0.500484i \(-0.166845\pi\)
−0.866305 + 0.499516i \(0.833511\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17613.5 1.16623
\(612\) 0 0
\(613\) 162.745 0.0107230 0.00536152 0.999986i \(-0.498293\pi\)
0.00536152 + 0.999986i \(0.498293\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4446.59 7701.72i −0.290134 0.502528i 0.683707 0.729757i \(-0.260367\pi\)
−0.973841 + 0.227229i \(0.927033\pi\)
\(618\) 0 0
\(619\) −10778.8 + 18669.5i −0.699898 + 1.21226i 0.268603 + 0.963251i \(0.413438\pi\)
−0.968501 + 0.249009i \(0.919895\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −18644.0 + 32292.3i −1.19896 + 2.07667i
\(624\) 0 0
\(625\) −23123.5 40051.1i −1.47990 2.56327i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 911.785 0.0577985
\(630\) 0 0
\(631\) 3085.90 0.194687 0.0973437 0.995251i \(-0.468965\pi\)
0.0973437 + 0.995251i \(0.468965\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15766.6 + 27308.5i 0.985317 + 1.70662i
\(636\) 0 0
\(637\) −18331.7 + 31751.5i −1.14024 + 1.97495i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6283.27 10882.9i 0.387167 0.670593i −0.604900 0.796301i \(-0.706787\pi\)
0.992067 + 0.125708i \(0.0401203\pi\)
\(642\) 0 0
\(643\) −438.114 758.835i −0.0268702 0.0465405i 0.852278 0.523090i \(-0.175221\pi\)
−0.879148 + 0.476549i \(0.841887\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11125.4 −0.676022 −0.338011 0.941142i \(-0.609754\pi\)
−0.338011 + 0.941142i \(0.609754\pi\)
\(648\) 0 0
\(649\) 12911.1 0.780903
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10330.4 + 17892.8i 0.619080 + 1.07228i 0.989654 + 0.143475i \(0.0458278\pi\)
−0.370574 + 0.928803i \(0.620839\pi\)
\(654\) 0 0
\(655\) −898.479 + 1556.21i −0.0535977 + 0.0928340i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1826.87 3164.24i 0.107989 0.187043i −0.806966 0.590597i \(-0.798892\pi\)
0.914956 + 0.403555i \(0.132225\pi\)
\(660\) 0 0
\(661\) 6670.38 + 11553.4i 0.392508 + 0.679844i 0.992780 0.119953i \(-0.0382742\pi\)
−0.600272 + 0.799796i \(0.704941\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −55410.1 −3.23114
\(666\) 0 0
\(667\) −5683.00 −0.329905
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −64.9034 112.416i −0.00373408 0.00646761i
\(672\) 0 0
\(673\) 2110.98 3656.32i 0.120910 0.209422i −0.799217 0.601043i \(-0.794752\pi\)
0.920127 + 0.391621i \(0.128086\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9341.03 16179.1i 0.530288 0.918485i −0.469088 0.883152i \(-0.655417\pi\)
0.999376 0.0353338i \(-0.0112494\pi\)
\(678\) 0 0
\(679\) 9700.31 + 16801.4i 0.548253 + 0.949602i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18674.1 −1.04619 −0.523093 0.852275i \(-0.675222\pi\)
−0.523093 + 0.852275i \(0.675222\pi\)
\(684\) 0 0
\(685\) −18953.2 −1.05717
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 115.793 + 200.559i 0.00640255 + 0.0110895i
\(690\) 0 0
\(691\) −17764.2 + 30768.4i −0.977974 + 1.69390i −0.308227 + 0.951313i \(0.599735\pi\)
−0.669748 + 0.742589i \(0.733598\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21077.1 + 36506.6i −1.15036 + 1.99248i
\(696\) 0 0
\(697\) 7150.96 + 12385.8i 0.388611 + 0.673094i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −13722.2 −0.739346 −0.369673 0.929162i \(-0.620530\pi\)
−0.369673 + 0.929162i \(0.620530\pi\)
\(702\) 0 0
\(703\) −2126.48 −0.114085
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −18700.2 32389.8i −0.994760 1.72297i
