Properties

Label 324.4.b.c.323.8
Level $324$
Weight $4$
Character 324.323
Analytic conductor $19.117$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,4,Mod(323,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.323"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.8
Character \(\chi\) \(=\) 324.323
Dual form 324.4.b.c.323.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.04896 + 1.94981i) q^{2} +(0.396477 - 7.99017i) q^{4} +16.5019i q^{5} -22.2418i q^{7} +(14.7670 + 17.1446i) q^{8} +(-32.1756 - 33.8118i) q^{10} -12.7531 q^{11} +22.3532 q^{13} +(43.3674 + 45.5727i) q^{14} +(-63.6856 - 6.33583i) q^{16} -117.295i q^{17} +27.7307i q^{19} +(131.853 + 6.54262i) q^{20} +(26.1306 - 24.8661i) q^{22} -35.1671 q^{23} -147.313 q^{25} +(-45.8008 + 43.5845i) q^{26} +(-177.716 - 8.81837i) q^{28} +1.16843i q^{29} -137.826i q^{31} +(142.843 - 111.193i) q^{32} +(228.704 + 240.333i) q^{34} +367.033 q^{35} +233.596 q^{37} +(-54.0696 - 56.8191i) q^{38} +(-282.919 + 243.683i) q^{40} -15.3068i q^{41} -417.378i q^{43} +(-5.05631 + 101.900i) q^{44} +(72.0561 - 68.5693i) q^{46} +232.987 q^{47} -151.700 q^{49} +(301.839 - 287.233i) q^{50} +(8.86252 - 178.606i) q^{52} +180.951i q^{53} -210.451i q^{55} +(381.327 - 328.444i) q^{56} +(-2.27823 - 2.39408i) q^{58} +627.433 q^{59} +764.220 q^{61} +(268.735 + 282.400i) q^{62} +(-75.8742 + 506.347i) q^{64} +368.871i q^{65} -131.015i q^{67} +(-937.210 - 46.5048i) q^{68} +(-752.036 + 715.645i) q^{70} +22.6910 q^{71} +387.864 q^{73} +(-478.630 + 455.469i) q^{74} +(221.573 + 10.9946i) q^{76} +283.653i q^{77} +561.659i q^{79} +(104.553 - 1050.93i) q^{80} +(29.8454 + 31.3630i) q^{82} +684.222 q^{83} +1935.60 q^{85} +(813.809 + 855.192i) q^{86} +(-188.325 - 218.647i) q^{88} +278.003i q^{89} -497.177i q^{91} +(-13.9429 + 280.991i) q^{92} +(-477.382 + 454.281i) q^{94} -457.610 q^{95} +528.886 q^{97} +(310.827 - 295.786i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 96 q^{10} + 432 q^{13} + 144 q^{16} + 384 q^{22} - 504 q^{25} - 672 q^{28} + 1320 q^{34} + 1248 q^{37} - 1272 q^{40} + 960 q^{46} - 696 q^{49} - 264 q^{52} - 1032 q^{58} + 528 q^{61} + 960 q^{64}+ \cdots - 1176 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.04896 + 1.94981i −0.724417 + 0.689362i
\(3\) 0 0
\(4\) 0.396477 7.99017i 0.0495596 0.998771i
\(5\) 16.5019i 1.47598i 0.674813 + 0.737988i \(0.264224\pi\)
−0.674813 + 0.737988i \(0.735776\pi\)
\(6\) 0 0
\(7\) 22.2418i 1.20095i −0.799645 0.600473i \(-0.794979\pi\)
0.799645 0.600473i \(-0.205021\pi\)
\(8\) 14.7670 + 17.1446i 0.652613 + 0.757691i
\(9\) 0 0
\(10\) −32.1756 33.8118i −1.01748 1.06922i
\(11\) −12.7531 −0.349564 −0.174782 0.984607i \(-0.555922\pi\)
−0.174782 + 0.984607i \(0.555922\pi\)
\(12\) 0 0
\(13\) 22.3532 0.476897 0.238449 0.971155i \(-0.423361\pi\)
0.238449 + 0.971155i \(0.423361\pi\)
\(14\) 43.3674 + 45.5727i 0.827887 + 0.869986i
\(15\) 0 0
\(16\) −63.6856 6.33583i −0.995088 0.0989973i
\(17\) 117.295i 1.67343i −0.547639 0.836715i \(-0.684473\pi\)
0.547639 0.836715i \(-0.315527\pi\)
\(18\) 0 0
\(19\) 27.7307i 0.334835i 0.985886 + 0.167417i \(0.0535427\pi\)
−0.985886 + 0.167417i \(0.946457\pi\)
\(20\) 131.853 + 6.54262i 1.47416 + 0.0731488i
\(21\) 0 0
\(22\) 26.1306 24.8661i 0.253230 0.240976i
\(23\) −35.1671 −0.318820 −0.159410 0.987212i \(-0.550959\pi\)
−0.159410 + 0.987212i \(0.550959\pi\)
\(24\) 0 0
\(25\) −147.313 −1.17851
\(26\) −45.8008 + 43.5845i −0.345472 + 0.328755i
\(27\) 0 0
\(28\) −177.716 8.81837i −1.19947 0.0595184i
\(29\) 1.16843i 0.00748182i 0.999993 + 0.00374091i \(0.00119077\pi\)
−0.999993 + 0.00374091i \(0.998809\pi\)
\(30\) 0 0
\(31\) 137.826i 0.798525i −0.916837 0.399263i \(-0.869266\pi\)
0.916837 0.399263i \(-0.130734\pi\)
\(32\) 142.843 111.193i 0.789103 0.614260i
\(33\) 0 0
\(34\) 228.704 + 240.333i 1.15360 + 1.21226i
\(35\) 367.033 1.77257
\(36\) 0 0
\(37\) 233.596 1.03792 0.518959 0.854799i \(-0.326320\pi\)
0.518959 + 0.854799i \(0.326320\pi\)
\(38\) −54.0696 56.8191i −0.230822 0.242560i
\(39\) 0 0
\(40\) −282.919 + 243.683i −1.11833 + 0.963242i
\(41\) 15.3068i 0.0583054i −0.999575 0.0291527i \(-0.990719\pi\)
0.999575 0.0291527i \(-0.00928091\pi\)
\(42\) 0 0
\(43\) 417.378i 1.48022i −0.672484 0.740112i \(-0.734773\pi\)
0.672484 0.740112i \(-0.265227\pi\)
\(44\) −5.05631 + 101.900i −0.0173243 + 0.349135i
\(45\) 0 0
\(46\) 72.0561 68.5693i 0.230958 0.219782i
\(47\) 232.987 0.723079 0.361539 0.932357i \(-0.382251\pi\)
0.361539 + 0.932357i \(0.382251\pi\)
\(48\) 0 0
\(49\) −151.700 −0.442273
\(50\) 301.839 287.233i 0.853730 0.812418i
\(51\) 0 0
\(52\) 8.86252 178.606i 0.0236348 0.476311i
\(53\) 180.951i 0.468972i 0.972120 + 0.234486i \(0.0753407\pi\)
−0.972120 + 0.234486i \(0.924659\pi\)
\(54\) 0 0
\(55\) 210.451i 0.515949i
\(56\) 381.327 328.444i 0.909947 0.783754i
\(57\) 0 0
\(58\) −2.27823 2.39408i −0.00515768 0.00541996i
\(59\) 627.433 1.38449 0.692244 0.721663i \(-0.256622\pi\)
0.692244 + 0.721663i \(0.256622\pi\)
\(60\) 0 0
\(61\) 764.220 1.60407 0.802035 0.597276i \(-0.203750\pi\)
0.802035 + 0.597276i \(0.203750\pi\)
\(62\) 268.735 + 282.400i 0.550473 + 0.578465i
\(63\) 0 0
\(64\) −75.8742 + 506.347i −0.148192 + 0.988959i
\(65\) 368.871i 0.703889i
\(66\) 0 0
\(67\) 131.015i 0.238897i −0.992840 0.119448i \(-0.961887\pi\)
0.992840 0.119448i \(-0.0381126\pi\)
\(68\) −937.210 46.5048i −1.67137 0.0829344i
\(69\) 0 0
\(70\) −752.036 + 715.645i −1.28408 + 1.22194i
\(71\) 22.6910 0.0379285 0.0189643 0.999820i \(-0.493963\pi\)
0.0189643 + 0.999820i \(0.493963\pi\)
\(72\) 0 0