\(708\) 0 0
\(709\) −1476.42 + 2557.23i −0.0782059 + 0.135457i −0.902476 0.430740i \(-0.858252\pi\)
0.824270 + 0.566197i \(0.191586\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2537.71 + 4395.45i −0.133293 + 0.230871i
\(714\) 0 0
\(715\) −21819.4 37792.4i −1.14126 1.97672i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8101.57 −0.420219 −0.210109 0.977678i \(-0.567382\pi\)
−0.210109 + 0.977678i \(0.567382\pi\)
\(720\) 0 0
\(721\) 43681.6 2.25629
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −13031.3 22570.9i −0.667547 1.15623i
\(726\) 0 0
\(727\) −1700.22 + 2944.87i −0.0867368 + 0.150233i −0.906130 0.422999i \(-0.860977\pi\)
0.819393 + 0.573232i \(0.194311\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1493.96 + 2587.61i −0.0755896 + 0.130925i
\(732\) 0 0
\(733\) 10207.0 + 17679.0i 0.514330 + 0.890845i 0.999862 + 0.0166265i \(0.00529264\pi\)
−0.485532 + 0.874219i \(0.661374\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18052.1 0.902250
\(738\) 0 0
\(739\) −9505.82 −0.473176 −0.236588 0.971610i \(-0.576029\pi\)
−0.236588 + 0.971610i \(0.576029\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.5803 + 32.1820i 0.000917422 + 0.00158902i 0.866484 0.499205i \(-0.166375\pi\)
−0.865566 + 0.500794i \(0.833041\pi\)
\(744\) 0 0
\(745\) 15533.0 26903.9i 0.763872 1.32307i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10682.6 18502.9i 0.521141 0.902643i
\(750\) 0 0
\(751\) −5088.90 8814.24i −0.247266 0.428277i 0.715500 0.698612i \(-0.246199\pi\)
−0.962766 + 0.270335i \(0.912865\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −23029.7 −1.11011
\(756\) 0 0
\(757\) 17129.3 0.822425 0.411213 0.911539i \(-0.365105\pi\)
0.411213 + 0.911539i \(0.365105\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11468.9 19864.7i −0.546317 0.946248i −0.998523 0.0543348i \(-0.982696\pi\)
0.452206 0.891913i \(-0.350637\pi\)
\(762\) 0 0
\(763\) 14888.4 25787.5i 0.706417 1.22355i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9948.68 + 17231.6i −0.468352 + 0.811210i
\(768\) 0 0
\(769\) −2635.08 4564.09i −0.123567 0.214025i 0.797605 0.603181i \(-0.206100\pi\)
−0.921172 + 0.389156i \(0.872767\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 31.1847 0.00145102 0.000725509 1.00000i \(-0.499769\pi\)
0.000725509 1.00000i \(0.499769\pi\)
\(774\) 0 0
\(775\) −23276.3 −1.07885
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16677.6 28886.4i −0.767055 1.32858i
\(780\) 0 0
\(781\) 2831.95 4905.07i 0.129750 0.224734i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5694.49 + 9863.15i −0.258911 + 0.448447i
\(786\) 0 0
\(787\) −11531.6 19973.3i −0.522307 0.904663i −0.999663 0.0259526i \(-0.991738\pi\)
0.477356 0.878710i \(-0.341595\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 62568.8 2.81251
\(792\) 0 0
\(793\) 200.045 0.00895816
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17022.0 + 29483.1i 0.756527 + 1.31034i 0.944612 + 0.328190i \(0.106439\pi\)
−0.188085 + 0.982153i \(0.560228\pi\)
\(798\) 0 0
\(799\) 5580.82 9666.26i 0.247103 0.427995i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5590.52 + 9683.06i −0.245685 + 0.425539i
\(804\) 0 0
\(805\) −23078.5 39973.1i −1.01045 1.75015i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16017.6 −0.696103 −0.348052 0.937475i \(-0.613157\pi\)
−0.348052 + 0.937475i \(0.613157\pi\)
\(810\) 0 0
\(811\) 15085.2 0.653160 0.326580 0.945170i \(-0.394104\pi\)
0.326580 + 0.945170i \(0.394104\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 34256.7 + 59334.3i 1.47234 + 2.55017i
\(816\) 0 0
\(817\) 3484.23 6034.86i 0.149202 0.258425i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5347.65 9262.39i 0.227325 0.393739i −0.729689 0.683779i \(-0.760335\pi\)
0.957015 + 0.290040i \(0.0936686\pi\)
\(822\) 0 0
\(823\) 14691.9 + 25447.1i 0.622268 + 1.07780i 0.989062 + 0.147498i \(0.0471219\pi\)
−0.366794 + 0.930302i \(0.619545\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5402.42 0.227159 0.113580 0.993529i \(-0.463768\pi\)
0.113580 + 0.993529i \(0.463768\pi\)
\(828\) 0 0
\(829\) 25212.9 1.05631 0.528155 0.849148i \(-0.322884\pi\)
0.528155 + 0.849148i \(0.322884\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11616.8 + 20120.8i 0.483190 + 0.836909i
\(834\) 0 0
\(835\) −18000.5 + 31177.7i −0.746026 + 1.29216i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −15158.4 + 26255.1i −0.623748 + 1.08036i 0.365033 + 0.930994i \(0.381058\pi\)
−0.988782 + 0.149369i \(0.952276\pi\)
\(840\) 0 0
\(841\) 8856.39 + 15339.7i 0.363130 + 0.628960i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 20959.8 0.853299
\(846\) 0 0
\(847\) −406.005 −0.0164705
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −885.686 1534.05i −0.0356767 0.0617939i
\(852\) 0 0
\(853\) 12664.5 21935.5i 0.508350 0.880488i −0.491603 0.870819i \(-0.663589\pi\)
0.999953 0.00966889i \(-0.00307775\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1005.46 + 1741.51i −0.0400770 + 0.0694154i −0.885368 0.464891i \(-0.846094\pi\)
0.845291 + 0.534306i \(0.179427\pi\)
\(858\) 0 0
\(859\) −3482.25 6031.43i −0.138315 0.239569i 0.788544 0.614979i \(-0.210835\pi\)
−0.926859 + 0.375410i \(0.877502\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14772.4 0.582686 0.291343 0.956619i \(-0.405898\pi\)
0.291343 + 0.956619i \(0.405898\pi\)
\(864\) 0 0
\(865\) −55410.2 −2.17804
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12306.2 21315.0i −0.480391 0.832062i
\(870\) 0 0
\(871\) −13910.1 + 24093.0i −0.541131 + 0.937266i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 64363.1 111480.i 2.48671 4.30710i
\(876\) 0 0
\(877\) 12561.5 + 21757.1i 0.483661 + 0.837726i 0.999824 0.0187648i \(-0.00597336\pi\)
−0.516163 + 0.856491i \(0.672640\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20881.3 0.798533 0.399267 0.916835i \(-0.369265\pi\)
0.399267 + 0.916835i \(0.369265\pi\)
\(882\) 0 0
\(883\) −38366.4 −1.46221 −0.731106 0.682264i \(-0.760995\pi\)
−0.731106 + 0.682264i \(0.760995\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20493.3 35495.4i −0.775758 1.34365i −0.934367 0.356311i \(-0.884034\pi\)
0.158609 0.987341i \(-0.449299\pi\)
\(888\) 0 0
\(889\) −23567.1 + 40819.4i −0.889107 + 1.53998i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13015.7 + 22543.8i −0.487740 + 0.844791i
\(894\) 0 0
\(895\) 47754.2 + 82712.7i 1.78352 + 3.08914i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5962.47 −0.221201
\(900\) 0 0
\(901\) 146.755 0.00542632
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24522.6 + 42474.4i 0.900728 + 1.56011i
\(906\) 0 0
\(907\) 16897.9 29268.0i 0.618616 1.07147i −0.371123 0.928584i \(-0.621027\pi\)
0.989739 0.142890i \(-0.0456396\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 26068.8 45152.6i 0.948078 1.64212i 0.198612 0.980078i \(-0.436357\pi\)
0.749467 0.662042i \(-0.230310\pi\)