\(73\) 387.864 0.621863 0.310932 0.950432i \(-0.399359\pi\)
0.310932 + 0.950432i \(0.399359\pi\)
\(74\) −478.630 + 455.469i −0.751886 + 0.715502i
\(75\) 0 0
\(76\) 221.573 + 10.9946i 0.334423 + 0.0165943i
\(77\) 283.653i 0.419808i
\(78\) 0 0
\(79\) 561.659i 0.799894i 0.916538 + 0.399947i \(0.130971\pi\)
−0.916538 + 0.399947i \(0.869029\pi\)
\(80\) 104.553 1050.93i 0.146118 1.46873i
\(81\) 0 0
\(82\) 29.8454 + 31.3630i 0.0401935 + 0.0422374i
\(83\) 684.222 0.904857 0.452429 0.891801i \(-0.350558\pi\)
0.452429 + 0.891801i \(0.350558\pi\)
\(84\) 0 0
\(85\) 1935.60 2.46994
\(86\) 813.809 + 855.192i 1.02041 + 1.07230i
\(87\) 0 0
\(88\) −188.325 218.647i −0.228130 0.264862i
\(89\) 278.003i 0.331103i 0.986201 + 0.165552i \(0.0529405\pi\)
−0.986201 + 0.165552i \(0.947060\pi\)
\(90\) 0 0
\(91\) 497.177i 0.572728i
\(92\) −13.9429 + 280.991i −0.0158006 + 0.318428i
\(93\) 0 0
\(94\) −477.382 + 454.281i −0.523810 + 0.498463i
\(95\) −457.610 −0.494208
\(96\) 0 0
\(97\) 528.886 0.553610 0.276805 0.960926i \(-0.410724\pi\)
0.276805 + 0.960926i \(0.410724\pi\)
\(98\) 310.827 295.786i 0.320390 0.304887i
\(99\) 0 0
\(100\) −58.4063 + 1177.06i −0.0584063 + 1.17706i
\(101\) 1433.95i 1.41271i −0.707857 0.706355i \(-0.750338\pi\)
0.707857 0.706355i \(-0.249662\pi\)
\(102\) 0 0
\(103\) 229.895i 0.219925i −0.993936 0.109962i \(-0.964927\pi\)
0.993936 0.109962i \(-0.0350730\pi\)
\(104\) 330.089 + 383.237i 0.311230 + 0.361341i
\(105\) 0 0
\(106\) −352.820 370.761i −0.323291 0.339731i
\(107\) −1676.13 −1.51437 −0.757184 0.653201i \(-0.773426\pi\)
−0.757184 + 0.653201i \(0.773426\pi\)
\(108\) 0 0
\(109\) −540.666 −0.475104 −0.237552 0.971375i \(-0.576345\pi\)
−0.237552 + 0.971375i \(0.576345\pi\)
\(110\) 410.339 + 431.205i 0.355676 + 0.373762i
\(111\) 0 0
\(112\) −140.921 + 1416.49i −0.118891 + 1.19505i
\(113\) 1282.68i 1.06783i −0.845540 0.533913i \(-0.820721\pi\)
0.845540 0.533913i \(-0.179279\pi\)
\(114\) 0 0
\(115\) 580.325i 0.470571i
\(116\) 9.33599 + 0.463257i 0.00747263 + 0.000370796i
\(117\) 0 0
\(118\) −1285.59 + 1223.38i −1.00295 + 0.954414i
\(119\) −2608.86 −2.00970
\(120\) 0 0
\(121\) −1168.36 −0.877805
\(122\) −1565.86 + 1490.08i −1.16202 + 1.10579i
\(123\) 0 0
\(124\) −1101.25 54.6448i −0.797544 0.0395746i
\(125\) 368.214i 0.263472i
\(126\) 0 0
\(127\) 2674.79i 1.86889i −0.356109 0.934444i \(-0.615897\pi\)
0.356109 0.934444i \(-0.384103\pi\)
\(128\) −831.817 1185.42i −0.574398 0.818576i
\(129\) 0 0
\(130\) −719.228 755.802i −0.485235 0.509909i
\(131\) −826.801 −0.551435 −0.275717 0.961239i \(-0.588915\pi\)
−0.275717 + 0.961239i \(0.588915\pi\)
\(132\) 0 0
\(133\) 616.782 0.402118
\(134\) 255.455 + 268.446i 0.164686 + 0.173061i
\(135\) 0 0
\(136\) 2010.98 1732.09i 1.26794 1.09210i
\(137\) 647.705i 0.403921i 0.979394 + 0.201960i \(0.0647313\pi\)
−0.979394 + 0.201960i \(0.935269\pi\)
\(138\) 0 0
\(139\) 2670.49i 1.62955i −0.579775 0.814777i \(-0.696859\pi\)
0.579775 0.814777i \(-0.303141\pi\)
\(140\) 145.520 2932.66i 0.0878478 1.77039i
\(141\) 0 0
\(142\) −46.4930 + 44.2432i −0.0274761 + 0.0261465i
\(143\) −285.073 −0.166706
\(144\) 0 0
\(145\) −19.2814 −0.0110430
\(146\) −794.718 + 756.261i −0.450488 + 0.428689i
\(147\) 0 0
\(148\) 92.6154 1866.47i 0.0514388 1.03664i
\(149\) 104.210i 0.0572967i 0.999590 + 0.0286484i \(0.00912031\pi\)
−0.999590 + 0.0286484i \(0.990880\pi\)
\(150\) 0 0
\(151\) 2751.39i 1.48281i −0.671056 0.741407i \(-0.734159\pi\)
0.671056 0.741407i \(-0.265841\pi\)
\(152\) −475.431 + 409.498i −0.253701 + 0.218517i
\(153\) 0 0
\(154\) −553.069 581.193i −0.289400 0.304116i
\(155\) 2274.39 1.17860
\(156\) 0 0
\(157\) −1163.09 −0.591241 −0.295620 0.955306i \(-0.595526\pi\)
−0.295620 + 0.955306i \(0.595526\pi\)
\(158\) −1095.13 1150.82i −0.551417 0.579457i
\(159\) 0 0
\(160\) 1834.90 + 2357.18i 0.906634 + 1.16470i
\(161\) 782.182i 0.382886i
\(162\) 0 0
\(163\) 2930.45i 1.40816i 0.710120 + 0.704081i \(0.248641\pi\)
−0.710120 + 0.704081i \(0.751359\pi\)
\(164\) −122.304 6.06879i −0.0582337 0.00288959i
\(165\) 0 0
\(166\) −1401.94 + 1334.10i −0.655494 + 0.623774i
\(167\) −871.920 −0.404019 −0.202010 0.979384i \(-0.564747\pi\)
−0.202010 + 0.979384i \(0.564747\pi\)
\(168\) 0 0
\(169\) −1697.33 −0.772569
\(170\) −3965.96 + 3774.05i −1.78927 + 1.70268i
\(171\) 0 0
\(172\) −3334.92 165.481i −1.47840 0.0733592i
\(173\) 2332.71i 1.02516i 0.858639 + 0.512581i \(0.171310\pi\)
−0.858639 + 0.512581i \(0.828690\pi\)
\(174\) 0 0
\(175\) 3276.52i 1.41532i
\(176\) 812.190 + 80.8015i 0.347847 + 0.0346059i
\(177\) 0 0
\(178\) −542.052 569.616i −0.228250 0.239857i
\(179\) 638.773 0.266727 0.133364 0.991067i \(-0.457422\pi\)
0.133364 + 0.991067i \(0.457422\pi\)
\(180\) 0 0
\(181\) 4031.01 1.65537 0.827686 0.561192i \(-0.189657\pi\)
0.827686 + 0.561192i \(0.189657\pi\)
\(182\) 969.400 + 1018.70i 0.394817 + 0.414894i
\(183\) 0 0
\(184\) −519.311 602.926i −0.208066 0.241567i
\(185\) 3854.79i 1.53194i
\(186\) 0 0
\(187\) 1495.88i 0.584971i
\(188\) 92.3740 1861.61i 0.0358355 0.722190i
\(189\) 0 0
\(190\) 937.624 892.252i 0.358013 0.340688i
\(191\) −3663.43 −1.38784 −0.693918 0.720054i \(-0.744117\pi\)
−0.693918 + 0.720054i \(0.744117\pi\)
\(192\) 0 0
\(193\) 1417.66 0.528731 0.264366 0.964423i \(-0.414837\pi\)
0.264366 + 0.964423i \(0.414837\pi\)
\(194\) −1083.67 + 1031.23i −0.401045 + 0.381638i
\(195\) 0 0
\(196\) −60.1454 + 1212.11i −0.0219189 + 0.441730i
\(197\) 876.917i 0.317146i −0.987347 0.158573i \(-0.949311\pi\)
0.987347 0.158573i \(-0.0506893\pi\)
\(198\) 0 0