\(912\) 0 0
\(913\) 23713.0 + 41072.0i 0.859567 + 1.48881i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2686.01 −0.0967284
\(918\) 0 0
\(919\) 28749.5 1.03194 0.515972 0.856605i \(-0.327431\pi\)
0.515972 + 0.856605i \(0.327431\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4364.32 + 7559.22i 0.155637 + 0.269572i
\(924\) 0 0
\(925\) 4061.83 7035.29i 0.144381 0.250075i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4030.63 + 6981.26i −0.142347 + 0.246553i −0.928380 0.371632i \(-0.878798\pi\)
0.786033 + 0.618185i \(0.212132\pi\)
\(930\) 0 0
\(931\) −27092.8 46926.0i −0.953737 1.65192i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −27653.8 −0.967247
\(936\) 0 0
\(937\) −38362.0 −1.33749 −0.668746 0.743491i \(-0.733169\pi\)
−0.668746 + 0.743491i \(0.733169\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12891.3 + 22328.4i 0.446594 + 0.773523i 0.998162 0.0606066i \(-0.0193035\pi\)
−0.551568 + 0.834130i \(0.685970\pi\)
\(942\) 0 0
\(943\) 13892.5 24062.6i 0.479749 0.830949i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24029.5 41620.3i 0.824554 1.42817i −0.0777053 0.996976i \(-0.524759\pi\)
0.902260 0.431193i \(-0.141907\pi\)
\(948\) 0 0
\(949\) −8615.56 14922.6i −0.294703 0.510440i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 49570.9 1.68495 0.842476 0.538733i \(-0.181097\pi\)
0.842476 + 0.538733i \(0.181097\pi\)
\(954\) 0 0
\(955\) −25952.3 −0.879368
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14165.2 24534.8i −0.476974 0.826142i
\(960\) 0 0
\(961\) 12233.0 21188.2i 0.410627 0.711227i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −22587.5 + 39122.6i −0.753488 + 1.30508i
\(966\) 0 0
\(967\) 21589.6 + 37394.3i 0.717968 + 1.24356i 0.961804 + 0.273741i \(0.0882610\pi\)
−0.243836 + 0.969817i \(0.578406\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23494.7 0.776498 0.388249 0.921554i \(-0.373080\pi\)
0.388249 + 0.921554i \(0.373080\pi\)
\(972\) 0 0
\(973\) −63010.1 −2.07606
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10096.4 17487.4i −0.330616 0.572643i 0.652017 0.758204i \(-0.273923\pi\)
−0.982633 + 0.185561i \(0.940590\pi\)
\(978\) 0 0
\(979\) 21700.6 37586.6i 0.708432 1.22704i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −24610.9 + 42627.4i −0.798542 + 1.38312i 0.122023 + 0.992527i \(0.461062\pi\)
−0.920566 + 0.390588i \(0.872272\pi\)
\(984\) 0 0
\(985\) −20907.9 36213.5i −0.676326 1.17143i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5804.77 0.186634
\(990\) 0 0
\(991\) 38703.5 1.24062 0.620312 0.784355i \(-0.287006\pi\)
0.620312 + 0.784355i \(0.287006\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2364.13 + 4094.79i 0.0753245 + 0.130466i
\(996\) 0 0
\(997\) −4171.39 + 7225.06i −0.132507 + 0.229508i −0.924642 0.380837i \(-0.875636\pi\)
0.792136 + 0.610345i \(0.208969\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.e.i.217.1 8
3.2 odd 2 inner 324.4.e.i.217.4 8
9.2 odd 6 324.4.a.e.1.1 4
9.4 even 3 inner 324.4.e.i.109.1 8
9.5 odd 6 inner 324.4.e.i.109.4 8
9.7 even 3 324.4.a.e.1.4 yes 4
36.7 odd 6 1296.4.a.z.1.4 4
36.11 even 6 1296.4.a.z.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.4.a.e.1.1 4 9.2 odd 6
324.4.a.e.1.4 yes 4 9.7 even 3
324.4.e.i.109.1 8 9.4 even 3 inner
324.4.e.i.109.4 8 9.5 odd 6 inner
324.4.e.i.217.1 8 1.1 even 1 trivial
324.4.e.i.217.4 8 3.2 odd 2 inner
1296.4.a.z.1.1 4 36.11 even 6
1296.4.a.z.1.4 4 36.7 odd 6