\(199\) 1485.45i 0.529149i 0.964365 + 0.264574i \(0.0852315\pi\)
−0.964365 + 0.264574i \(0.914769\pi\)
\(200\) −2175.37 2525.63i −0.769109 0.892944i
\(201\) 0 0
\(202\) 2795.94 + 2938.12i 0.973869 + 1.02339i
\(203\) 25.9881 0.00898527
\(204\) 0 0
\(205\) 252.592 0.0860574
\(206\) 448.252 + 471.046i 0.151608 + 0.159317i
\(207\) 0 0
\(208\) −1423.58 141.626i −0.474555 0.0472116i
\(209\) 353.652i 0.117046i
\(210\) 0 0
\(211\) 307.652i 0.100377i −0.998740 0.0501887i \(-0.984018\pi\)
0.998740 0.0501887i \(-0.0159823\pi\)
\(212\) 1445.83 + 71.7428i 0.468396 + 0.0232420i
\(213\) 0 0
\(214\) 3434.32 3268.13i 1.09703 1.04395i
\(215\) 6887.55 2.18478
\(216\) 0 0
\(217\) −3065.50 −0.958986
\(218\) 1107.80 1054.20i 0.344174 0.327519i
\(219\) 0 0
\(220\) −1681.54 83.4388i −0.515315 0.0255702i
\(221\) 2621.93i 0.798054i
\(222\) 0 0
\(223\) 3903.48i 1.17218i 0.810245 + 0.586091i \(0.199334\pi\)
−0.810245 + 0.586091i \(0.800666\pi\)
\(224\) −2473.14 3177.09i −0.737694 0.947671i
\(225\) 0 0
\(226\) 2500.98 + 2628.16i 0.736119 + 0.773551i
\(227\) 1928.76 0.563949 0.281975 0.959422i \(-0.409011\pi\)
0.281975 + 0.959422i \(0.409011\pi\)
\(228\) 0 0
\(229\) 2297.42 0.662958 0.331479 0.943463i \(-0.392452\pi\)
0.331479 + 0.943463i \(0.392452\pi\)
\(230\) 1131.52 + 1189.06i 0.324394 + 0.340889i
\(231\) 0 0
\(232\) −20.0323 + 17.2542i −0.00566891 + 0.00488274i
\(233\) 3366.60i 0.946580i −0.880907 0.473290i \(-0.843066\pi\)
0.880907 0.473290i \(-0.156934\pi\)
\(234\) 0 0
\(235\) 3844.74i 1.06725i
\(236\) 248.762 5013.30i 0.0686146 1.38279i
\(237\) 0 0
\(238\) 5345.46 5086.79i 1.45586 1.38541i
\(239\) 615.143 0.166486 0.0832432 0.996529i \(-0.473472\pi\)
0.0832432 + 0.996529i \(0.473472\pi\)
\(240\) 0 0
\(241\) −4391.55 −1.17380 −0.586898 0.809661i \(-0.699651\pi\)
−0.586898 + 0.809661i \(0.699651\pi\)
\(242\) 2393.92 2278.08i 0.635897 0.605125i
\(243\) 0 0
\(244\) 302.995 6106.25i 0.0794971 1.60210i
\(245\) 2503.34i 0.652785i
\(246\) 0 0
\(247\) 619.870i 0.159682i
\(248\) 2362.97 2035.27i 0.605035 0.521128i
\(249\) 0 0
\(250\) 717.947 + 754.455i 0.181628 + 0.190864i
\(251\) −7726.08 −1.94289 −0.971446 0.237259i \(-0.923751\pi\)
−0.971446 + 0.237259i \(0.923751\pi\)
\(252\) 0 0
\(253\) 448.490 0.111448
\(254\) 5215.33 + 5480.53i 1.28834 + 1.35385i
\(255\) 0 0
\(256\) 4015.71 + 807.002i 0.980399 + 0.197022i
\(257\) 2566.70i 0.622982i 0.950249 + 0.311491i \(0.100828\pi\)
−0.950249 + 0.311491i \(0.899172\pi\)
\(258\) 0 0
\(259\) 5195.61i 1.24649i
\(260\) 2947.34 + 146.249i 0.703024 + 0.0348844i
\(261\) 0 0
\(262\) 1694.08 1612.11i 0.399469 0.380138i
\(263\) 4007.84 0.939673 0.469837 0.882753i \(-0.344313\pi\)
0.469837 + 0.882753i \(0.344313\pi\)
\(264\) 0 0
\(265\) −2986.04 −0.692192
\(266\) −1263.76 + 1202.61i −0.291301 + 0.277205i
\(267\) 0 0
\(268\) −1046.84 51.9446i −0.238603 0.0118396i
\(269\) 2242.21i 0.508214i −0.967176 0.254107i \(-0.918218\pi\)
0.967176 0.254107i \(-0.0817816\pi\)
\(270\) 0 0
\(271\) 6324.08i 1.41757i −0.705426 0.708784i \(-0.749244\pi\)
0.705426 0.708784i \(-0.250756\pi\)
\(272\) −743.163 + 7470.02i −0.165665 + 1.66521i
\(273\) 0 0
\(274\) −1262.90 1327.12i −0.278448 0.292607i
\(275\) 1878.70 0.411964
\(276\) 0 0
\(277\) 1251.70 0.271508 0.135754 0.990743i \(-0.456654\pi\)
0.135754 + 0.990743i \(0.456654\pi\)
\(278\) 5206.95 + 5471.73i 1.12335 + 1.18048i
\(279\) 0 0
\(280\) 5419.96 + 6292.64i 1.15680 + 1.34306i
\(281\) 1374.48i 0.291796i −0.989300 0.145898i \(-0.953393\pi\)
0.989300 0.145898i \(-0.0466071\pi\)
\(282\) 0 0
\(283\) 4625.92i 0.971669i 0.874051 + 0.485835i \(0.161484\pi\)
−0.874051 + 0.485835i \(0.838516\pi\)
\(284\) 8.99645 181.305i 0.00187972 0.0378819i
\(285\) 0 0
\(286\) 584.103 555.838i 0.120765 0.114921i
\(287\) −340.452 −0.0700217
\(288\) 0 0
\(289\) −8845.19 −1.80037
\(290\) 39.5068 37.5951i 0.00799973 0.00761262i
\(291\) 0 0
\(292\) 153.779 3099.10i 0.0308193 0.621099i
\(293\) 6377.04i 1.27150i −0.771893 0.635752i \(-0.780690\pi\)
0.771893 0.635752i \(-0.219310\pi\)
\(294\) 0 0
\(295\) 10353.8i 2.04347i
\(296\) 3449.51 + 4004.91i 0.677360 + 0.786422i
\(297\) 0 0
\(298\) −203.190 213.522i −0.0394982 0.0415067i
\(299\) −786.098 −0.152044
\(300\) 0 0
\(301\) −9283.27 −1.77767
\(302\) 5364.69 + 5637.48i 1.02220 + 1.07417i
\(303\) 0 0
\(304\) 175.697 1766.05i 0.0331477 0.333190i
\(305\) 12611.1i 2.36757i
\(306\) 0 0
\(307\) 6609.36i 1.22872i 0.789027 + 0.614359i \(0.210585\pi\)
−0.789027 + 0.614359i \(0.789415\pi\)
\(308\) 2266.43 + 112.462i 0.419292 + 0.0208055i
\(309\) 0 0
\(310\) −4660.14 + 4434.64i −0.853801 + 0.812485i
\(311\) 5136.69 0.936576 0.468288 0.883576i \(-0.344871\pi\)
0.468288 + 0.883576i \(0.344871\pi\)
\(312\) 0 0
\(313\) 6202.84 1.12014 0.560072 0.828444i \(-0.310773\pi\)
0.560072 + 0.828444i \(0.310773\pi\)
\(314\) 2383.13 2267.81i 0.428305 0.407579i
\(315\) 0 0
\(316\) 4487.75 + 222.685i 0.798911 + 0.0396424i
\(317\) 1825.15i 0.323377i 0.986842 + 0.161689i \(0.0516940\pi\)
−0.986842 + 0.161689i \(0.948306\pi\)
\(318\) 0 0
\(319\) 14.9012i 0.00261538i
\(320\) −8355.70 1252.07i −1.45968 0.218728i
\(321\) 0 0
\(322\) −1525.11 1602.66i −0.263947 0.277369i
\(323\) 3252.68 0.560322
\(324\) 0 0
\(325\) −3292.93 −0.562027
\(326\) −5713.82 6004.37i −0.970733 1.02010i
\(327\) 0 0
\(328\) 262.429 226.035i 0.0441775 0.0380509i
\(329\) 5182.07i 0.868379i
\(330\) 0 0
\(331\) 3977.22i 0.660447i 0.943903 + 0.330223i \(0.107124\pi\)
−0.943903 + 0.330223i \(0.892876\pi\)
\(332\) 271.278 5467.05i 0.0448443 0.903745i
\(333\) 0 0
\(334\) 1786.53 1700.08i 0.292678 0.278516i
\(335\) 2162.01 0.352606
\(336\) 0 0
\(337\) −1157.69 −0.187132 −0.0935662 0.995613i \(-0.529827\pi\)
−0.0935662 + 0.995613i \(0.529827\pi\)
\(338\) 3477.77 3309.48i 0.559662 0.532580i
\(339\) 0 0
\(340\) 767.419 15465.8i 0.122409 2.46691i
\(341\) 1757.71i 0.279136i
\(342\) 0 0
\(343\) 4254.87i 0.669800i
\(344\) 7155.78 6163.41i 1.12155 0.966013i
\(345\) 0 0
\(346\) −4548.35 4779.64i −0.706707 0.742644i
\(347\) 2483.25 0.384173 0.192086 0.981378i \(-0.438475\pi\)
0.192086 + 0.981378i \(0.438475\pi\)
\(348\) 0 0
\(349\) −5973.80 −0.916248 −0.458124 0.888888i \(-0.651478\pi\)
−0.458124 + 0.888888i \(0.651478\pi\)
\(350\) −6388.60 6713.46i −0.975671 1.02528i
\(351\) 0 0
\(352\) −1821.69 + 1418.06i −0.275842 + 0.214724i
\(353\) 1031.33i 0.155502i −0.996973 0.0777511i \(-0.975226\pi\)
0.996973 0.0777511i \(-0.0247740\pi\)
\(354\) 0 0
\(355\) 374.445i 0.0559816i
\(356\) 2221.29 + 110.221i 0.330697 + 0.0164093i
\(357\) 0 0
\(358\) −1308.82 + 1245.49i −0.193222 + 0.183872i
\(359\) 4218.99 0.620249 0.310125 0.950696i \(-0.399629\pi\)
0.310125 + 0.950696i \(0.399629\pi\)
\(360\) 0 0
\(361\) 6090.01 0.887886
\(362\) −8259.37 + 7859.70i −1.19918 + 1.14115i
\(363\) 0 0
\(364\) −3972.53 197.119i −0.572025 0.0283842i
\(365\) 6400.50i 0.917856i
\(366\) 0 0
\(367\) 3040.22i 0.432421i −0.976347 0.216210i \(-0.930630\pi\)
0.976347 0.216210i \(-0.0693697\pi\)
\(368\) 2239.64 + 222.813i 0.317254 + 0.0315623i
\(369\) 0 0
\(370\) −7516.11 7898.31i −1.05606 1.10977i
\(371\) 4024.68 0.563210
\(372\) 0 0
\(373\) 5117.83 0.710433 0.355216 0.934784i \(-0.384407\pi\)
0.355216 + 0.934784i \(0.384407\pi\)
\(374\) −2916.68 3065.00i −0.403257 0.423763i
\(375\) 0 0
\(376\) 3440.51 + 3994.47i 0.471891 + 0.547870i
\(377\) 26.1183i 0.00356806i
\(378\) 0 0
\(379\) 2840.61i 0.384993i −0.981298 0.192497i \(-0.938342\pi\)
0.981298 0.192497i \(-0.0616585\pi\)
\(380\) −181.431 + 3656.38i −0.0244927 + 0.493601i
\(381\) 0 0
\(382\) 7506.23 7143.00i 1.00537 0.956722i
\(383\) −5628.66 −0.750943 −0.375472 0.926834i \(-0.622519\pi\)
−0.375472 + 0.926834i \(0.622519\pi\)
\(384\) 0 0
\(385\) −4680.81 −0.619627
\(386\) −2904.72 + 2764.16i −0.383022 + 0.364487i
\(387\) 0 0
\(388\) 209.691 4225.88i 0.0274367 0.552930i
\(389\) 3561.97i 0.464265i −0.972684 0.232132i \(-0.925430\pi\)
0.972684 0.232132i \(-0.0745703\pi\)
\(390\) 0 0
\(391\) 4124.94i 0.533522i
\(392\) −2240.14 2600.83i −0.288633 0.335107i
\(393\) 0 0
\(394\) 1709.82 + 1796.77i 0.218628 + 0.229746i
\(395\) −9268.46 −1.18062
\(396\) 0 0
\(397\) −9427.52 −1.19182 −0.595911 0.803050i \(-0.703209\pi\)
−0.595911 + 0.803050i \(0.703209\pi\)
\(398\) −2896.34 3043.62i −0.364775 0.383324i
\(399\) 0 0
\(400\) 9381.74 + 933.352i 1.17272 + 0.116669i
\(401\) 8631.58i 1.07491i 0.843291 + 0.537457i \(0.180615\pi\)
−0.843291 + 0.537457i \(0.819385\pi\)
\(402\) 0 0
\(403\) 3080.85i 0.380814i
\(404\) −11457.5 568.529i −1.41097 0.0700133i
\(405\) 0 0
\(406\) −53.2487 + 50.6719i −0.00650908 + 0.00619410i
\(407\) −2979.08 −0.362819
\(408\) 0 0
\(409\) 5864.81 0.709037 0.354518 0.935049i \(-0.384645\pi\)
0.354518 + 0.935049i \(0.384645\pi\)
\(410\) −517.550 + 492.506i −0.0623414 + 0.0593247i
\(411\) 0 0
\(412\) −1836.90 91.1481i −0.219654 0.0108994i
\(413\) 13955.3i 1.66270i
\(414\) 0 0
\(415\) 11291.0i 1.33555i
\(416\) 3193.00 2485.52i 0.376321 0.292939i
\(417\) 0 0
\(418\) 689.555 + 724.620i 0.0806872 + 0.0847902i
\(419\) −6955.71 −0.810999 −0.405500 0.914095i \(-0.632902\pi\)
−0.405500 + 0.914095i \(0.632902\pi\)
\(420\) 0 0
\(421\) −9395.79 −1.08770 −0.543851 0.839182i \(-0.683034\pi\)
−0.543851 + 0.839182i \(0.683034\pi\)
\(422\) 599.863 + 630.366i 0.0691964 + 0.0727151i
\(423\) 0 0
\(424\) −3102.33 + 2672.09i −0.355336 + 0.306057i
\(425\) 17279.2i 1.97215i
\(426\) 0 0
\(427\) 16997.7i 1.92640i
\(428\) −664.546 + 13392.6i −0.0750515 + 1.51251i
\(429\) 0 0
\(430\) −14112.3 + 13429.4i −1.58269 + 1.50610i
\(431\) 7346.03 0.820988 0.410494 0.911863i \(-0.365356\pi\)
0.410494 + 0.911863i \(0.365356\pi\)
\(432\) 0 0
\(433\) 13673.0 1.51751 0.758755 0.651376i \(-0.225808\pi\)
0.758755 + 0.651376i \(0.225808\pi\)
\(434\) 6281.10 5977.15i 0.694706 0.661089i
\(435\) 0 0
\(436\) −214.361 + 4320.01i −0.0235460 + 0.474521i
\(437\) 975.209i 0.106752i
\(438\) 0 0
\(439\) 5768.74i 0.627168i −0.949560 0.313584i \(-0.898470\pi\)
0.949560 0.313584i \(-0.101530\pi\)
\(440\) 3608.09 3107.72i 0.390930 0.336715i
\(441\) 0 0
\(442\) 5112.26 + 5372.22i 0.550148 + 0.578124i
\(443\) −9652.91 −1.03527 −0.517634 0.855602i \(-0.673187\pi\)
−0.517634 + 0.855602i \(0.673187\pi\)
\(444\) 0 0
\(445\) −4587.58 −0.488701
\(446\) −7611.06 7998.08i −0.808058 0.849149i
\(447\) 0 0
\(448\) 11262.1 + 1687.58i 1.18769 + 0.177970i
\(449\) 11492.2i 1.20791i −0.797018 0.603955i \(-0.793590\pi\)
0.797018 0.603955i \(-0.206410\pi\)
\(450\) 0 0
\(451\) 195.209i 0.0203815i
\(452\) −10248.8 508.552i −1.06651 0.0529210i
\(453\) 0 0
\(454\) −3951.96 + 3760.72i −0.408534 + 0.388765i
\(455\) 8204.37 0.845334
\(456\) 0 0
\(457\) 17642.1 1.80583 0.902914 0.429821i \(-0.141423\pi\)
0.902914 + 0.429821i \(0.141423\pi\)
\(458\) −4707.31 + 4479.53i −0.480258 + 0.457018i
\(459\) 0 0
\(460\) −4636.90 230.085i −0.469992 0.0233213i
\(461\) 12865.9i 1.29984i −0.760004 0.649918i \(-0.774803\pi\)
0.760004 0.649918i \(-0.225197\pi\)
\(462\) 0 0
\(463\) 13838.7i 1.38907i 0.719460 + 0.694534i \(0.244389\pi\)
−0.719460 + 0.694534i \(0.755611\pi\)
\(464\) 7.40300 74.4124i 0.000740680 0.00744507i
\(465\) 0 0
\(466\) 6564.23 + 6898.02i 0.652536 + 0.685718i
\(467\) −81.1441 −0.00804047 −0.00402024 0.999992i \(-0.501280\pi\)
−0.00402024 + 0.999992i \(0.501280\pi\)
\(468\) 0 0
\(469\) −2914.03 −0.286902
\(470\) −7496.51 7877.72i −0.735720 0.773132i
\(471\) 0 0
\(472\) 9265.27 + 10757.1i 0.903536 + 1.04901i
\(473\) 5322.87i 0.517433i
\(474\) 0 0
\(475\) 4085.10i 0.394605i
\(476\) −1034.35 + 20845.3i −0.0995998 + 2.00723i
\(477\) 0 0
\(478\) −1260.40 + 1199.41i −0.120606 + 0.114769i
\(479\) −14944.1 −1.42550 −0.712750 0.701418i \(-0.752550\pi\)
−0.712750 + 0.701418i \(0.752550\pi\)
\(480\) 0 0
\(481\) 5221.63 0.494981
\(482\) 8998.12 8562.70i 0.850318 0.809171i
\(483\) 0 0
\(484\) −463.227 + 9335.38i −0.0435036 + 0.876726i
\(485\) 8727.63i 0.817116i
\(486\) 0 0
\(487\) 5934.04i 0.552150i −0.961136 0.276075i \(-0.910966\pi\)
0.961136 0.276075i \(-0.0890338\pi\)
\(488\) 11285.2 + 13102.2i 1.04684 + 1.21539i
\(489\) 0 0
\(490\) 4881.03 + 5129.24i 0.450005 + 0.472889i
\(491\) −20064.8 −1.84422 −0.922110 0.386929i \(-0.873536\pi\)
−0.922110 + 0.386929i \(0.873536\pi\)
\(492\) 0 0
\(493\) 137.052 0.0125203
\(494\) −1208.63 1270.09i −0.110079 0.115676i
\(495\) 0 0
\(496\) −873.242 + 8777.53i −0.0790519 + 0.794602i
\(497\) 504.690i 0.0455502i
\(498\) 0 0
\(499\) 9408.60i 0.844062i 0.906581 + 0.422031i \(0.138683\pi\)
−0.906581 + 0.422031i \(0.861317\pi\)
\(500\) −2942.09 145.988i −0.263149 0.0130576i
\(501\) 0 0
\(502\) 15830.4 15064.4i 1.40746 1.33936i
\(503\) −12736.4 −1.12900 −0.564501 0.825432i \(-0.690931\pi\)
−0.564501 + 0.825432i \(0.690931\pi\)
\(504\) 0 0
\(505\) 23663.0 2.08513
\(506\) −918.939 + 874.471i −0.0807348 + 0.0768280i
\(507\) 0 0
\(508\) −21372.0 1060.49i −1.86659 0.0926213i
\(509\) 9147.07i 0.796536i −0.917269 0.398268i \(-0.869611\pi\)
0.917269 0.398268i \(-0.130389\pi\)
\(510\) 0 0
\(511\) 8626.81i 0.746825i
\(512\) −9801.54 + 6176.37i −0.846037 + 0.533124i
\(513\) 0 0
\(514\) −5004.58 5259.07i −0.429460 0.451299i
\(515\) 3793.71 0.324604
\(516\) 0 0
\(517\) −2971.31 −0.252762
\(518\) 10130.5 + 10645.6i 0.859280 + 0.902975i
\(519\) 0 0
\(520\) −6324.14 + 5447.10i −0.533331 + 0.459368i
\(521\) 7691.78i 0.646801i 0.946262 + 0.323400i \(0.104826\pi\)
−0.946262 + 0.323400i \(0.895174\pi\)
\(522\) 0 0
\(523\) 9967.82i 0.833389i 0.909047 + 0.416694i \(0.136811\pi\)
−0.909047 + 0.416694i \(0.863189\pi\)
\(524\) −327.807 + 6606.28i −0.0273289 + 0.550757i
\(525\) 0 0
\(526\) −8211.91 + 7814.53i −0.680715 + 0.647775i
\(527\) −16166.3 −1.33628
\(528\) 0 0
\(529\) −10930.3 −0.898354
\(530\) 6118.27 5822.21i 0.501435 0.477171i
\(531\) 0 0
\(532\) 244.539 4928.19i 0.0199288 0.401624i
\(533\) 342.156i 0.0278057i
\(534\) 0 0
\(535\) 27659.3i 2.23517i
\(536\) 2246.21 1934.70i 0.181010 0.155907i
\(537\) 0 0
\(538\) 4371.88 + 4594.19i 0.350344 + 0.368159i
\(539\) 1934.64 0.154603
\(540\) 0 0
\(541\) 6050.08 0.480801 0.240400 0.970674i \(-0.422721\pi\)
0.240400 + 0.970674i \(0.422721\pi\)
\(542\) 12330.8 + 12957.8i 0.977217 + 1.02691i
\(543\) 0 0
\(544\) −13042.4 16754.8i −1.02792 1.32051i
\(545\) 8922.02i 0.701243i
\(546\) 0 0
\(547\) 12969.7i 1.01380i 0.862006 + 0.506898i \(0.169208\pi\)
−0.862006 + 0.506898i \(0.830792\pi\)
\(548\) 5175.27 + 256.800i 0.403425 + 0.0200181i
\(549\) 0 0
\(550\) −3849.39 + 3663.12i −0.298434 + 0.283992i
\(551\) −32.4015 −0.00250517
\(552\) 0 0
\(553\) 12492.3 0.960630
\(554\) −2564.69 + 2440.59i −0.196685 + 0.187167i
\(555\) 0 0
\(556\) −21337.7 1058.79i −1.62755 0.0807600i
\(557\) 2223.88i 0.169172i −0.996416 0.0845859i \(-0.973043\pi\)
0.996416 0.0845859i \(-0.0269567\pi\)
\(558\) 0 0
\(559\) 9329.75i 0.705915i
\(560\) −23374.7 2325.46i −1.76386 0.175480i
\(561\) 0 0
\(562\) 2679.98 + 2816.26i 0.201153 + 0.211382i
\(563\) 17827.6 1.33453 0.667267 0.744818i \(-0.267464\pi\)
0.667267 + 0.744818i \(0.267464\pi\)
\(564\) 0 0
\(565\) 21166.7 1.57609
\(566\) −9019.67 9478.33i −0.669832 0.703894i
\(567\) 0 0
\(568\) 335.077 + 389.028i 0.0247527 + 0.0287381i
\(569\) 11276.5i 0.830820i 0.909634 + 0.415410i \(0.136362\pi\)
−0.909634 + 0.415410i \(0.863638\pi\)
\(570\) 0 0
\(571\) 7536.73i 0.552369i −0.961105 0.276184i \(-0.910930\pi\)
0.961105 0.276184i \(-0.0890700\pi\)
\(572\) −113.025 + 2277.78i −0.00826189 + 0.166501i
\(573\) 0 0
\(574\) 697.572 663.816i 0.0507249 0.0482703i
\(575\) 5180.59 0.375731
\(576\) 0 0
\(577\) −16888.0 −1.21847 −0.609233 0.792991i \(-0.708523\pi\)
−0.609233 + 0.792991i \(0.708523\pi\)
\(578\) 18123.5 17246.5i 1.30421 1.24110i
\(579\) 0 0
\(580\) −7.64463 + 154.062i −0.000547286 + 0.0110294i
\(581\) 15218.4i 1.08669i
\(582\) 0 0
\(583\) 2307.69i 0.163936i
\(584\) 5727.57 + 6649.77i 0.405836 + 0.471180i
\(585\) 0 0
\(586\) 12434.0 + 13066.3i 0.876527 + 0.921099i
\(587\) 16207.7 1.13963 0.569814 0.821773i \(-0.307015\pi\)
0.569814 + 0.821773i \(0.307015\pi\)
\(588\) 0 0
\(589\) 3822.01 0.267374
\(590\) −20188.0 21214.6i −1.40869 1.48033i
\(591\) 0 0
\(592\) −14876.7 1480.03i −1.03282 0.102751i
\(593\) 22320.8i 1.54571i 0.634583 + 0.772855i \(0.281172\pi\)
−0.634583 + 0.772855i \(0.718828\pi\)
\(594\) 0 0
\(595\) 43051.3i 2.96627i
\(596\) 832.655 + 41.3168i 0.0572263 + 0.00283960i
\(597\) 0 0
\(598\) 1610.68 1532.74i 0.110143 0.104814i
\(599\) 9767.43 0.666254 0.333127 0.942882i \(-0.391896\pi\)
0.333127 + 0.942882i \(0.391896\pi\)
\(600\) 0 0
\(601\) 18633.6 1.26469 0.632347 0.774685i \(-0.282092\pi\)
0.632347 + 0.774685i \(0.282092\pi\)
\(602\) 19021.0 18100.6i 1.28777 1.22546i
\(603\) 0 0
\(604\) −21984.1 1090.86i −1.48099 0.0734876i
\(605\) 19280.2i 1.29562i
\(606\) 0 0
\(607\) 429.023i 0.0286878i −0.999897 0.0143439i \(-0.995434\pi\)
0.999897 0.0143439i \(-0.00456597\pi\)
\(608\) 3083.46 + 3961.13i 0.205676 + 0.264219i
\(609\) 0 0
\(610\) −24589.2 25839.6i −1.63211 1.71511i
\(611\) 5208.01 0.344834
\(612\) 0 0
\(613\) −4211.54 −0.277492 −0.138746 0.990328i \(-0.544307\pi\)
−0.138746 + 0.990328i \(0.544307\pi\)
\(614\) −12887.0 13542.3i −0.847031 0.890104i
\(615\) 0 0
\(616\) −4863.11 + 4188.69i −0.318085 + 0.273972i
\(617\) 27042.6i 1.76450i 0.470786 + 0.882248i \(0.343970\pi\)
−0.470786 + 0.882248i \(0.656030\pi\)
\(618\) 0 0
\(619\) 9662.70i 0.627426i −0.949518 0.313713i \(-0.898427\pi\)
0.949518 0.313713i \(-0.101573\pi\)
\(620\) 901.744 18172.8i 0.0584111 1.17716i
\(621\) 0 0
\(622\) −10524.9 + 10015.6i −0.678471 + 0.645640i
\(623\) 6183.29 0.397638
\(624\) 0 0
\(625\) −12337.9 −0.789628
\(626\) −12709.4 + 12094.4i −0.811452 + 0.772185i
\(627\) 0 0
\(628\) −461.138 + 9293.29i −0.0293016 + 0.590514i
\(629\) 27399.8i 1.73688i
\(630\) 0 0
\(631\) 10846.5i 0.684297i 0.939646 + 0.342149i \(0.111155\pi\)
−0.939646 + 0.342149i \(0.888845\pi\)
\(632\) −9629.42 + 8294.00i −0.606073 + 0.522021i
\(633\) 0 0
\(634\) −3558.69 3739.66i −0.222924 0.234260i
\(635\) 44139.1 2.75844
\(636\) 0 0
\(637\) −3390.98 −0.210919
\(638\) 29.0545 + 30.5319i 0.00180294 + 0.00189462i
\(639\) 0 0
\(640\) 19561.8 13726.6i 1.20820 0.847798i
\(641\) 14748.4i 0.908776i 0.890804 + 0.454388i \(0.150142\pi\)
−0.890804 + 0.454388i \(0.849858\pi\)
\(642\) 0 0
\(643\) 14765.6i 0.905598i 0.891613 + 0.452799i \(0.149575\pi\)
−0.891613 + 0.452799i \(0.850425\pi\)
\(644\) 6249.77 + 310.117i 0.382415 + 0.0189756i
\(645\) 0 0
\(646\) −6664.61 + 6342.11i −0.405907 + 0.386265i
\(647\) −27157.4 −1.65018 −0.825090 0.565002i \(-0.808875\pi\)
−0.825090 + 0.565002i \(0.808875\pi\)
\(648\) 0 0
\(649\) −8001.72 −0.483968
\(650\) 6747.08 6420.58i 0.407142 0.387440i
\(651\) 0 0
\(652\) 23414.8 + 1161.85i 1.40643 + 0.0697879i
\(653\) 3069.88i 0.183972i 0.995760 + 0.0919861i \(0.0293215\pi\)
−0.995760 + 0.0919861i \(0.970678\pi\)
\(654\) 0 0
\(655\) 13643.8i 0.813905i
\(656\) −96.9813 + 974.823i −0.00577208 + 0.0580190i
\(657\) 0 0
\(658\) 10104.1 + 10617.9i 0.598628 + 0.629068i
\(659\) 1159.53 0.0685417 0.0342709 0.999413i \(-0.489089\pi\)
0.0342709 + 0.999413i \(0.489089\pi\)
\(660\) 0 0
\(661\) 17839.5 1.04974 0.524868 0.851184i \(-0.324115\pi\)
0.524868 + 0.851184i \(0.324115\pi\)
\(662\) −7754.83 8149.17i −0.455287 0.478439i
\(663\) 0 0
\(664\) 10103.9 + 11730.7i 0.590522 + 0.685602i
\(665\) 10178.1i 0.593517i
\(666\) 0 0
\(667\) 41.0905i 0.00238535i
\(668\) −345.696 + 6966.79i −0.0200230 + 0.403523i
\(669\) 0 0
\(670\) −4429.87 + 4215.50i −0.255434 + 0.243073i
\(671\) −9746.18 −0.560726
\(672\) 0 0
\(673\) −12116.6 −0.693998 −0.346999 0.937865i \(-0.612799\pi\)
−0.346999 + 0.937865i \(0.612799\pi\)
\(674\) 2372.07 2257.28i 0.135562 0.129002i
\(675\) 0 0
\(676\) −672.953 + 13562.0i −0.0382882 + 0.771620i
\(677\) 21508.1i 1.22101i −0.792013 0.610504i \(-0.790967\pi\)
0.792013 0.610504i \(-0.209033\pi\)
\(678\) 0 0
\(679\) 11763.4i 0.664856i
\(680\) 28582.9 + 33185.0i 1.61192 + 1.87145i
\(681\) 0 0
\(682\) −3427.20 3601.48i −0.192426 0.202211i
\(683\) 33849.4 1.89636 0.948179 0.317738i \(-0.102923\pi\)
0.948179 + 0.317738i \(0.102923\pi\)
\(684\) 0 0
\(685\) −10688.4 −0.596178
\(686\) 8296.19 + 8718.06i 0.461735 + 0.485214i
\(687\) 0 0
\(688\) −2644.44 + 26581.0i −0.146538 + 1.47295i
\(689\) 4044.83i 0.223651i
\(690\) 0 0
\(691\) 2063.38i 0.113596i −0.998386 0.0567980i \(-0.981911\pi\)
0.998386 0.0567980i \(-0.0180891\pi\)
\(692\) 18638.8 + 924.866i 1.02390 + 0.0508065i
\(693\) 0 0
\(694\) −5088.08 + 4841.87i −0.278301 + 0.264834i
\(695\) 44068.2 2.40518
\(696\) 0 0
\(697\) −1795.42 −0.0975699
\(698\) 12240.1 11647.8i 0.663745 0.631627i
\(699\) 0 0
\(700\) 26180.0 + 1299.06i 1.41359 + 0.0701429i
\(701\) 19641.7i 1.05828i 0.848534 + 0.529141i \(0.177486\pi\)
−0.848534 + 0.529141i \(0.822514\pi\)
\(702\) 0 0
\(703\) 6477.79i 0.347531i
\(704\) 967.632 6457.50i 0.0518026 0.345705i
\(705\) 0 0
\(706\) 2010.90 + 2113.16i 0.107197 + 0.112648i
\(707\) −31893.8 −1.69659
\(708\) 0 0
\(709\) −5371.97 −0.284554 −0.142277 0.989827i \(-0.545442\pi\)
−0.142277 + 0.989827i \(0.545442\pi\)
\(710\) −730.097 767.223i −0.0385916 0.0405540i
\(711\) 0 0
\(712\) −4766.24 + 4105.25i −0.250874 + 0.216083i
\(713\) 4846.95i 0.254586i
\(714\) 0 0
\(715\) 4704.25i 0.246055i
\(716\) 253.259 5103.91i 0.0132189 0.266399i
\(717\) 0 0
\(718\) −8644.53 + 8226.22i −0.449319 + 0.427576i
\(719\) −12836.0 −0.665788 −0.332894 0.942964i \(-0.608025\pi\)
−0.332894 + 0.942964i \(0.608025\pi\)
\(720\) 0 0
\(721\) −5113.29 −0.264118
\(722\) −12478.2 + 11874.4i −0.643199 + 0.612075i
\(723\) 0 0
\(724\) 1598.20 32208.4i 0.0820395 1.65334i
\(725\) 172.126i 0.00881738i
\(726\) 0 0
\(727\) 34346.9i 1.75221i 0.482119 + 0.876106i \(0.339867\pi\)
−0.482119 + 0.876106i \(0.660133\pi\)
\(728\) 8523.89 7341.78i 0.433951 0.373770i
\(729\) 0 0
\(730\) −12479.8 13114.4i −0.632735 0.664910i
\(731\) −48956.5 −2.47705
\(732\) 0 0
\(733\) 9075.02 0.457290 0.228645 0.973510i \(-0.426571\pi\)
0.228645 + 0.973510i \(0.426571\pi\)
\(734\) 5927.86 + 6229.30i 0.298094 + 0.313253i
\(735\) 0 0
\(736\) −5023.38 + 3910.34i −0.251582 + 0.195838i
\(737\) 1670.85i 0.0835098i
\(738\) 0 0
\(739\) 16863.2i 0.839410i −0.907661 0.419705i \(-0.862134\pi\)
0.907661 0.419705i \(-0.137866\pi\)
\(740\) 30800.4 + 1528.33i 1.53006 + 0.0759225i
\(741\) 0 0
\(742\) −8246.41 + 7847.37i −0.407999 + 0.388256i
\(743\) 30043.7 1.48344 0.741721 0.670709i \(-0.234010\pi\)
0.741721 + 0.670709i \(0.234010\pi\)
\(744\) 0 0
\(745\) −1719.66 −0.0845686
\(746\) −10486.2 + 9978.81i −0.514649 + 0.489745i
\(747\) 0 0
\(748\) 11952.3 + 593.081i 0.584252 + 0.0289909i
\(749\) 37280.2i 1.81868i
\(750\) 0 0
\(751\) 8444.33i 0.410304i −0.978730 0.205152i \(-0.934231\pi\)
0.978730 0.205152i \(-0.0657688\pi\)
\(752\) −14837.9 1476.17i −0.719527 0.0715829i
\(753\) 0 0
\(754\) −50.9257 53.5153i −0.00245969 0.00258476i
\(755\) 45403.2 2.18860
\(756\) 0 0
\(757\) 35193.1 1.68971 0.844857 0.534992i \(-0.179685\pi\)
0.844857 + 0.534992i \(0.179685\pi\)
\(758\) 5538.66 + 5820.30i 0.265400 + 0.278896i
\(759\) 0 0
\(760\) −6757.50 7845.53i −0.322527 0.374457i
\(761\) 15773.0i 0.751342i −0.926753 0.375671i \(-0.877412\pi\)
0.926753 0.375671i \(-0.122588\pi\)
\(762\) 0 0
\(763\) 12025.4i 0.570575i
\(764\) −1452.47 + 29271.5i −0.0687806 + 1.38613i
\(765\) 0 0
\(766\) 11532.9 10974.8i 0.543996 0.517672i
\(767\) 14025.1 0.660259
\(768\) 0 0
\(769\) −20741.8 −0.972651 −0.486325 0.873778i \(-0.661663\pi\)
−0.486325 + 0.873778i \(0.661663\pi\)
\(770\) 9590.80 9126.70i 0.448868 0.427147i
\(771\) 0 0
\(772\) 562.067 11327.3i 0.0262037 0.528081i
\(773\) 35223.1i 1.63892i −0.573133 0.819462i \(-0.694272\pi\)
0.573133 0.819462i \(-0.305728\pi\)
\(774\) 0 0
\(775\) 20303.6i 0.941067i
\(776\) 7810.03 + 9067.53i 0.361293 + 0.419466i
\(777\) 0 0
\(778\) 6945.17 + 7298.34i 0.320047 + 0.336321i
\(779\) 424.468 0.0195227
\(780\) 0 0
\(781\) −289.381 −0.0132585
\(782\) −8042.85 8451.84i −0.367790 0.386493i
\(783\) 0 0
\(784\) 9661.09 + 961.144i 0.440101 + 0.0437839i
\(785\) 19193.2i 0.872657i
\(786\) 0 0
\(787\) 22691.9i 1.02780i 0.857850 + 0.513901i \(0.171800\pi\)
−0.857850 + 0.513901i \(0.828200\pi\)
\(788\) −7006.71 347.677i −0.316756 0.0157176i
\(789\) 0 0
\(790\) 18990.7 18071.7i 0.855265 0.813878i
\(791\) −28529.2 −1.28240
\(792\) 0 0
\(793\) 17082.8 0.764977
\(794\) 19316.6 18381.9i 0.863377 0.821598i
\(795\) 0 0
\(796\) 11869.0 + 588.945i 0.528499 + 0.0262244i
\(797\) 31732.1i 1.41030i −0.709058 0.705150i \(-0.750880\pi\)
0.709058 0.705150i \(-0.249120\pi\)
\(798\) 0 0
\(799\) 27328.3i 1.21002i
\(800\) −21042.7 + 16380.2i −0.929964 + 0.723910i
\(801\) 0 0
\(802\) −16829.9 17685.8i −0.741005 0.778686i
\(803\) −4946.47 −0.217381
\(804\) 0 0
\(805\) −12907.5 −0.565130
\(806\) 6007.08 + 6312.55i 0.262519 + 0.275868i
\(807\) 0 0
\(808\) 24584.6 21175.1i 1.07040 0.921954i
\(809\) 18376.4i 0.798613i 0.916817 + 0.399307i \(0.130749\pi\)
−0.916817 + 0.399307i \(0.869251\pi\)
\(810\) 0 0
\(811\) 28834.7i 1.24849i 0.781229 + 0.624244i \(0.214593\pi\)
−0.781229 + 0.624244i \(0.785407\pi\)
\(812\) 10.3037 207.650i 0.000445306 0.00897423i
\(813\) 0 0
\(814\) 6104.01 5808.64i 0.262832 0.250114i
\(815\) −48358.0 −2.07841
\(816\) 0 0
\(817\) 11574.2 0.495630
\(818\) −12016.8 + 11435.3i −0.513638 + 0.488783i
\(819\) 0 0
\(820\) 100.147 2018.25i 0.00426497 0.0859517i
\(821\) 16710.2i 0.710339i −0.934802 0.355170i \(-0.884423\pi\)
0.934802 0.355170i \(-0.115577\pi\)
\(822\) 0 0
\(823\) 523.667i 0.0221797i −0.999939 0.0110898i \(-0.996470\pi\)
0.999939 0.0110898i \(-0.00353008\pi\)
\(824\) 3941.46 3394.85i 0.166635 0.143526i
\(825\) 0 0
\(826\) 27210.1 + 28593.8i 1.14620 + 1.20449i
\(827\) −28676.4 −1.20577 −0.602887 0.797826i \(-0.705983\pi\)
−0.602887 + 0.797826i \(0.705983\pi\)
\(828\) 0 0
\(829\) 14521.0 0.608365 0.304183 0.952614i \(-0.401617\pi\)
0.304183 + 0.952614i \(0.401617\pi\)
\(830\) −22015.3 23134.8i −0.920676 0.967494i
\(831\) 0 0
\(832\) −1696.03 + 11318.5i −0.0706723 + 0.471632i
\(833\) 17793.7i 0.740113i
\(834\) 0 0
\(835\) 14388.4i 0.596323i
\(836\) −2825.74 140.215i −0.116902 0.00580076i
\(837\) 0 0
\(838\) 14252.0 13562.3i 0.587501 0.559072i
\(839\) −31189.5 −1.28341 −0.641706 0.766951i \(-0.721773\pi\)
−0.641706 + 0.766951i \(0.721773\pi\)
\(840\) 0 0
\(841\) 24387.6 0.999944
\(842\) 19251.6 18320.0i 0.787950 0.749821i
\(843\) 0 0
\(844\) −2458.19 121.977i −0.100254 0.00497466i
\(845\) 28009.3i 1.14029i
\(846\) 0 0
\(847\) 25986.4i 1.05420i
\(848\) 1146.47 11524.0i 0.0464270 0.466668i
\(849\) 0 0
\(850\) −33691.1 35404.3i −1.35952 1.42866i
\(851\) −8214.91 −0.330909
\(852\) 0 0
\(853\) 13089.9 0.525426 0.262713 0.964874i \(-0.415383\pi\)
0.262713 + 0.964874i \(0.415383\pi\)
\(854\) 33142.2 + 34827.5i 1.32799 + 1.39552i
\(855\) 0 0
\(856\) −24751.3 28736.5i −0.988297 1.14742i
\(857\) 17799.5i 0.709472i −0.934966 0.354736i \(-0.884571\pi\)
0.934966 0.354736i \(-0.115429\pi\)
\(858\) 0 0
\(859\) 42346.5i 1.68201i 0.541029 + 0.841004i \(0.318035\pi\)
−0.541029 + 0.841004i \(0.681965\pi\)
\(860\) 2730.75 55032.7i 0.108277 2.18209i
\(861\) 0 0
\(862\) −15051.7 + 14323.4i −0.594738 + 0.565958i
\(863\) 41963.9 1.65524 0.827618 0.561291i \(-0.189695\pi\)
0.827618 + 0.561291i \(0.189695\pi\)
\(864\) 0 0
\(865\) −38494.2 −1.51311
\(866\) −28015.4 + 26659.7i −1.09931 + 1.04611i
\(867\) 0 0
\(868\) −1215.40 + 24493.9i −0.0475269 + 0.957808i
\(869\) 7162.90i 0.279614i
\(870\) 0 0
\(871\) 2928.62i 0.113929i
\(872\) −7983.99 9269.50i −0.310060 0.359982i
\(873\) 0 0
\(874\) 1901.47 + 1998.16i 0.0735907 + 0.0773328i
\(875\) −8189.76 −0.316416
\(876\) 0 0
\(877\) −43331.4 −1.66841 −0.834206 0.551453i \(-0.814074\pi\)
−0.834206 + 0.551453i \(0.814074\pi\)
\(878\) 11247.9 + 11819.9i 0.432346 + 0.454331i
\(879\) 0 0
\(880\) −1333.38 + 13402.7i −0.0510775 + 0.513414i
\(881\) 38532.4i 1.47354i −0.676142 0.736771i \(-0.736349\pi\)
0.676142 0.736771i \(-0.263651\pi\)
\(882\) 0 0
\(883\) 7198.92i 0.274364i 0.990546 + 0.137182i \(0.0438045\pi\)
−0.990546 + 0.137182i \(0.956196\pi\)
\(884\) −20949.6 1039.53i −0.797073 0.0395512i
\(885\) 0 0
\(886\) 19778.4 18821.3i 0.749965 0.713674i
\(887\) 14220.1 0.538291 0.269145 0.963100i \(-0.413259\pi\)
0.269145 + 0.963100i \(0.413259\pi\)
\(888\) 0 0
\(889\) −59492.2 −2.24444
\(890\) 9399.76 8944.90i 0.354023 0.336892i
\(891\) 0 0
\(892\) 31189.5 + 1547.64i 1.17074 + 0.0580928i
\(893\) 6460.90i 0.242112i
\(894\) 0 0
\(895\) 10541.0i 0.393683i
\(896\) −26366.0 + 18501.2i −0.983066 + 0.689822i
\(897\) 0 0
\(898\) 22407.7 + 23547.1i 0.832688 + 0.875031i
\(899\) 161.041 0.00597442
\(900\) 0 0
\(901\) 21224.7 0.784791
\(902\) −380.621 399.976i −0.0140502 0.0147647i
\(903\) 0 0
\(904\) 21991.0 18941.3i 0.809082 0.696877i
\(905\) 66519.3i 2.44329i
\(906\) 0 0
\(907\) 49979.1i 1.82969i 0.403804 + 0.914845i \(0.367688\pi\)
−0.403804 + 0.914845i \(0.632312\pi\)
\(908\) 764.709 15411.1i 0.0279491 0.563256i
\(909\) 0 0
\(910\) −16810.4 + 15997.0i −0.612374 + 0.582741i
\(911\) 14612.6 0.531436 0.265718 0.964051i \(-0.414391\pi\)
0.265718 + 0.964051i \(0.414391\pi\)
\(912\) 0 0
\(913\) −8725.96 −0.316306
\(914\) −36148.0 + 34398.8i −1.30817 + 1.24487i
\(915\) 0 0
\(916\) 910.871 18356.7i 0.0328559 0.662144i
\(917\) 18389.6i 0.662244i
\(918\) 0 0
\(919\) 45594.4i 1.63658i 0.574804 + 0.818291i \(0.305078\pi\)
−0.574804 + 0.818291i \(0.694922\pi\)
\(920\) 9949.44 8569.64i 0.356547 0.307101i
\(921\) 0 0
\(922\) 25086.1 + 26361.7i 0.896058 + 0.941623i
\(923\) 507.217 0.0180880
\(924\) 0 0
\(925\) −34411.9 −1.22319
\(926\) −26982.8 28354.9i −0.957571 1.00626i
\(927\) 0 0
\(928\) 129.922 + 166.903i 0.00459579 + 0.00590393i
\(929\) 51720.3i 1.82657i 0.407316 + 0.913287i \(0.366465\pi\)
−0.407316 + 0.913287i \(0.633535\pi\)
\(930\) 0 0
\(931\) 4206.74i 0.148088i
\(932\) −26899.7 1334.78i −0.945417 0.0469121i
\(933\) 0 0
\(934\) 166.261 158.216i 0.00582466 0.00554280i
\(935\) −24684.9 −0.863404
\(936\) 0 0
\(937\) −42197.0 −1.47120 −0.735601 0.677415i \(-0.763100\pi\)
−0.735601 + 0.677415i \(0.763100\pi\)
\(938\) 5970.72 5681.80i 0.207837 0.197780i
\(939\) 0 0
\(940\) 30720.1 + 1524.35i 1.06594 + 0.0528923i
\(941\) 10808.1i 0.374424i 0.982320 + 0.187212i \(0.0599451\pi\)
−0.982320 + 0.187212i \(0.940055\pi\)
\(942\) 0 0
\(943\) 538.296i 0.0185889i
\(944\) −39958.5 3975.31i −1.37769 0.137061i
\(945\) 0 0
\(946\) −10378.6 10906.4i −0.356699 0.374837i
\(947\) −745.664 −0.0255869 −0.0127935 0.999918i \(-0.504072\pi\)
−0.0127935 + 0.999918i \(0.504072\pi\)
\(948\) 0 0
\(949\) 8670.00 0.296565
\(950\) 7965.17 + 8370.21i 0.272026 + 0.285858i
\(951\) 0 0
\(952\) −38525.0 44727.9i −1.31156 1.52273i
\(953\) 49163.3i 1.67110i 0.549417 + 0.835548i \(0.314850\pi\)
−0.549417 + 0.835548i \(0.685150\pi\)
\(954\) 0 0
\(955\) 60453.7i 2.04841i
\(956\) 243.890 4915.09i 0.00825100 0.166282i
\(957\) 0 0
\(958\) 30619.9 29138.2i 1.03266 0.982685i
\(959\) 14406.2 0.485088
\(960\) 0 0
\(961\) 10795.0 0.362358
\(962\) −10698.9 + 10181.2i −0.358572 + 0.341221i
\(963\) 0 0
\(964\) −1741.15 + 35089.3i −0.0581728 + 1.17235i
\(965\) 23394.0i 0.780395i
\(966\) 0 0
\(967\) 16888.4i 0.561627i −0.959762 0.280813i \(-0.909396\pi\)
0.959762 0.280813i \(-0.0906042\pi\)
\(968\) −17253.1 20031.0i −0.572867 0.665105i
\(969\) 0 0
\(970\) −17017.2 17882.6i −0.563289 0.591932i
\(971\) −22501.6 −0.743677 −0.371838 0.928297i \(-0.621272\pi\)
−0.371838 + 0.928297i \(0.621272\pi\)
\(972\) 0 0
\(973\) −59396.6 −1.95701
\(974\) 11570.2 + 12158.6i 0.380631 + 0.399987i
\(975\) 0 0
\(976\) −48669.8 4841.97i −1.59619 0.158799i
\(977\) 13764.1i 0.450720i −0.974276 0.225360i \(-0.927644\pi\)
0.974276 0.225360i \(-0.0723558\pi\)
\(978\) 0 0
\(979\) 3545.40i 0.115742i
\(980\) −20002.1 992.515i −0.651983 0.0323518i
\(981\) 0 0
\(982\) 41112.0 39122.6i 1.33598 1.27134i
\(983\) −7784.49 −0.252581 −0.126290 0.991993i \(-0.540307\pi\)
−0.126290 + 0.991993i \(0.540307\pi\)
\(984\) 0 0
\(985\) 14470.8 0.468100
\(986\) −280.814 + 267.225i −0.00906991 + 0.00863102i
\(987\) 0 0
\(988\) 4952.87 + 245.764i 0.159485 + 0.00791375i
\(989\) 14678.0i 0.471925i
\(990\) 0 0
\(991\) 47880.3i 1.53478i −0.641179 0.767391i \(-0.721555\pi\)
0.641179 0.767391i \(-0.278445\pi\)
\(992\) −15325.3 19687.5i −0.490502 0.630119i
\(993\) 0 0
\(994\) 984.049 + 1034.09i 0.0314006 + 0.0329973i
\(995\) −24512.7 −0.781011
\(996\) 0 0
\(997\) 2491.15 0.0791328 0.0395664 0.999217i \(-0.487402\pi\)
0.0395664 + 0.999217i \(0.487402\pi\)
\(998\) −18345.0 19277.9i −0.581864 0.611453i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.b.c.323.8 24
3.2 odd 2 inner 324.4.b.c.323.17 24
4.3 odd 2 inner 324.4.b.c.323.18 24
9.2 odd 6 108.4.h.b.71.1 24
9.4 even 3 108.4.h.b.35.6 24
9.5 odd 6 36.4.h.b.11.7 24
9.7 even 3 36.4.h.b.23.12 yes 24
12.11 even 2 inner 324.4.b.c.323.7 24
36.7 odd 6 36.4.h.b.23.7 yes 24
36.11 even 6 108.4.h.b.71.6 24
36.23 even 6 36.4.h.b.11.12 yes 24
36.31 odd 6 108.4.h.b.35.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.4.h.b.11.7 24 9.5 odd 6
36.4.h.b.11.12 yes 24 36.23 even 6
36.4.h.b.23.7 yes 24 36.7 odd 6
36.4.h.b.23.12 yes 24 9.7 even 3
108.4.h.b.35.1 24 36.31 odd 6
108.4.h.b.35.6 24 9.4 even 3
108.4.h.b.71.1 24 9.2 odd 6
108.4.h.b.71.6 24 36.11 even 6
324.4.b.c.323.7 24 12.11 even 2 inner
324.4.b.c.323.8 24 1.1 even 1 trivial
324.4.b.c.323.17 24 3.2 odd 2 inner
324.4.b.c.323.18 24 4.3 odd 2 inner